

First submission

Guidance from your Editor

Please submit by **10 Apr 2021** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

4 Figure file(s)

4 Table file(s)

Custom checks

Field study

Have you checked the authors [field study permits](#)?

Are the field study permits appropriate?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Developmental stress in wild Nigerian olive baboons (*Papio anubis*)

Kara C Hoover^{Corresp., 1, 2}, Emily Gelipter³, Volker Sommer^{4, 5}, Kris Kovarovic³

¹ Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, United States of America

² Department of Biochemistry and Molecular Biology, University of Alaska - Fairbanks, Fairbanks, AK, United States of America

³ Department of Anthropology, Durham University, Durham, United Kingdom

⁴ Gashaka Primate Project, Serti, Taraba, Nigeria

⁵ Department of Anthropology, University College London, University of London, London, United Kingdom

Corresponding Author: Kara C Hoover

Email address: kchoover@alaska.edu

Background. Developmental instability in archaeological populations can be detected through analysis of human skeletal and dental remains. During life, disruptions to biological internal homeostasis that occur during growth and development redirect bodily resources to returning to homeostasis and away from normal processes such as symmetrical development. Because dental enamel does not remodel in life, any deviations from normal development are left behind. Even subtle disturbances to developmental trajectory may be detected in asymmetrical development of traits, specifically a random variation in sides termed fluctuating asymmetry. We investigate the permanent dentition of wild olive baboons, *Papio anubis*, for potential fluctuating asymmetry relative to sex, weaning, and reproductive maturity. **Methods.** The skulls of adult baboons were collected after their natural death in Gashaka Gumti National Park, Nigeria. The permanent dentition of antimeric teeth (paired) were measured for maximum length and breadth using standard methods. The metrics were analyzed to assess the presence of fluctuating asymmetry in adult permanent mandibular and maxillary dentition. Measurement error and other forms of asymmetry (antisymmetry, directional asymmetry) were considered and dental measures expressing true fluctuating asymmetry were used to address three research questions. **Results.** Males exhibit greater fluctuating asymmetry than females, suggesting that males experience greater overall stress during the developmental period. While weaning is not more stressful than other life history stages for males and females (using the first molar fluctuating asymmetry index as a proxy compared to other teeth), it is more stressful for females than males. Reproduction is also not more stressful than other life history stages for males and females (using the third molar fluctuating asymmetry index as a proxy compared to other teeth), but it is more stressful for males

than females.

1 **MANUSCRIPT TITLE**
23 Developmental stress in wild Nigerian Olive Baboons (*Papio anubis*)
45
6 K.C. Hoover¹, E. Gelipter² & V. Sommer^{3,4}, K. Kovarovic^{2*}
78 ¹ Department of Anthropology, University of Alaska Fairbanks, 1790 Tanana Loop, Fairbanks,
9 AK 99775, USA10 ² Department of Anthropology, Durham University, Dawson Building, South Road, Durham,
11 DH1 3LE, UK12 ³Department of Anthropology, University College London, 14 Taviton Street, London, WC1H
13 0BW, UK14 ⁴Gashaka Primate Project, 663001 Serti, Taraba, Nigeria
1516 Corresponding author:
17 Kara C. Hoover

18 1790 Tanana Loop, Fairbanks, Alaska, 99775, USA

19 Email address: kchoover@alaska.edu
2021 **ABSTRACT**
2223 **Background.** Developmental instability in archaeological populations can be detected through
24 analysis of human skeletal and dental remains. During life, disruptions to biological internal
25 homeostasis that occur during growth and development redirect bodily resources to returning to
26 homeostasis and away from normal processes such as symmetrical development. Because dental
27 enamel does not remodel in life, any deviations from normal development are left behind. Even
28 subtle disturbances to developmental trajectory may be detected in asymmetrical development of
29 traits, specifically a random variation in sides termed fluctuating asymmetry. We investigate the
30 permanent dentition of wild olive baboons, *Papio anubis*, for potential fluctuating asymmetry
31 relative to sex, weaning, and reproductive maturity.32 **Methods.** The skulls of adult baboons were collected after their natural death in Gashaka Gumti
33 National Park, Nigeria. The permanent dentition of antimeric teeth (paired) were measured for
34 maximum length and breadth using standard methods. The metrics were analyzed to assess the
35 presence of fluctuating asymmetry in adult permanent mandibular and maxillary dentition.
36 Measurement error and other forms of asymmetry (antisymmetry, directional asymmetry) were
37 considered and dental measures expressing true fluctuating asymmetry were used to address
38 three research questions.39 **Results.** Males exhibit greater fluctuating asymmetry than females, suggesting that males
40 experience greater overall stress during the developmental period. While weaning is not more
41 stressful than other life history stages for males and females (using the first molar fluctuating
42 asymmetry index as a proxy compared to other teeth), it is more stressful for females than males.
43 Reproduction is also not more stressful than other life history stages for males and females
44 (using the third molar fluctuating asymmetry index as a proxy compared to other teeth), but it is
45 more stressful for males than females.

46

47

INTRODUCTION

48

49 *Papio* (baboons), one of the most intensively studied primate taxa, inhabit a wide range of
50 habitats across Africa. Most troops inhabit dry, open savanna in East and South Africa, while
51 habitats that include forests are rare. Our study focuses on the population of olive baboons in
52 Gashaka Gumti National Park in North-eastern Nigeria. These monkeys are outliers in terms of
53 geography, climate and local environment, inhabiting the wettest and most humid habitat of any
54 studied population (Sommer & Ross 2011). Compared to savanna-dwelling baboons, their troop
55 sizes are significantly smaller (Higham et al. 2009), possibly because forest fruits occur in
56 clumped patches that may be difficult for larger groups to exploit. Additionally, many troops
57 across the park raid maize and other agricultural crops to varying extents (Warren et al. 2011).
58 These combined factors have implications for reproduction, life history and survival. For
59 example, inter-birth intervals are longer here than elsewhere (Ross et al. 2011), and crop-raiding
60 troops have both higher energy intake and reproductive success rates (Lodge et al. 2013).

61

62 A study of fecal glucocorticoid in Gashaka Gumti female baboons suggests they experience
63 unusual amounts of thermoregulatory and nutritional stress throughout their lives, and this stress
64 varies seasonally relative to rainfall and food availability (MacLarnon et al. 2015). No data are
65 yet available on stress in male baboons. Permanent teeth develop *in utero* and record
66 interruptions to growth and development during periods of developmental instability, which may
67 leave permanent marks in the teeth such as fluctuating asymmetry (FA) (Van Valen 1962),
68 dental enamel defects (Sarnat & Schour 1942; Sarnat & Schour 1941), and variation in molar
69 cusp morphology (Corruccini & Potter 1981; Riga et al. 2014). While dental enamel defects are
70 easier to record (presence/absence) and simpler to analyze, there does not appear to be a
71 correlation between them and FA (Corruccini et al. 2005; Hoover et al. 2005)—enamel defects
72 may be better at recording nutritional stress due to their association with famine (Zhou &
73 Corruccini 1998) and weaning (Katzenberg et al. 1996; Ungar et al. 2017). FA, however, is an
74 established proxy for and a broader signal of developmental instability, or childhood stress (see
75 Markow 1994; Polak 2003) (Frederick & Gallup Jr. 2007; Hoover & Hudson 2016; Leamy &
76 Klingenberg 2005). FA is manifest in paired traits as non-directional deviations from perfect
77 symmetry with equal mean development on both sides (Van Valen 1962). The underlying
78 biological theory behind FA as a proxy for developmental instability is allied with concepts of
79 homeostasis and canalization. During growth and development, traits may canalize (reach their
80 final form) in an internal environment where disruptive stochastic processes (developmental
81 noise) and the capacity to resist disruption (developmental stability or homeostasis) become
82 unbalanced (Waddington 1942). The result in non-directional bilateral variation of traits (Van
83 Valen 1962). These minor deviations from normal growth can be measured by variance across
84 the midline of traits (Van Valen 1962). Thus, presence and degree of FA reflect an individual's
85 ability to canalize a trait despite genetic and/or environmental stresses that disrupt the normal
86 phenotypic trajectory.

87

88 Because primates have longer developmental stages compared to other mammals in which they
89 can record periods of stress in the hard tissues of the body (Gingerich & Schoeninger 1979) and
90 the development of molars overlaps in time with the life history events of interest (weaning,
91 reproductive maturity) (Fortman et al. 2002; Hlusko & Mahaney 2009; Phillips-Conroy & Jolly
92 1988), we have an opportunity to identify if there are peaks of stress associated with specific

93 developmental ages. Weaning, for example, occurs during the developmental window of the first
94 molar and is associated with increased dental stress markers in both human and non-human
95 primates (Kelley & Schwartz 2010; Smith et al. 2013). In the case of weaning and, presumably,
96 other stresses differences exist between captive populations and those in the wild, where
97 developmental delay is common due to greater variance in environmental stress (Zihlman et al.
98 2004). In nonhuman primates, most published data are neither collected on dentition nor used to
99 examine developmental differences based on sex or life history (Atkinson et al. 2016; Boulton &
100 Ross 2013; Hallgrímsson 1993; Leigh & Cheverud 1991; Little et al. 2012; Newell-Morris et al.
101 1989; Reeves et al. 2016; Sefcek & King 2007; Waitt & Little 2006; Willmore et al. 2005).
102

103 There are a few studies that examine FA in dentition in nonhuman primates and they find that
104 traits under sexual selection exhibit greater asymmetry (are more developmental vulnerable to
105 stress) (Manning & Chamberlain 1993; Manning & Chamberlain 1994). While we might form
106 expectations based on human studies of FA—such as, **there is no clear signals sex bias in FA**
107 (e.g., Garn et al. 1965; Harris & Nweeia 1980; Kieser et al. 1986; Perzigian 1981)—but humans
108 exhibit greater FA than other apes (Frederick & Gallup Jr. 2007) and **comparing our patterns to**
109 **or using them build hypotheses about nonhuman primates may not be accurate**. Thus, we need a
110 wider comparative dataset on nonhuman primate FA, in order to understand sex differences in
111 life history stress and instability introduced by habitat and social system variation. We contribute
112 the first data on dental FA in baboons and answer the following life history questions:

- 113 1. Is there a difference in developmental stress based on sex? Gashaka Gumti baboons live
114 at the edge of their species' geographic and ecological range (Sommer & Ross 2011) and
115 high levels of stress have been reported in adult and subadult females, as measured by
116 fecal glucocorticoid and (MacLarnon et al. 2015). There are no comparative data **are**
117 available for males and the limited data in nonhuman primate dental FA suggest that
118 traits under sexual selection in both males and females are more vulnerable to
119 FA-(Manning & Chamberlain 1993; Manning & Chamberlain 1994). Thus, we are not
120 able to make an expectation of whether there will be sex differences across the entire
121 sample of teeth and, if there are, which sex will have higher FA.
122 a. Hypothesis: There is no difference
- 123 2. Is weaning a stressful time compared to other developmental stages? In baboons,
124 suckling ceases before the eruption of the first molar (Dirks & Bowman 2007), which
125 suggests that the first molar will be diagnostic in answering this question. The null
126 hypothesis is that there is no difference between the FA index for first molars and the FA
127 index for all remaining teeth. Because weaning stress has been previously reported in
128 baboons (Dirks et al. 2002; Rhine et al. 1985), we expect that first molar indices will
129 exhibit significantly higher **than the FA index for** all remaining variables.
130 a. Hypothesis: FA values for first molars are higher than FA values for other teeth.
- 131 3. Are there sex-based differences in reproductive stress? In baboons, menarche and first
132 reproduction occur before the eruption of the third molar (Dirks & Bowman 2007), which
133 suggests the third molars will be diagnostic in answering this question. Given that
134 sexually selected **structures** may be more susceptible to environmental stress (Manning &
135 Chamberlain 1994) and because reproductive stress is particularly high in females due to
136 extra demand on resources, we expect female third molars will exhibit greater FA than
137 male third molars.
138 a. Hypothesis: FA values for female third molars are higher than those for males.

139

140

141 We analyzed data collected from olive baboons (*Papio anubis*) inhabiting Gashaka Gumti
142 National Park ($06^{\circ}55' - 08^{\circ}13' \text{ N}$ and $011^{\circ}13' - 012^{\circ}11' \text{ E}$) in Northeastern Nigeria. Permits for
143 research at Gashaka Gumti National Park were awarded (VS) by The National Parks Service,
144 Nigeria (NPH/GEN/378/V/504). The reserve extends over 6731 km^2 and represents the northern
145 edge of the Gulf of Guinea forests and the Cameroonian Highlands, with the highest peak rising
146 to 2416 m (Sommer & Ross 2011). The park is surrounded by villages that practice subsistence
147 farming and includes various enclaves inhabited mainly by settled Fulani cattle herders. GGNP
148 baboons live close to the southern edge of the western biogeographical distribution of the species
149 ((Zinner et al. 2011). Baboons are replaced by large forest-dwelling monkeys (mainly drills), a
150 short distance from the park to the south.

151

152 In GGNP, pronounced annual wet and dry seasons correspond with fluctuations in temperature
153 and humidity (Sommer & Ross 2011). Based on weather station data for two study sites collected
154 from 2000–2014 (Kwano at 583 m above sea level and Gamgam at 320 m above sea level), mean
155 minimum temperature is 20.9°C and mean maximum 32.5°C . Five months with very little or no
156 rainfall are followed by heavy downpours from mid-April to mid-November that constitute
157 96.3% of all precipitation (annual mean 1945 mm, range 1681–2337 mm). Among baboon field
158 sites, GGNP is an extreme outlier with regards to rainfall, representing the wettest of all baboon
159 study sites to date (Higham et al. 2009).

160

161 Our study sample is from baboon skulls that were delivered to the Gashaka Primate Project
162 research station at Kwano by locals and park rangers between 2008 and 2013. The majority were
163 found opportunistically while working in fields or during ranger patrols. Skulls were not
164 accepted if there was evidence (e.g., bullet holes) that the animals had been killed by humans
165 (which is illegal inside the park). Thus, ~~we have~~ a natural death sample. Informal weathering
166 assessments in the field indicate the material was deposited over approximately 6 years as
167 assessed by weathering stages 0-2 (Behrensmeyer 1978). The skulls originated from the vicinity
168 of six localities within GGNP or its buffer zone: Bodel, Mayo Yum, Gashaka, Selbe and Filinga,
169 which are near human habitation, and Yakuba, where baboon ranges do not extend into
170 cultivated areas (Fig. 1). Stretching across a corridor of ca. $50 \times 30 \text{ km}$, these 1500 km^2 are
171 colonized by a single baboon population, which inhabits the park's Southern Gashaka sector
172 (Higham et al. 2009; Ross et al. 2011; Warren et al. 2011), where the vegetation is a mosaic of
173 montane, submontane, lowland and riverine gallery forest with some proportions of Guinea
174 woodland-savannah and grassland (Adanu et al. 2011). Troop sizes average 21 individuals, with
175 5 females and ~~1~~ males and offspring (Higham et al. 2009). Most crania were found in the vicinity
176 of human dwellings where they are more likely to be recovered but their locations suggest that
177 all skulls stem from troops that engaged in crop-raiding to some extent. The single exception one
178 female skull, assumed to have been philopatric, which was found many kilometres away from
179 the nearest cultivated fields and is not likely a crop-raider.

180

181 **<Figure 1. Collection locations in Gashaka Gumti National Park, Nigeria>**

182

183 Each cranium was soaked for one day in a denture-cleansing powder solution to remove debris,
184 given a field accession number, and stored in a plastic or metal box. As of April 2013, the

185 collection comprised 111 skulls, but weight specimens displayed extensive damage or lack of
186 antimeric teeth and were unsuitable for our analysis. Of the remaining 103 specimens, we
187 excluded three females and one subadult of unknown provenance, but we retained two males of
188 unknown provenance. Our starting analytical sample of adult specimens consisted of 81 individuals with antimeric pairs including 43 adult males and 38 adult females.
189

190

191 METHODS

192

193 **Age and sex estimation.** Age was assessed using the developmental stage of each tooth (e.g.
194 unerupted, emerging or in occlusion) and the development of the basilar suture (Kahumbu &
195 Eley 1991; Reed 1973). Adults are defined by full occlusion including the third molar—
196 subadults demonstrate variable eruption but may have a full complement of permanent dentition
197 in occlusion, with the exception of third molars. Sex was assessed visually in adults on the basis
198 of overall skull size, robusticity, size of canines or canine orifice, and other known dimorphic
199 features that are easily observed (Leigh & Cheverud 1991; Singleton 2002; Singleton et al.
200 2017).

201

202 **Data collection.** Standard maximum length and breadth measurements for bilophodont primates
203 (Swindler 2002) were taken 10 times (EG) on the permanent dentition of adult mandibular and
204 maxillary premolar and molar teeth using Mitutoyo digital calipers. The final dataset consisted of
205 a maximum of nine variables per individual (we did not collect data on the maxillary third
206 premolar due canine honing). Because some individuals were missing teeth or exhibited traits
207 that precluded measurement. (e.g., cracked crowns, wear, poor preservation), data collection on
208 all nine variables was not always possible for each individual.
209

210

211 **Data Sharing.** Data, scripts, and preliminary analysis outputs (e.g., distribution testing, outlier
212 tests, scatterplots) are available at Github: <https://github.com/kchoover14/Baboon-Stress>.

213

214 **Choosing Replicates.** Because measurement error (ME) is a component of any metric value, an
215 analysis of FA must consider the contribution of ME to FA. We had the luxury and burden of ten
216 replicates for each trait—luxury because most studies take 2-3 replicates and burden because ten
217 is an unwieldy number for analysis. Replicate measures were taken over a period of time with
218 breaks between each data collection trial. Early trials of data collection may contain more ME
219 due to a lack of familiarity with the teeth but later trials may contain more ME due to data
220 collection fatigue. Thus, we assessed ME across sets of replicates (Table 1) to determine the
221 minimum number of replicates with the lowest ME. ME, as a percentage of between-sides
222 difference attributable to ME (Palmer 1994), was calculated in the FA worksheet (Palmer 1994;
223 Palmer & Strobeck 1986; Palmer & Strobeck 2003a). The full set of 10 replicates had the lowest
224 mean ME3 (8%) but with a wide range (18%). These ME values are high for FA but can be
225 reduced after excluding individual datum that fail the data inspection tests for outliers.
226

227

228 Table 1: ME summary by replicate set>

229

230 **Statistical Methods—Data Visualization.** Data distributions for all ten replicates and plots of
FA10a were visualized using ggplot2 (Wickham 2016).

231 **Statistical Methods—Confounding Factors Affecting FA.** Estimates of FA may be
232 confounded by a variety of factors including bad raw measurements, high ME, aberrant
233 individuals, DA, antisymmetry, and trait size dependency (Palmer & Strobeck 2003a). The data
234 repository contains a step-by-step analysis of all factors affecting FA in this dataset and the
235 results of various tests (Palmer & Strobeck 2003b). Due to high DA, four variables were
236 eliminated (female mandibular first and second molar lengths, male mandibular first and second
237 molar lengths). Due to trait size dependency, one variable was eliminated (male maxillary third
238 premolar length). Because ME was high and varied considerable across tooth, metric (i.e.,
239 length, breadth), and sex, we used the FA10a index. The FA10a index is a measure of the
240 magnitude of FA *after* parsing ME (Table 2). The total dataset for analysis consisted of nine
241 variables for female breadths, 7 variables for female lengths, nine variables for male breadths,
242 and six variables for male lengths. Table 2 displays the sample size per each variable's FA10a
243 index to provide perspective on statistical power underlying the index.

244

245 **<Table 2: FA10a Index Values for Hypothesis Testing>**

246

247 **Statistical Methods—Hypothesis Testing of Research Questions.** Analysis was conducted by
248 KCH in R v3.6.2 (R Development Core Team, 2008) using R Studio v.1.2.1335 (RStudio Team,
249 2015). Because FA is a measure of variance about the mean, Levene's test for equality of
250 variance was used to test hypotheses in R via the `leveneTest` function in the `car` package (Fox &
251 Weisberg 2011). The eruption of upper and lower teeth varies by a few months in baboon
252 species, which allowed us to pool mandibular and maxillary molars for analysis (Fortman et al.
253 2002; Hlusko & Mahaney 2009; Phillips-Conroy & Jolly 1988; Reed 1973).

254

255 **RESULTS AND DISCUSSION**

256

257 **Data Exploration.** In humans, FA varies by dimension (e.g., length, breadth), arcade (e.g.,
258 mandible, maxilla), and tooth class (e.g., incisor, canine, premolar, molar) (Bailit et al. 1970;
259 Harris & Nweeia 1980). We explored the data to identify similar trends in our baboon sample
260 (Table 3). There were significant differences in dimensions, with breaths exhibiting lower FA
261 (0.02) and lengths exhibiting higher FA (0.06)—same as in humans (Harris & Nweeia 1980).
262 There were no significant differences by tooth class or arcade.

263

264 **<Table 3: FA10A Trends>**

265

266 **Sex Differences.** The first research question is whether there is a sex-based difference in
267 developmental stress. We tested the null hypothesis of no difference. Results indicate there are
268 significant sex-differences in this population (Table 4), suggesting that males experience greater
269 developmental stress across the period of growth and development. Figure 2 shows the spread of
270 FA10a index values for males and females. Both sexes exhibit greater FA in lengths compared to
271 breadths and males have overall greater variance (FA is a measure of variance), even if some
272 values overlap with females. Mandibular P4 is the greater FA value for males and females, but
273 female values are almost half that of males.

274

275 **<Figure 2: FA10a by Sex>**

276

277 **Weaning Stress.** The second research question is whether weaning is a more stressful time
278 compared to other developmental stages. Due to its developmental timing, the first molar is
279 diagnostic for weaning stress and was expected to have greater variance than the other teeth.
280 FA10a is lower in M1 than other teeth, suggesting weaning is not more stressful compared to
281 other stages of life history (Table 4). There are significant differences between male and female
282 FA10a values, however (Table 4, Figure 3). Both sexes exhibit greater FA in lengths compared
283 to breadths and values for fourth premolars are again the highest (Figure 3)

284

285 <Figure 3: FA10a comparing first molar to other teeth by sex>

286

287 **Reproductive Stress.** The third research question is whether reproduction is more stressful for
288 females compared to males. We expected female third molars to have greater FA10a values than
289 males and for FA10a to be higher in third molars compared to other teeth. FA10a is lower in M3
290 than other teeth when sexes are pooled, suggesting that weaning is not more stressful compared
291 to other stages of life history (Table 4). There are significant differences between male and
292 female FA10a values (Table 4, Figure 4). With males have higher FA10a values during
293 reproductive years (based on the third molar developing during this life history stage). Both
294 sexes exhibit greater FA in lengths compared to breadths (Figure 4).

295

296 <Figure 4: FA10a comparing third molar to other teeth by sex>

297

298 <Table 4: Results of Hypothesis Testing>

299

300 CONCLUSION

301

302 We used the FA10a index because it eliminates measurement error from the final index used for
303 hypothesis testing. We then examined FA across variables (length and breadth measures for
304 individual teeth) to identify any trends in FA. The only one we found was that lengths exhibit
305 more FA than breadths—a trend identified in humans as well (Harris & Nweeia 1980). Lengths
306 are the preferential target of data collection for FA analysis, in humans and baboons.

307

308 We also tested hypotheses about developmental stress in different life history phases (i.e.,
309 weaning, reproduction). Females in our baboon population have elevated glucocorticoid levels
310 that measure physiological stress (MacLarnon et al. 2015). Our data suggest females only exhibit
311 greater stress than males during weaning. Further, when comparing our data for males to females
312 across all variables, we find that males exhibit ~~have~~ greater stress during growth and
313 development than females and stress is highest during early reproductive years. Demonstration
314 of FA and the supposition that a population appears under stress can be relatively straightforward
315 (Leary & Allendorf 1989), but the identification of a specific stressor remains conjectural.
316 Habitat quality (Manning & Chamberlain 1994), psychosocial factors (Newell-Morris et al.
317 1989) and diet (Swaddle & Witter 1994) have all been implicated.

318

319 **Sex Differences.** Males had greater overall FA values than females, suggesting greater levels of
320 developmental stress. The stability of male developmental pathways may be compromised by
321 several factors. The male fetus stimulates additional maternal antigen production (Lalumière et
322 al. 1999), which may cause male-biased prenatal mortality and other developmental

323 complications (Gualtieri & Hicks 1985). In addition, hormones may influence male development
324 (Folstad & Karter 1992). Elevated testosterone profiles have been associated with
325 immunosuppression (Bradley 1987; Muehlenbein & Watts 2010; Roberts et al. 2012), the costs
326 of which range from parasite susceptibility to developmental instability. Given these ontogenetic
327 challenges, males may be more susceptible to external environmental conditions, such as the
328 extremely wet climate and high pathogen exposure during the rainy season that baboons
329 experience at GGNP (Higham et al. 2009). Others have also demonstrated increased FA in
330 marginal or less favorable environments (Bailit et al. 1970; Parsons 1992) and males may be at a
331 disadvantage in these circumstances.

332

333 **Weaning.** FA values were lower in first molars than other teeth, suggesting that weaning is not
334 more stressful compared to other life history stages. Compared to males, however, females had
335 greater overall FA values for the first molar, suggesting a comparatively more stressful time than
336 males during weaning. Mother-infant contact reduces steadily with growth. Mothers reject
337 suckling attempts as early as six months of age but most vigorously when the infant approaches a
338 year (Nash 1978; Rhine et al. 1985). This schedule corresponds with first molar development.
339 For yearling baboons, developmental instability may be linked to weaning stressors which
340 include (a) nutritional stress from decreasing energy availability (Altmann 1998), (b)
341 psychosocial stress from increased separation from the mother (Levine 2005), and (c)
342 physiological stress in the form of decreased pathogen resistance (Katzenberg et al. 1996).
343

344 **Reproduction.** FA values were lower in third molars than other teeth, suggesting that
345 reproduction is not comparatively more stressful than other life history stages. Males, however,
346 had higher third molar FA values than females, suggesting they have a comparatively more
347 stressful time during reproductive years than females. In olive baboons—and a wide range of
348 other primate species—female philopatry and male dispersal is the rule. Multiple factors may
349 compromise the fitness of emigrating individuals. A lone male is more vulnerable to predation
350 (Dunbar 1987) and, as such, spends less time foraging (Slatkin & Hausfater 1976). Elongated
351 solitary periods of recently matured males also impede their mating prospects. Organisms under
352 such dietary and reproductive stresses expend more energy to counter these challenges (Parsons
353 1990). The stress associated with male dispersal, both nutritional and psychosocial, may be
354 greater than that of females despite the clear biological burdens of reproduction on the female
355 body. The third molar is the last tooth to develop and has been noted to exhibit greater
356 morphological variation perhaps due to relaxed selective pressure—this might make it more
357 susceptible to the ontogenetic effects of sexual dimorphism (Butler 1939; Gingerich 1974;
358 Mayhall & Saunders 1986). Third molar length exhibits greater variation than other teeth
359 (Gingerich & Schoeninger 1979) and the hypoconulid on the distal surface of cercopithecoid
360 mandibular third molars (Swindler 2002) may act to increase variance and asymmetry. Finally,
361 given the negative association (in gorillas) of crown height and FA, we might expect that lower
362 ranked males, who capture a larger share of any sample, would have higher FA from
363 developmental stress, particularly when secondary sexual traits are developing (Manning &
364 Chamberlain 1994).

365

366 **FUNDING**

367 Durham University Learning and Teaching Award
368 North of England Zoological Society/Chester Zoo

369

370

References

371

372 Adanu J, Sommer V, and Fowler A. 2011. Hunters, fire, cattle: conservation challenges in
373 eastern Nigeria, with special reference to chimpanzees. In: Sommer V, and Ross C, eds.
374 *Primates of Gashaka: Socioecology and Conservation in Nigeria's Biodiversity Hotspot*.
375 New York: Springer, 55-99.

376 Altmann S. 1998. *Foraging for survival: yearling baboons in Africa*. Chicago: University of
377 Chicago Press.

378 Atkinson EG, Rogers J, and Cheverud M. 2016. Evolutionary and developmental implications of
379 asymmetric brain folding in a large primate pedigree. *Evolution* 70:707-715.
380 10.1111/evo.12867

381 Bailit H, Workman P, Niswander J, and MacLean C. 1970. Dental asymmetry as an indicator of
382 genetic and environmental conditions in human populations. *Human Biology* 42:626-638.

383 Behrensmeyer AK. 1978. Taphonomic and ecologic information from bone weathering.
384 *Paleobiology* 4:150-162. 10.1017/S0094837300005820

385 Boulton RA, and Ross C. 2013. Measuring facial symmetry in the wild: a case study in Olive
386 Baboons (*Papio anubis*). *Behavioral Ecology and Sociobiology* 67:699-707.
387 10.1007/s00265-013-1495-8

388 Bradley AJ. 1987. Stress and mortality in the red-tailed phascogale, *Phascogale calura*
389 (Marsupialia: Dasyuridae). *General and Comparative Endocrinology* 67:85-100.
390 10.1016/0016-6480(87)90208-5

391 Butler PM. 1939. Studies of the Mammalian Dentition.—Differentiation of the Post-canine
392 Dentition. *Proceedings of the Zoological Society of London* B109:1-36. 10.1111/j.1469-
393 7998.1939.tb00021.x

394 Corruccini RS, and Potter RHY. 1981. Developmental correlates of crown component
395 asymmetry and occlusal discrepancy. *American Journal of Physical Anthropology* 55:21-
396 31.

397 Corruccini RS, Townsend GC, and Schwerdt W. 2005. Correspondence between enamel
398 hypoplasia and odontometric bilateral asymmetry in Australian twins. *American Journal*
399 *of Physical Anthropology* 126:177-182.

400 Dirks W, and Bowman JE. 2007. Life history theory and dental development in four species of
401 catarrhine primates. *Journal of Human Evolution* 53:309-320.
402 <https://doi.org/10.1016/j.jhevol.2007.04.007>

403 Dirks W, Reid DJ, Jolly CJ, Phillips-Conroy JE, and Brett FL. 2002. Out of the mouths of
404 baboons: Stress, life history, and dental development in the Awash National Park hybrid
405 zone, Ethiopia. *American Journal of Physical Anthropology* 118:239-252.
406 10.1002/ajpa.10089

407 Dunbar RIM. 1987. Demography and reproduction. In: Smuts BB, Cheney DL, Seyfarth RM,
408 Wrangham RW, and Struhsaker TT, eds. *Primate Societies*. Chicago: University of
409 Chicago Press, 240-249.

410 Folstad I, and Karter AJ. 1992. Parasites, Bright Males, and the Immunocompetence Handicap.
411 *The American Naturalist* 139:603-622. 10.1086/285346

412 Fortman JD, Hewett TA, and Bennett BT. 2002. *The Laboratory Nonhuman Primate*. Boca
413 Raton: CRC Press.

414 Fox J, and Weisberg S. 2011. *An {R} Companion to Applied Regression*. Thousand Oaks CA:
415 Sage.

416 Frederick MJ, and Gallup Jr. GG. 2007. Fluctuating Dental Asymmetry in Great Apes, Fossil
417 Hominins, and Modern Humans: Implications for Changing Stressors during Human
418 Evolution. *Acta Psychologica Sinica* 39:489-494.

419 Garn SM, Lewis AB, and Kerewsky RS. 1965. X-linked Inheritance of Tooth Size. *Journal of*
420 *Dental Research* 44:439-441. 10.1177/00220345650440022201

421 Gingerich PD. 1974. Size variability of the teeth in living mammals and the diagnosis of closely
422 related sympatric fossil species. *J Paleo* 48:895-903.

423 Gingerich PD, and Schoeninger MJ. 1979. Patterns of tooth size variability in the dentition of
424 primates. *American Journal of Physical Anthropology* 51:457-465.
425 10.1002/ajpa.1330510318

426 Gualtieri T, and Hicks RE. 1985. An immunoreactive theory of selective male affliction.
427 *Behavioral and Brain Sciences* 8:427-441. 10.1017/S0140525X00001023

428 Hallgrímsson B. 1993. Fluctuating asymmetry in *Macaca fascicularis*: A study of the ethiology
429 of developmental noise. *International Journal of Primatology* 14:421-443.

430 Harris EF, and Nweeia MT. 1980. Dental asymmetry as a measure of environmental stress in the
431 Ticuna Indians of Columbia. *American Journal of Physical Anthropology* 53:133-142.

432 Higham JP, Warren Y, Adanu J, Umaru BN, MacLarnon AM, Sommer V, and Ross C. 2009.
433 Living on the edge: life-history of olive baboons at Gashaka-Gumti National Park,
434 Nigeria. *American Journal of Primatology* 71:293-304. 10.1002/ajp.20651

435 Hlusko LJ, and Mahaney MC. 2009. The baboon model for dental development. In: VandeBerg
436 JL, Williams-Blangero S, and Tardif SD, eds. *The baboon in biomedical research*. New
437 York: Springer, 207-223.

438 Hoover KC, Corruccini RS, Bondioli L, and Macchiarelli R. 2005. Exploring the relationship
439 between hypoplasia and odontometric asymmetry in Isola Sacra, an Imperial Roman
440 Necropolis. *American Journal of Human Biology* 17:752-764.

441 Hoover KC, and Hudson MJ. 2016. Resilience in prehistoric persistent hunter-gatherers in
442 northwest Kyushu, Japan as assessed by population health and archaeological evidence.
443 *Quaternary International* 405, Part B:22-33.
444 <http://dx.doi.org/10.1016/j.quaint.2015.10.047>

445 Kahumbu P, and Eley RM. 1991. Teeth emergence in wild olive baboons in Kenya and
446 formulation of a dental schedule for aging wild baboon populations. *American Journal of*
447 *Primatology* 32:1-9.

448 Katzenberg M, Herring D, and Saunders S. 1996. Weaning and infant mortality: evaluating the
449 skeletal evidence. *Yearbook of Physical Anthropology* 39:177-199.

450 Kelley J, and Schwartz GT. 2010. Dental development and life history in living African and
451 Asian apes. *Proceedings of the National Academy of Sciences of the United States of*
452 *America* 107:1035-1040. 10.1073/pnas.0906206107

453 Kieser J, Groeneveld H, and Preston C. 1986. Fluctuating dental asymmetry as a measure of
454 odontogenic canalization in man. *American Journal of Physical Anthropology* 71:437-
455 444.

456 Lalumière ML, Harris GT, and Rice ME. 1999. Birth order and fluctuating asymmetry: a first
457 look. *Proceedings Biological sciences* 266:2351-2354. 10.1098/rspb.1999.0930

458 Leamy LJ, and Klingenberg CP. 2005. The genetics and evolution of fluctuating asymmetry
459 *Annual Review of Ecology Evolution and Systematics* 36:1.

460 Leary RF, and Allendorf FW. 1989. Fluctuating asymmetry as an indicator of stress:
461 Implications for conservation biology. *Trends in Ecology & Evolution* 4:214-217.
462 10.1016/0169-5347(89)90077-3

463 Leigh SR, and Cheverud JM. 1991. Sexual dimorphism in the baboon facial skeleton. *American*
464 *Journal of Physical Anthropology* 84:193-208. 10.1002/ajpa.1330840209

465 Levine S. 2005. Developmental determinants of sensitivity and resistance to stress.
466 *Psychoneuroendocrinology* 30:939-946. 10.1016/j.psyneuen.2005.03.013

467 Little AC, Paukner A, Woodward RA, and Suomi SJ. 2012. Facial asymmetry is negatively
468 related to condition in female macaque monkeys. *Behavioral Ecology and Sociobiology*
469 66:1311-1318. 10.1007/s00265-012-1386-4

470 Lodge E, Ross C, Ortmann S, and MacLarnon AM. 2013. Influence of diet and stress on
471 reproductive hormones in Nigerian olive baboons. *General and Comparative*
472 *Endocrinology* 191:146-154. <https://doi.org/10.1016/j.ygcn.2013.06.016>

473 MacLarnon AM, Sommer V, Goffe AS, Higham JP, Lodge E, Tkaczynski P, and Ross C. 2015.
474 Assessing adaptability and reactive scope: Introducing a new measure and illustrating its
475 use through a case study of environmental stress in forest-living baboons. *General and*
476 *Comparative Endocrinology* 215:10-24. <https://doi.org/10.1016/j.ygcn.2014.09.022>

477 Manning JT, and Chamberlain AT. 1993. Fluctuating asymmetry, sexual selection and canine
478 teeth in primates. *Proceedings Biological sciences* 251:83-87. 10.1098/rspb.1993.0012

479 Manning JT, and Chamberlain AT. 1994. Fluctuating asymmetry in gorilla canines: a sensitive
480 indicator of environmental stress. *Proceedings of the Royal Society of London Series B:*
481 *Biological Sciences* 255:189-193. doi:10.1098/rspb.1994.0027

482 Markow TA. 1994. Developmental Instability: Its Origins and Evolutionary Implications.
483 Dordrecht: Springer.

484 Mayhall JT, and Saunders SR. 1986. Dimensional and discrete dental trait asymmetry
485 relationships. *American Journal of Physical Anthropology* 69:403-411.
486 10.1002/ajpa.1330690311

487 Muehlenbein MP, and Watts DP. 2010. The costs of dominance: testosterone, cortisol and
488 intestinal parasites in wild male chimpanzees. *Biopsychosocial Medicine* 4:21.
489 10.1186/1751-0759-4-21

490 Nash LT. 1978. The development of the mother-infant relationship in wild baboons (*Papio*
491 *anubis*). *Animal Behaviour* 26:746-759. [https://doi.org/10.1016/0003-3472\(78\)90141-0](https://doi.org/10.1016/0003-3472(78)90141-0)

492 Newell-Morris LL, Fahrenbruch CE, and Sackett GP. 1989. Prenatal psychological stress,
493 dermatoglyphic asymmetry and pregnancy outcome in the pigtailed macaque (*Macaca*
494 *nemestrina*). *Biology of the Neonate* 56:61-75. 10.1159/000243104

495 Palmer AR. 1994. Fluctuating Asymmetry Analyses: A Primer. In: Markow TA, ed.
496 *Developmental Instability: Its Origins and Evolutionary Implications*. Dordrecht,
497 Netherlands: Kluwer, 335-364.

498 Palmer AR, and Strobeck C. 1986. Fluctuating asymmetry: measurement, analysis, patterns.
499 *Annual Review of Ecology and Systematics* 17:391-421.

500 Palmer AR, and Strobeck C. 2003a. Fluctuating asymmetry analysis revisited. In: Polak M, ed.
501 *Developmental Instability (DI): Causes and Consequences*. Oxford: Oxford University
502 Press, 279-319.

503 Palmer AR, and Strobeck C. 2003b. Fluctuating asymmetry analysis: A step-by-step example. In:
504 Polak M, ed. *Developmental Instability: Causes and Consequences*. Oxford: Oxford
505 University Press, V1-B36.

506 Parsons P. 1990. Fluctuating asymmetry: an epigenetic measure of stress. *Biological Reviews of*
507 *the Cambridge Philosophical Society* 65:131-145.

508 Parsons PA. 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic
509 stress. *Heredity* 68:361-364.

510 Perzigian AJ. 1981. Allometric analysis of dental variation in a human population. *American*
511 *Journal of Physical Anthropology* 54:341-345.

512 Phillips-Conroy JE, and Jolly CJ. 1988. Dental eruption schedules of wild and captive baboons.
513 *American Journal of Primatology* 15:17-29. 10.1002/ajp.1350150104

514 Polak M. 2003. Developmental Instability: Causes and Consequences. Oxford: Oxford
515 University Press.

516 Reed OM. 1973. Papio cynocephalus age determination. *American Journal of Physical*
517 *Anthropology* 38:309-314. 10.1002/ajpa.1330380226

518 Reeves NM, Auerbach BM, and Sylvester AD. 2016. Fluctuating and directional asymmetry in
519 the long bones of captive cotton-top tamarins (*Saguinus oedipus*). *American Journal of*
520 *Physical Anthropology* 160:41-51. 10.1002/ajpa.22942

521 Rhine RJ, Norton GW, Wynn GM, and Wynn RD. 1985. Weaning of free-ranging infant
522 baboons (*Papio cynocephalus*) as indicated by one-zero and instantaneous sampling of
523 feeding. *International Journal of Primatology* 6:491. 10.1007/BF02735572

524 Riga A, Belcastro MG, and Moggi-Cecchi J. 2014. Environmental stress increases variability in
525 the expression of dental cusps. *American Journal of Physical Anthropology* 153:397-407.
526 10.1002/ajpa.22438

527 Roberts ML, Buchanan KL, Goldsmith AR, and Evans MR. 2012. The role of testosterone in bib
528 size determination in the male house sparrow *Passer domesticus*, is age dependent.
529 *Journal of Avian Biology* 43:264-272. 10.1111/j.1600-048X.2012.05571.x

530 Ross C, Warren Y, Maclarnon AM, and Higham JP. 2011. How Different Are Gashaka's
531 Baboons? Forest and Open Country Populations Compared. In: Sommer V, and Ross C,
532 eds. *Primates of Gashaka: Socioecology and Conservation in Nigeria's Biodiversity*
533 *Hotspot*. New York, NY: Springer New York, 385-411.

534 Sarnat B, and Schour I. 1942. Enamel hypoplasia (chronologic enamel aplasia) in relation to
535 systemic disease: A chronologic, morphologic, and etiologic classification. *The Journal*
536 *of the American Dental Association* 29:397-418.

537 Sarnat BG, and Schour I. 1941. Enamel hypoplasia (chronologic enamel aplasia) in relation to
538 systemic disease: A chronologic, morphologic, and etiologic classification. *The Journal*
539 *of the American Dental Association* 28:1989-2000.

540 Sefcek JA, and King JE. 2007. Chimpanzee facial symmetry: a biometric measure of chimpanzee
541 health. *American Journal of Primatology* 69:1257-1263. 10.1002/ajp.20426

542 Singleton M. 2002. Patterns of cranial shape variation in the Papionini (Primates:
543 Cercopithecinae). *Journal of Human Evolution* 42:547-578.
544 <https://doi.org/10.1006/jhev.2001.0539>

545 Singleton M, Seitelman BC, Krecioch JR, and Frost SR. 2017. Cranial sexual dimorphism in the
546 Kinda baboon (*Papio hamadryas kindae*). *American Journal of Physical Anthropology*
547 164:665-678. 10.1002/ajpa.23304

548 Slatkin M, and Hausfater G. 1976. A note on the activities of a solitary male baboon. *Primates*
549 17:311-322. 10.1007/BF02382788

550 Smith TM, Machanda Z, Bernard AB, Donovan RM, Papakyrikos AM, Muller MN, and
551 Wrangham R. 2013. First molar eruption, weaning, and life history in living wild

552 chimpanzees. *Proceedings of the National Academy of Sciences of the United States of*
553 *America* 110:2787-2791. 10.1073/pnas.1218746110

554 Sommer V, and Ross C. 2011. Exploring and protecting West Africa's primates: The Gashaka
555 Primate Project in context. In: Sommer V, and Ross C, eds. *Primates of Gashaka:*
556 *socioecology and conservation in Nigeria's biodiversity hotspot*. New York: Springer, 1-
557 37.

558 Swaddle JP, and Witter MS. 1994. Food, Feathers and Fluctuating Asymmetries. *Proceedings:*
559 *Biological Sciences* 255:147-152.

560 Swindler DR. 2002. *Primate dentition: an introduction to the teeth of non-human primates*.
561 Cambridge: Cambridge University Press.

562 Ungar PS, Crittenden AN, and Rose JC. 2017. Toddlers in transition: linear enamel hypoplasias
563 in the Hadza of Tanzania. *International Journal of Osteoarchaeology* 27:638-649.
564 10.1002/oa.2586

565 Van Valen L. 1962. A study of fluctuating asymmetry. *Evolution, the International Journal of*
566 *Organic Evolution* XVI:125-143.

567 Waddington CH. 1942. Canalization of development and the inheritance of acquired characters.
568 *Nature* 50:563-565.

569 Waitt C, and Little AC. 2006. Preferences for Symmetry in Conspecific Facial Shape Among
570 *Macaca mulatta*. *International Journal of Primatology* 27:133-145. 10.1007/s10764-005-
571 9015-y

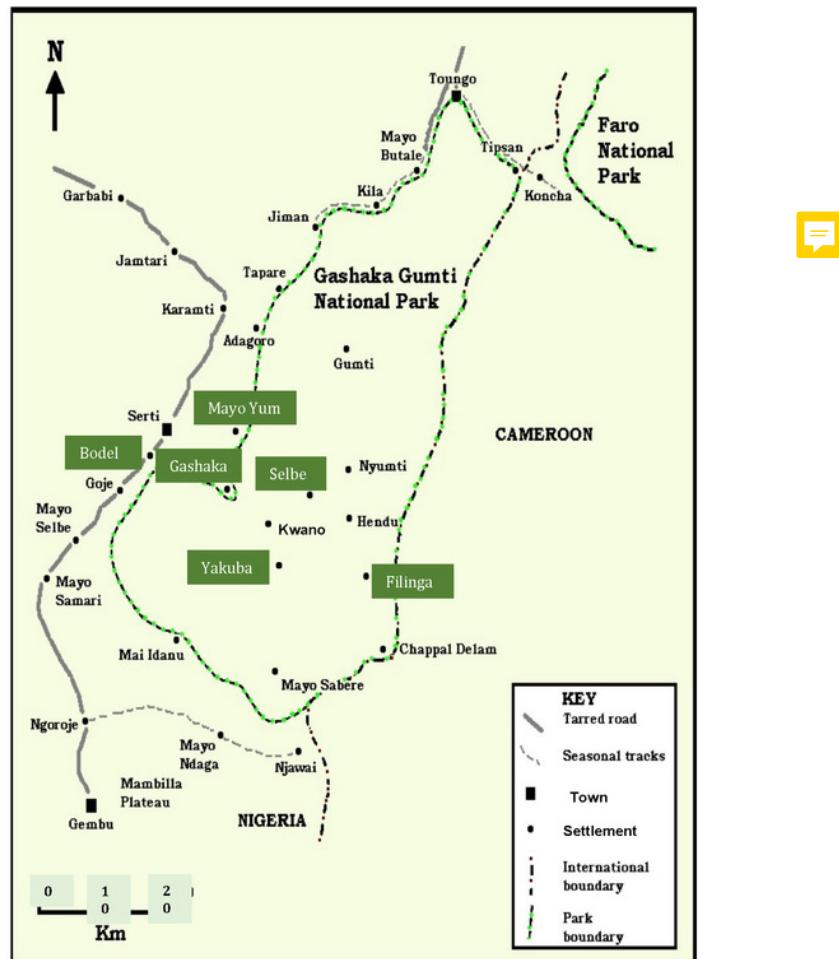
572 Warren Y, Higham JP, Maclarnon AM, and Ross C. 2011. Crop-raiding and Commensalism in
573 Olive Baboons: The Costs and Benefits of Living with Humans. In: Sommer V, and Ross
574 C, eds. *Primates of Gashaka: Socioecology and Conservation in Nigeria's Biodiversity*
575 *Hotspot*. New York, NY: Springer New York, 359-384.

576 Wickham H. 2016. *ggplot2: Elegant Graphics for Data Analysis*. New York: Springer-Verlag.

577 Willmore KE, Klingenberg CP, and Hallgrímsson B. 2005. The relationship between fluctuating
578 asymmetry and environmental variance in rhesus macaque skulls. *Evolution* 59:898-909.
579 10.1111/j.0014-3820.2005.tb01763.x

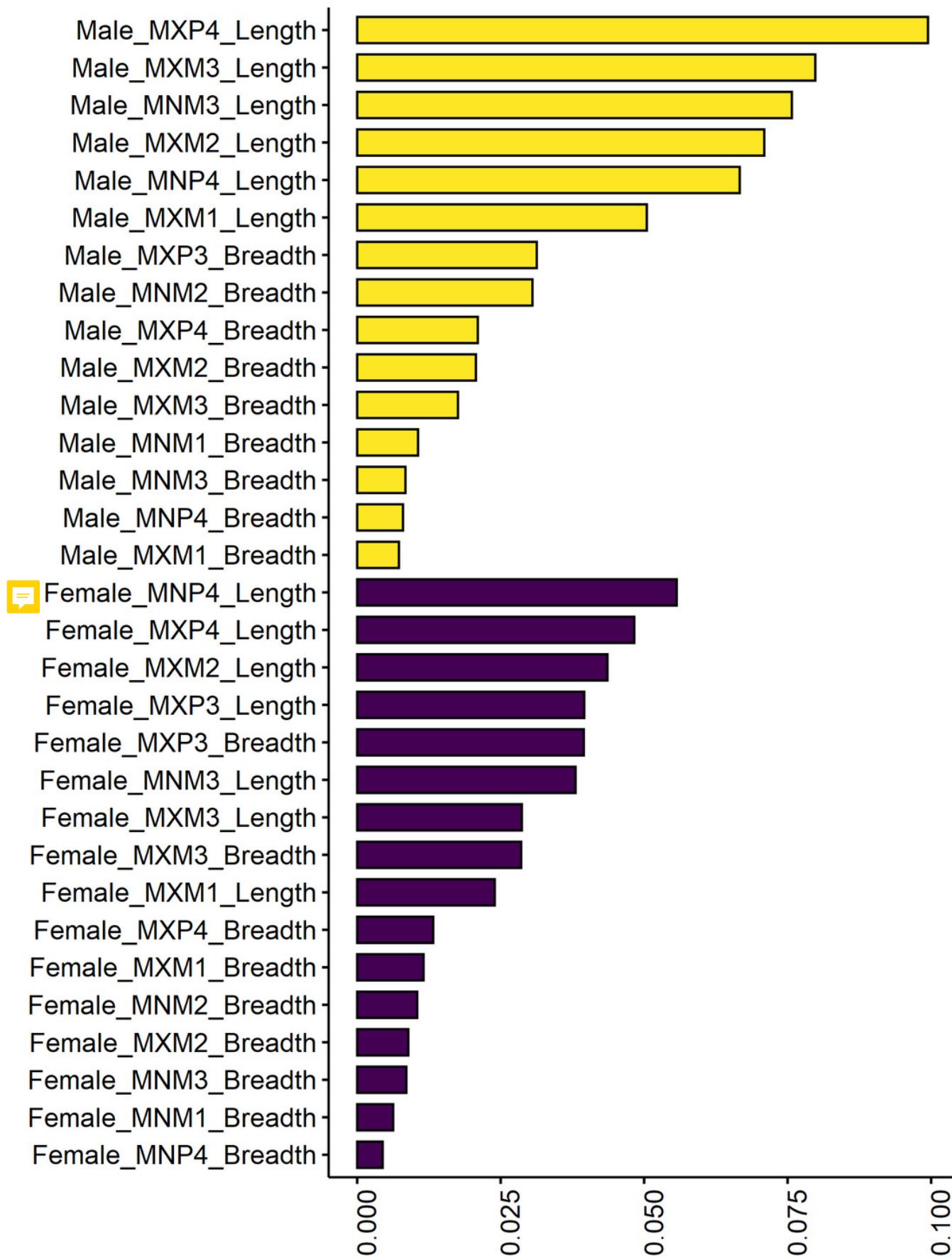
580 Zhou L, and Corruccini RS. 1998. Enamel hypoplasias related to famine stress in living Chinese.
581 *American Journal of Human Biology* 10:723-733.

582 Zihlman A, Bolter D, and Boesch C. 2004. Wild chimpanzee dentition and its implications for
583 assessing life history in immature hominin fossils. *Proceedings of the National Academy*
584 *of Sciences of the United States of America* 101:10541-10543. 10.1073/pnas.0402635101


585 Zinner D, Buba U, Nash S, and Roos C. 2011. Pan-African voyagers: The phylogeography of
586 baboons. In: Sommer V, and Ross C, eds. *Primates of Gashaka: socioecology and*
587 *conservation in Nigeria's biodiversity hotspot*. New York: Springer, 319-358.

588

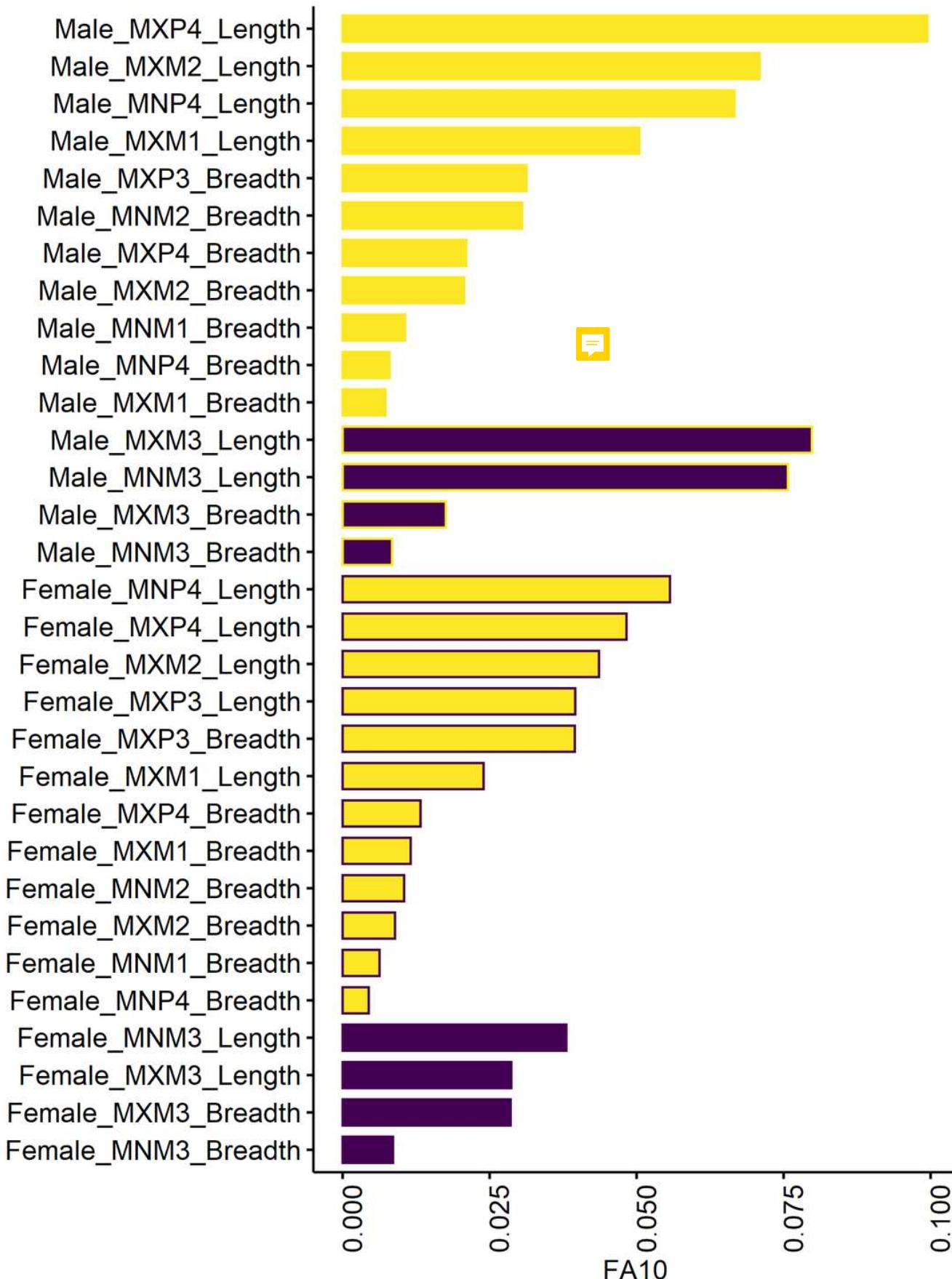
589


Figure 1

Collection locations in Gashaka Gumti National Park, Nigeria


Figure 2

FA10a by Sex


Figure 3

FA10a comparing first molar to other teeth by sex

Figure 4

FA10a comparing third molar to other teeth by sex

Table 1(on next page)

ME summary by replicate set

1 **Table 1: ME summary by replicate set**

Replicates	ME3	Mean	Median	Minimum	Maximum	Range
9-10	12%	25%	22%	10%	51%	41%
5-6	12%	24%	22%	9%	47%	38%
6-9	7%	16%	16%	5%	33%	29%
2-5	7%	18%	16%	7%	37%	30%
4-7	8%	18%	15%	5%	51%	46%
3-8	6%	13%	12%	5%	36%	31%
2-9	4%	10%	9%	4%	31%	27%
1-10	4%	8%	8%	3%	21%	18%

2

3

Table 2(on next page)

FA10a Index Values for Hypothesis Testing

1 **Table 2: FA10a Index Values for Hypothesis Testing**

Sex	Metric	Tooth	FA10a	n ¹
Female	Breadth	MNM1	0.01	20
Female	Breadth	MNM2	0.01	16
Female	Breadth	MNM3	0.01	20
Female	Breadth	MNP4	0.00	14
Female	Breadth	MXM1	0.01	31
Female	Breadth	MXM2	0.01	30
Female	Breadth	MXM3	0.03	34
Female	Breadth	MXP3	0.04	26
Female	Breadth	MXP4	0.01	31
Female	Length	MNM3	0.04	20
Female	Length	MNP4	0.06	15
Female	Length	MXM1	0.02	31
Female	Length	MXM2	0.04	32
Female	Length	MXM3	0.03	32
Female	Length	MXP3	0.04	27
Female	Length	MXP4	0.05	31
Male	Breadth	MNM1	0.01	17
Male	Breadth	MNM2	0.03	16
Male	Breadth	MNM3	0.01	14
Male	Breadth	MNP4	0.01	15
Male	Breadth	MXM1	0.01	31
Male	Breadth	MXM2	0.02	34
Male	Breadth	MXM3	0.02	34
Male	Breadth	MXP3	0.03	25
Male	Breadth	MXP4	0.02	29
Male	Length	MNM3	0.08	14
Male	Length	MNP4	0.07	15
Male	Length	MXM1	0.05	33
Male	Length	MXM2	0.07	35
Male	Length	MXM3	0.08	33
Male	Length	MXP4	0.10	29

2 ¹ The sample size from which the FA10 index was created.

3

Table 3(on next page)

FA10A Trends

1 **Table 3: FA10a Trends**

Model	F-value	df	p-value	Sig
FA10~Tooth	1.78	8.00	0.14	
FA10~Class	0.19	1.00	0.67	
FA10~Arcade	0.26	1.00	0.61	
FA10~Metric	8.48	1.00	0.01	*

2

3

Table 4(on next page)

Results of Hypothesis Testing

1 **Table 4: Results of Hypothesis Testing**

Hypothesis	Result	Model	F	df	p
Sex Differences	Significant sex differences	FA10~Sex	10.602	1	0.003
Weaning	No difference	FA10:M1~Tooth Type	1.670	1	0.207
	Significant sex differences	FA10:M1~Tooth Type*Sex	6.696	3	0.002
Reproduction	No difference	FA10:M3~Tooth Type	0.064	1	0.802
	Significant sex difference	FA10:M3~Tooth Type*Sex	4.313	3	0.013

2
3