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ABSTRACT
With the reduction in the cost of next-generation sequencing, whole-genome sequenc-
ing (WGS)–based methods such as core-genome multilocus sequence type (cgMLST)
have been widely used. However, gene-based methods are required to assemble
raw reads to contigs, thus possibly introducing errors into assemblies. Because the
robustness of cgMLST depends on the quality of assemblies, the results of WGS should
be assessed (from sequencing to assembly). In this study, we investigated the robustness
of different read lengths, read depths, and assemblers in recovering genes from reference
genomes. Different combinations of read lengths and read depths were simulated from
the complete genomes of three common food-borne pathogens: Escherichia coli, Listeria
monocytogenes, and Salmonella enterica. We found that the quality of assemblies was
mainly affected by read depth, irrespective of the assembler used. In addition, we suggest
several cutoff values for future cgMLST experiments. Furthermore, we recommend the
combinations of read lengths, read depths, and assemblers that can result in a higher
cost/performance ratio for cgMLST.

Subjects Bioinformatics, Genomics, Microbiology
Keywords Molecular typing, Next generation sequencing (NGS), Core-genome multilocus
sequence typing (cgMLST)

INTRODUCTION
With the reduction in the cost of next-generation sequencing (NGS), whole-genome
sequencing (WGS)–based methods are being widely used in genomic epidemiology to
characterize bacterial pathogens and perform strain typing (Deng, Bakker & Hendriksen,
2016; Fratamico et al., 2016; Lindsey et al., 2016). Multilocus sequence type (MLST)
genotyping (Maiden et al., 1998) has been used for many years for cross-laboratory
comparison and outbreak investigation among closely-related strains. Core-genomeMLST
(cgMLST), an advanced version of MLST genotyping, is a genome-wide gene-by-gene
comparison approach (Maiden et al., 2013) that has been successfully used for detecting
disease clusters and investigating outbreaks (Barkley, Gosciminski & Miller, 2016; De Been
et al., 2015; Jackson et al., 2016). Several websites and databases, such as PubMLST.org
(Jolley, Bray & Maiden, 2018) and Pathogenwatch (https://pathogen.watch/), that are
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funded by large companies and governments have been using cgMLST. Because of the
increasing significance of cgMLST in the field of epidemiology, evaluating its robustness
is crucial. Segerman (2020) has reviewed sequencing technologies and assembly methods
for the bacterial surveillance and the RefSeq Genome Database. He found that Illumina
sequencers were the mostly used sequencing platforms and SPAdes, SKESA and CLC were
the most popular assemblers. Based on Segerman’s (2020) findings, we designed a metric
‘‘number of core genes unrecalled’’ to find out the minimum sequencing depth/coverage
for SPAdes, SKESA and CLC at read lengths with 150 bp and 250 bp, which were common
in Illumina platforms, to recover themost completely ‘‘core gene alleles’’ (i.e., not only gene
locus but also nucleotide sequence of such gene locus needed to be the same). The idea of
metric ‘‘core gene unrecalled’’ was from the benchmarking metrics of genome assemblies
(i.e., Contiguity, Correctness and Completeness) suggested by Molina-Mora et al. (2020)
with the scale from genome level down to gene level. Also, because the genes order within a
genome does not influence the generated cgMLST profile, we only consider the correctness
and completeness of core genes. Therefore, our designed metric ‘‘number of core genes
unrecalled’’ could fully reflect the quality of cgMLST profiles. Since the sequencing read
length, read depth, and assemblermight substantially affect cgMLST results, we investigated
the effect of these factors on cgMLST results. In this study, we simulated different read
depths of different lengths from four common food-borne pathogens, namely, Escherichia
coli, Listeria monocytogenes, and Salmonella enterica, and performed assembling by using
different assemblers to determine the minimum read depths required under different
situations (i.e., different combinations of read lengths, read depths, and assemblers). The
minimum read depths determined in this study might help researchers in estimating the
depths before conducting cgMLST studies.

METHODS AND MATERIALS
To evaluate the minimum read depth required for recalling genes, we simulated read
sets with different read depths from complete reference genomes downloaded from NCBI.
Three food-borne pathogens were tested: E. coli, L. monocytogenes, and S. enterica. Different
assemblers and read lengths were included in the evaluation. The experiments were repeated
three times to ensure the robustness of the results.

Bacterial genomes used for evaluation
IAI39 (Touchon et al., 2009), EGD-e (Toledo-Arana et al., 2009), and LT2 (McClelland et al.,
2001), which were the NCBI reference genomes with complete assembly level, were selected
for representing E. coli, L. monocytogenes, and S. enterica, respectively. The art_illumina
simulator of ART simulation toolkit (Huang et al., 2012) was used to generate pseudo
reads with different read lengths and read depths from the selected four complete genomes.
The command of art_illumina used in this research is ‘‘art_illumina –p –na –ss MSv3 -i
<reference>-l <read length>-f <depth>-m <read length + 50>-s 10 –o <path/file>’’.

Metrics used for evaluation
The metric ‘‘number of core genes unrecalled (i.e., number of void cgMLST loci or
error called cgMLST alleles)’’ was designed for finding out the minimum sequencing
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depth/coverage for SPAdes, SKESA and CLC at common Illumina produced read lengths
of 150 bp and 250 bp to recover the most completely ‘‘core gene alleles’’, which means
exactly the same with core gene sequences. In addition, because the genes order within a
genome does not influence the generated cgMLST (Maiden et al., 2013) profile, we only
consider the correctness and completeness of core genes. Therefore, the quality of cgMLST
profiles could be reflected through evaluating ‘‘number of core genes unrecalled’’. The
cgMLST allele calling was achieved by using BENGA server (Chen et al., 2021).

Evaluation of the minimum sequencing depths achieving stable
number of core genes unrecalled by using different assemblers
for different read lengths
To evaluate read depths required for different read lengths, we simulated 14 sequencing
depths or coverages (10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, 100×, 200×, 300×,
400×, and 500×) from S. enterica LT2, E. coli IAI39, and L. monocytogenes EGD-e. Each
simulated read set was assembled using SPAdes (Bankevich et al., 2012), CLC Genomics
Workbench v10.1.1 (CLC), and SKESA (Souvorov, Agarwala & Lipman, 2018), and the
resulting contigs were compared with the original complete genomes. The reads assembly
settings for the three assemblers were listed in Table S1. All genes were predicted using
the Prodigal program (Hyatt et al., 2010). The ‘‘gene recalled’’ was defined as the predicted
gene in the assembly showed a 100%match with the predicted gene in the original complete
genome. The three assemblers used for the read lengths of 150 and 250 bp were compared
to determine the minimum coverage needed to recover the maximum genes for different
read lengths, regardless of assemblers. Deviations in the number of unrecalled genes for the
same assembler, read depth, and read length can be caused due to the stochastic procedure
of read simulation.

Evaluation of minimum sequencing depths for the three common
food-borne pathogens (S. enterica, E. coli, L. monocytogenes) based
on real sequenced data
To reflect the real sequenced reads condition, we picked up genomes both having raw
reads data in SRA database and assembled genomes with complete level in GenBank
for further evaluation. The complete assembled genome from GenBank can be used as
the reference for evaluating the raw reads assembling from SRA. We sampled different
read depths (i.e., 10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×, 90×, and 100×) using
Seqtk (https://github.com/lh3/seqtk/blob/master/README.md) from the real sequenced
reads data of S. enterica (SRR5866640 for 150 bp and SRR6929558 for 250 bp), E. coli
(SRR6924239 for 150 bp and SRR3205757 for 250 bp), and L. monocytogenes (SRR3089759
for 150 bp and SRR6347431 for 250 bp). To investigate the minimum read depth required
for achieving the stable core genes unrecalled of real sequenced reads data, we picked up
the relevant (i.e., having the same BioSample Accession Number) assembled genomes with
complete level as the reference for the evaluation. The relevant assembled genomes are
S. enterica (CP023508.1 for 150 bp and CP036165.1 for 250 bp), E. coli (CP029239.1 for
150 bp and CP034799.1 for 250 bp), and L. monocytogenes (CP013919.1 for 150 bp and
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CP025565.1 for 250 bp). The command for performed Seqtk is ‘‘seqtk sample -s [seed]
[input] [fraction] >[output]’’.

Estimation of the sequencing depth for three commonly used
assemblers for completing the assembly process in a linear time
To evaluate the running time of SPAdes, CLC, and SKESA assemblers, we determined
the time required for assembling simulated reads with a read depth of 10×, 20×, 30×,
40×, 50×, 60×, 70×, 80×, 90×, and 100×. The read length of 250 bp was chosen for
testing. The server equipped with Intel Xeon CPU E7-4830 v4 2.00 GHz was used for the
evaluation. The experiment was performed under the condition of eight threads in a 32-GB
RAM computation environment. Wall time was used to evaluate the running time.

RESULTS
We evaluated 14 sequencing depths or coverages (10×, 20×, 30×, 40×, 50×, 60×, 70×,
80×, 90×, 100×, 200×, 300×, 400×, and 500×) for determining the assembly quality.
The number of unrecalled genes from the reference genomes of S. enterica LT2, E. coli
IAI39, and L. monocytogenes EGD-e represented the assembly quality. Three commonly
used assemblers, namely SPAdes, CLC, and SKESA, were applied to run the tests. Two
read lengths, 150 bp and 250 bp, representing the widely used sequencing read lengths in
Illumina HiSeq and Illumina MiSeq platforms, respectively, were evaluated.

Minimum sequencing depth achieving stable number of core genes
unrecalled for different assemblers by using different read lengths
As shown in Fig. 1, a sequencing coverage of 60× might be a safe choice irrespective of
the assembler and read length. We observed that the SPAdes assembler required 30× read
depths (irrespective of whether the read length of 150 or 250 bp was used) to achieve
minimum depth of the stable core genes unrecalled compared with CLC and SKESA that
required read depths of 40×∼60×. Because the read lengths of 150 and 250 bp are mainly
used in Illumina platforms, we evaluated the minimum sequencing coverage required for
these two read lengths. As shown in Fig. 1, sequencing coverages of at least 60× and 50×
were required for the read lengths of 150 and 250 bp, respectively, for assembly to achieve
the stable core genes unrecalled irrespective of the assemblers used (i.e., SPAdes, CLC, and
SKESA). Regarding assemblers, we observed that SPAdes was not considerably affected by
the read length and required a read depth of only 30× to recover reference genes. However,
CLC and SKESA required a read depth of at least 40×–50× and 50×–60×, respectively, to
achieve assembly quality similar to that obtained using SPAdes.

Plausible sequencing depths for the three commonly used
assemblers to complete the procedure in linear time
As shown in Fig. S1, the assembly time required by SKESA and CLC did not change even
at a sequence depth of 500×. However, for SPAdes, the assembly time increased according
to the sequence depth, particularly when it was more than 100×. In addition, the assembly
time was not affected by the read length for SKESA and CLC; however, for SPAdes, a read
length of 150 bp required more time for assembly than a read length of 250 bp.
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Figure 1 Estimation of the minimum read coverage required to achieve the stable core genes unre-
called for assembling at a read length of 150 and 250 bp. Comparison of different assemblers for the
number of unrecalled genes from the reference genome (S.enterica LT2, E. coli IAI39, and L. monocyto-
genes EGD-e) according to different simulated read coverages (10×, 20×, 30×, 40×, 50×, 60×, 70×, 80×,
90×, 100×, 200×, 300×, 400×, and 500×) at read lengths of 150 (A) and 250 bp (B).

Full-size DOI: 10.7717/peerj.11842/fig-1
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Suggested minimum sequencing depths for achieving stable number
of core genes unrecalled of four common food-borne pathogens
(S. enterica, E. coli, L. monocytogenes) based on simulation reads
All the aforementioned evaluation results were obtained from simulated S. enterica LT2,
E. coli, and L. monocytogenes reads (shown in Table 1). The minimum required depth
tended to be similar among the four tested species, with a minimum depth of 30× for
SPAdes and 40×–50× for CLC at a read length of 150 bp and 30× for SPAdes and 40×–50×
for CLC at a read length of 250 bp. Compared with SPAdes and CLC, the minimum read
coverage for SKESA was 40×–60× at a read length of 150 bp and 40×–50× at a read length
of 250 bp. The minimum coverage (depth) of SPAdes, CLC, and SKESA at different read
lengths and sequence coverages are highlighted in gray (shown in Table 1).

Suggested minimum sequencing depths for the three common
food-borne pathogens (S. enterica, E. coli, L. monocytogenes) based
on real sequenced data
The results of the minimum read depth sampled from real sequenced reads required for
achieving the stable number of core genes unrecalled were shown in Table 2. The results
were similar to those obtained for simulation data with a minimum depth of 30× for
SPAdes and 30×–40× for CLC assemblers at a read length of 150 bp and 20×–40× for
SPAdes and 20×–50× for CLC at a read length of 250 bp. Compared with SPAdes and
CLC, the minimum read coverage for SKESA was 50×–70× at a read length of 150 bp
and 50×–70× for a read length of 250 bp. The reads QC were performed by using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and the ‘‘Per sequence
quality scores’’ and ‘‘Sequence Length Distribution’’ from QC reports were shown in
Fig. S2.

DISCUSSION
In our evaluation, we applied an index ‘‘genes called’’ to represent the assembly quality.
Because read sets were simulated from a complete genome, the number of ‘‘genes called’’
can directly represent the quality of assemblies. Because the number of genes called can
indicate the completeness of a ‘‘pan genome’’, which covers ‘‘core genes’’, we used genes
called as our evaluation index. The three most important factors in NGS were evaluated:
read depth, read length, and assembler. We found that an assembler was the most crucial
factor that affected the quality of assemblies, especially at a low read depth. For low read
depths (20×–30×), SPAdes outperformed CLC and SKESA with an error rate of <2.0%,
although the performance of CLC was close to that of SPAdes. Compared with SPAdes
and CLC, SKESA usually required 40×–50× to reach an error rate of <2.0%. Although
SPAdes demonstrated the highest performance, its running time considerably increased
with the read depth, especially when the depth was >100×. No difference in results was
observed between long reads (250 bp) and short reads (150 bp) for SPAdes and CLC;
however, SKESA required a larger depth to assemble short reads to reach an error rate of
<2.0%. In addition, to investigate if some similarity sharing among unrecalled genes at
even high sequencing depth, we analyzed the unrecalled core genes of S. enterica, E. coli
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Table 1 The number of core genes unrecalled at each depth comparing for different assemblers based on simulated data.

Read
length

Assemblers Read depth

10× 20× 30× 40× 50× 60× 70× 80× 90× 100×

S. enterica (LT2) 150 bp SPAdes 1404–1419 64–74 3–4a 3–4 3 3–4 3–4 3 3–4 2–3
(Size= 4.9 Mb) CLC 1680–1688 241–243 10–30 3–12 2 3 2–3 1–3 2–3 2–4

SKESA 2382–2443 1125–1157 62–68 13–14 8–9 5 5 5 5 5
250 bp SPAdes 728–752 15–27 3–4 2 1–2 1–2 1–2 2–3 1–2 2–3

CLC 964–1025 55–113 5 1–2 2–3 2–3 2 2 2–4 2–5
SKESA 1692–1697 169–175 12–17 3 2 2 2 2 2 2

L. monocytogens 150 bp SPAdes 1036 48 0 0 0 0 0 0 0 0
(IAI39) CLC 1223–1226 139–143 3–5 0 0 0 0 0 0 0
(Size= 2.9 Mb) SKESA 1839 790–791 32 1 0–1 1 1 1 1 1

250 bp SPAdes 531–560 12–21 0–1 0 0–1 0 0–1 0 0 0
CLC 686–735 36–66 0–2 0 0–2 0 0 0 0 0
SKESA 1217–1267 111–126 3–11 1–3 1 1 1 1 1 0–1

E. coli (EGD-e) 150 bp SPAdes 1188 61 4 4 3–4 4 3–5 3 2–3 3–4
(Size= 4.6 Mb) CLC 1411–1416 197–202 30–32 5–8 5–6 4–5 5 2–6 5 5–6

SKESA 2089 989 54 14 9–11 8 8 7–8 7 7
250 bp SPAdes 611–629 21–22 4 3 2–3 3 3 2–3 2 2

CLC 811-839 40–60 4–6 3–4 3–4 2–4 3–4 4–5 2 4
SKESA 1403–1432 132–135 13–14 7–8 7 6–7 6–7 6 6 6

Notes.
aThe gray fill represents the minimum read depth needed to achieve the stable number of core genes unrecalled for the combing of different read lengths and assemblers.

Liu
etal.(2021),PeerJ,D

O
I10.7717/peerj.11842

7/11

https://peerj.com
http://dx.doi.org/10.7717/peerj.11842


Table 2 The number of core-gene differences between assembly and the reference genome in each depth comparing for different assemblers based on real sequenced
data.

Read
length

Assemblers Read depth

10× 20× 30× 40× 50× 60× 70× 80× 90× 100×

S. enterica 150 bp SPAdes 180–206 8–11 7–8a 7–8 7–8 7–8 7–8 7–7 6–8 7–8
(CP023508.1) CLC 384–439 13–17 7–8 7–8 7–9 7–9 7–7 7–9 7–9 7–7
SRR5866640 SKESA 2669–2864 871–1177 89–652 24–55 13–14 12–13 13–14 13 13–14 13
250 bp SPAdes 185–214 11–15 8–9 8–10 8–9 8–9 8 8–9 8–9 8
(CP036165.1) CLC 338–392 12–28 10 7–11 7–8 5–9 8–9 5–8 8–9 7–8
SRR6929558 SKESA 2373–2570 874–885 120–145 16–22 11–12 10–11 10 10 10–11 10

L. monocytogens 150 bp SPAdes 376–423 12–14 0–1 0 0 0 0 0 0 0
(CP013919.1) CLC 593–658 41–60 3–5 0–2 0–1 1 0–1 1 1 0–1
SRR3089759 SKESA 2000–2059 1144–1192 660–671 55–130 6–14 2–3 1–3 1–2 1 1
250 bp SPAdes 176–200 7–14 1–2 0–2 0 0 0–1 0 0 0
(CP025565.1) CLC 325–349 40–55 7–12 3–8 0–1 0–3 1 0–1 0 0
SRR6347431 SKESA 1521–1620 597–612 101–125 22–39 6–7 3–5 1–3 0–2 0–3 1–2

E. coli 150 bp SPAdes 97–122 11–12 9–12 9–10 10 9–11 9–10 9–10 9 9–10
(CP029239.1) CLC 217–234 21–26 12–17 11–14 11–13 11–13 11 11–12 11 11–13
SRR6924239 SKESA 2017–2137 905–922 468–518 34–60 17–21 12–14 13 11–12 12 12
250 bp SPAdes 37–56 4 4 4 4 4 4 4 4 4
(CP034799.1) CLC 76–99 6 5–6 5–6 5–6 4–6 5–6 5–6 5–7 6–7
SRR3205757 SKESA 1651–1780 449-553 22–30 7–8 6 6 6 6 6 6

Notes.
aThe gray fill represents the minimum read depth needed to achieve the stable number of core genes unrecalled for the combing of different read lengths and assemblers.
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and L. monocytogenes at depth 100×, and no commonality among these genes was found.
The unrecalled core genes at depth 100× from Table 1 are listed in Table S2 (the union
of the triple repeat are listed). In summary, we recommend sequencing at a read depth
of 30×–50× and a read length of 250 bp by using SPAdes as the assembler to maintain a
balance of cost/pay ratio in cgMLST.
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