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ABSTRACT
Animal color patterns are widely studied in ecology, evolution, and through mathe-
matical modeling. Patterns may vary among distinct body parts such as the head, trunk
or tail. As large amounts of photographic data is becoming more easily available, there
is a growing need for general quantitative methods for capturing and analyzing the full
complexity and details of pattern variation. Detailed information on variation in color
pattern elements is necessary to understand how patterns are produced and established
during development, and which evolutionary forces may constrain such a variation.
Here, we develop an approach to capture and analyze variation in melanistic color
pattern elements in leopard geckos. We use this data to study the variation among
different body parts of leopard geckos and to draw inferences about their development.
We compare patterns using 14 different indices such as the ratio of melanistic versus
total area, the ellipticity of spots, and the size of spots and use these to define a composite
distance between two patterns. Pattern presence/absence among the different body
parts indicates a clear pathway of pattern establishment from the head to the back
legs. Together with weak within-individual correlation between leg patterns and main
body patterns, this suggests that pattern establishment in the head and tail may be
independent from the rest of the body. We found that patterns vary greatest in size
and density of the spots among body parts and individuals, but little in their average
shapes. We also found a correlation between the melanistic patterns of the two front
legs, as well as the two back legs, and also between the head, tail and trunk, especially
for the density and size of the spots, but not their shape or inter-spot distance. Our data
collection and analysis approach can be applied to other organisms to study variation
in color patterns between body parts and to address questions on pattern formation
and establishment in animals.

Subjects Computational Biology, Developmental Biology, Mathematical Biology, Zoology
Keywords Color pattern, Pattern analysis, Pattern characterization, Pattern elements, Reptiles,
Spotted pattern

INTRODUCTION
Animal color patterns vary within and among individuals, including variation among
distinct body parts such as the head, trunk, tail, wings, or ventral or dorsal sides, possibly
in response to different selection pressures (Caro, 2005; Forsman et al., 2008; Allen et al.,
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Figure 1 Example gecko image. Adult leopard gecko (animal #21003). Note the differences in patterning
on the head, trunk, legs and tail.

Full-size DOI: 10.7717/peerj.11829/fig-1

2020). Color patterns may differ in qualitatively obvious ways, such as stripes on the tail
and spots on other parts of the body, or in more subtle ways, such as spots of different
density or sizes (e.g., Fig. 1). Variation in color pattern is considered a classical example of
an adaptive trait, as it is often involved in communication among conspecifics, intrasexual
competition, and antipredator functions (Caro, 2005; Gomez, Théry & Losos, 2007; Tibbetts
& Dale, 2004; Solan et al., 2019).

Although color patterns have been studied extensively because they are involved in
many functions essential to the survival and reproduction of organisms, describing and
quantifying pattern variation in a multivariate manner is still challenging. Color patterns
are generally described in terms of macroscopic differences, such as spots, stripes or
labyrinthine organization (e.g., Miyazawa, Kondo & Okamoto, 2010; Allen et al., 2020;
Kuriyama et al., 2020), with pattern variation for the same pattern type often quantified
by aligning homologous pattern features via manually set landmarks or automated image
registration algorithms (e.g., Van Belleghem et al., 2018; Bainbridge et al., 2020; Prinsloo,
Postma & De Bruyn, 2019) or by focusing on differences in pattern elements, coarsely
defined in terms of relative size and position (e.g., Van den Berg et al., 2020 and references
therein). However, complex patterns with high degree of dissimilarity within and among
individuals in terms of shape, clustering, size and position of the pattern elements may
require the development of new methods to finely capture these differences (see for
example Lee, Cavener & Bond, 2018 and references therein). This is particularly pertinent
if the shape and density are irregular and do not fit within specific pattern categories, such
as stripes or spots (Solan et al., 2019; Troscianko, Skelhorn & Stevens, 2017; Lee, Cavener &
Bond, 2018; Miyazawa, Kondo & Okamoto, 2010; McGuirl, Volkening & Sandstede, 2020;
Allen et al., 2020).
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Color patterns can be studied using pattern recognition, which broadly speaking deals
with classification of image patterns through extraction of significant features (Zerdoumi
et al., 2018). Methods in this area generally consist of machine learning techniques, that is,
prediction systems based on an existing data set. For example, this could entail classification
of skin patterns based on a large training data set of skin pattern images.While this approach
is certainly viable for synthetic data, i.e., computer-generated patterns (McGuirl, Volkening
& Sandstede, 2020), where data with thousands of patterns can be amassed easily, this
approach may not be feasible for actual images of live animals, where the process of image
acquisition is laborious and time consuming. In addition, the use of machine learning
techniques would not necessarily provide qualitative insights into what would make two
or more patterns similar or different (Domingos, 2012; Zerdoumi et al., 2018), therefore
impeding investigation of what elements of the pattern for example may be more or less
variable, constrained or under selection. We note however that powerful machine-learning
algorithms for generic image feature extraction such as saliency maps (Simonyan, Vedaldi
& Zisserman, 2014) may be useful in the binarization of the images. In addition, the results
of certain machine learning algorithms can yield human-interpretable results, such as
distance scores between patterns, see Cuthill et al. (2019), who classified butterfly wing
patterns using a deep learning approach.

Color patterns in leopard gecko skins are formed by pigment-containing cells called
chromatophores (Szydłowski et al., 2020). There are several types of such chromatophores,
classified by the color of their pigments: xanthophores contain yellow pigment,
erythrophores contain red or orange pigment and iridophores contain light-reflecting
platelets which results in white, blue or red skin coloration. The most easily visible
pigment cells are melanophores, dark brown cells containing melanin, which produce the
characteristic melanistic patterns of dark spots or stripes (see Fig. 1).

In this article, we address the problem of describing and quantifying variation in
melanistic patterns in live geckos via computing fourteen different indices, such as the
fraction of dark areas to light ones, or the mean size, number and shape of pattern features.
Each of these different indices captures only one aspect of the pattern, but collectively,
they yield a comprehensive characterization of the pattern itself. Thus, each pattern of
the seven body parts studied for each individual corresponds to a point in an abstract
14-dimensional space (here called ‘‘pattern space’’ or ‘‘phenotype space’’). Our approach
is similar to that of Lee, Cavener & Bond (2018) who used 11 indices to characterize giraffe
coat patterns and Miyazawa, Kondo & Okamoto (2010), who used two indices to describe
salmonid fish skin patterns. In contrast to those papers, however, we not only compare
single indices between individuals and among individuals, but also consider different ways
to measure the overall similarity of two patterns based on their distance in pattern space,
taking into account biological information in the data set. In this, our approach is therefore
innovative. Arguably, there is no canonical distance function on this multidimensional
space to measure overall similarity of patterns, and so we employ two different notions
of a metric, both weighted Euclidean distances. These two distances differ in the type of
biological information that they may provide. The first distance, the standard Mahalonobis
distance, essentially weights each principal component by the inverse of its variance
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Figure 2 Body parts.Outline of the gecko body showing the seven regions of patterns that were isolated
from gecko images. Each region was photographed separately, and the limbs were gently stretched during
photographing. Nevertheless, depending on the gecko configuration, viewing angles and the region shapes
were irregular. An image processing algorithm was used to identify the pattern that was viewable within
each region irrespective of the shape. The abbreviations BL (left back leg), BR (right back leg), FL (left
front leg), FR (right front leg), HD (head), TR (trunk) and TA (tail) are as in Fig. 3 and are used through-
out this article.

Full-size DOI: 10.7717/peerj.11829/fig-2

(Mahalanobis, 1927; Krzanowski, 2000). This standard metric weighs all data points equally
and thus does not take into account any inherent structure of the data set, as for example
any developmental relationship among body parts. The second distance that we selected
is instead a measure that weights differences in patterns by the influence of random noise
in the developmental process. We call this distance the ‘‘Developmental Noise distance’’.
In it, differences in indices for which developmental noise has a small contribution are
weighted heavier than differences in indices for which it has a larger contribution. The use
of these two distance measures therefore not only permits us to quantitatively describe and
statistically test pattern variation, but also helps with understanding the developmental
sources - genotypic and environmental, or stochastic - of this variation.

We apply our new approach to capture pattern data and our pattern distance measures
to investigate the variation of melanistic skin patterns among distinct body parts for 25
leopard geckos (Eublepharis macularius) (Figs. 1, 2 and 3). We use these data to analyze
different pattern indices and calculate their correlation to infer the order of pattern
formation and establishment across the body and to characterize pattern variation on the
different body parts within and among geckos. Finally, by comparing the within-individual
left–right variation in leg patterns, which is likely due to developmental noise, to the
between-individual variation, which is due to genetic and environmental differences in
addition to developmental noise, we quantify the influence of developmental noise on
pattern variation for the leopard gecko.

Among vertebrates, lizards have often been used as ideal models to study the evolution of
color and color pattern in relationship to other ecological, biological, and behavioral traits
(e.g., Olsson, Stuart-Fox & Ballen, 2013; Pérez, DeLanuza & Font, 2016; Murali, Merilaita
& Kodandaramaiah, 2018; Allen et al., 2020). Specifically, the leopard gecko is an ideal
organism on which to study pattern development (e.g., Chang et al., 2009). This species is
commonly bred in captivity to obtain distinct colors and color patterns, a major advantage
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Morph Source ID Sex BL BR FL FR TR HD TA

1 normal w 10001 F YES YES YES YES YES YES YES

2 normal g 21001 F YES YES YES YES YES YES YES

3 normal g 21002 F YES YES YES YES YES YES YES

4 normal g 21003 F YES YES YES YES YES YES YES

5 normal g 22010 M YES YES YES YES YES YES YES

6 normal b 22013 M YES YES YES YES YES YES YES

7 normal b 41002 F YES YES YES YES YES YES YES

8 normal b 41004 F YES YES YES YES YES YES YES

9 normal b 42001 M YES YES YES YES YES YES YES

10 normal b 42002 M YES YES YES YES YES YES YES

11 normal b 42003 M YES YES YES YES YES YES YES

12 normal b 42004 M YES YES YES YES YES YES YES

13 normal g 22011 M NO NO YES YES YES YES YES

14 normal b 22012 M NO NO YES YES YES YES YES

15 normal w 10002 F NO NO NO NO YES YES YES

16 normal g 21008 F NO NO NO NO YES YES YES

17 normal b 41001 F NO NO NO NO YES YES YES

18 normal b 42005 M NO NO NO NO YES YES YES

19 normal g 21007 F NO NO NO NO NO YES YES

20 normal b 41003 F NO NO NO NO NO YES YES

21 LF t 21019 F YES YES NO NO YES YES YES

22 LF t 21020 F YES YES NO NO YES YES YES

23 LF t 22016 M YES YES NO NO YES YES YES

24 LF t 22014 M YES NO NO NO YES YES YES

25 LF t 21018 F NO NO NO NO YES YES YES

Figure 3 Description of geckos.Gecko morph (‘‘normal’’ or ‘‘lemon frost’’ - LF), source, ID, sex (M
=male, F=female), and presence of a visible (YES) or not discernible (NO) melanistic pattern on the
seven different body parts for each gecko. ‘‘BL’’ and ‘‘BR’’ indicate the back right and left legs, respectively;
‘‘FL’’ and ‘‘FR’’ indicate the frontal left and frontal right legs, respectively. ‘‘TR’’, ‘‘TA’’ and ‘‘HD’’ indicate
the dorsal part of the trunk, tail and head of the animal, respectively. (Sources of obtained geckos: w—
Greg Watkins—Colwell, g—Tony Gamble, b—Backwater Reptiles, t—Ron Tremper).

Full-size DOI: 10.7717/peerj.11829/fig-3

when trying to unveil the mechanisms producing variation at these traits (Cieslak et al.,
2011). Furthermore, our previous work on melanistic patterns on the head of this species
(Kiskowski et al., 2019) suggests that developmental noise may be an important contributor
to its variation.

This work therefore not only proposes a novel approach to analyze similarities in
pattern space within and among individuals, but also contributes to our understanding of
melanistic pattern formation and establishment in the leopard gecko. The data capture and
analysis methods presented here can also be applied to study variation in melanistic pattern
elements for developmental, ecological and evolutionary purposes in other organisms.
Furthermore, our previous work usedmathematical modeling of the process of skin pattern
formation to elucidate the influence of developmental noise on patterning (Kiskowski et al.,
2019). Many different other mathematical models for skin patterning have been proposed
(e.g., Murray, 2002; Cruywagen, Maini & Murray, 1992; Painter, 2001; Cooper et al., 2018;
Kondo, Iwashita & Yamaguchi, 2009). In this context, developmental noise can be modeled
for example by using random initial conditions for the equations governing pattern
formation. Because of this randomness, the resulting pattern is not deterministic, but
rather a certain range of possible patterns - all depending on randomization of these initial
conditions - may be generated with an associated probability density function. This range
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can be thought of as a set of points in the 14-dimensional pattern space provided by the
measures used in the current work. This approach and the empirical data can then be
used to assess the validity of the models, and thus in turn gain biological insights into the
patterning process (seeMcGuirl, Volkening & Sandstede, 2020 for an example).

MATERIALS & METHODS
Ethical statement
All experiments were carried out in accordance with George Mason University animal use
(IACUC) protocol # 1430668.

Geckos and photographs
For this study we used a total of 25 live adults of Eublepharis macularius, the leopard gecko,
giving a total of 132 patterns on various body parts. 20 geckos had an overall ‘‘normal’’
pattern morphotype (melanistic/black spots on a yellowish/brownish background), while
five geckos had a ‘‘lemon frost’’ morphotype with melanistic patterns (Szydłowski et al.,
2020;Guo et al., 2020. See Fig. A1 for full body images of all geckos, Fig. 3 and Supplemental
Information for details on the origin of the geckos).

We photographed the geckos one at the time by placing each one of them on a smooth
surface covered with colored paper chosen to contrast well with the full set of geckos in
at least one color channel (Fig. SA1). Perpendicular reference lines were printed on the
colored paper to ensure placement of the gecko in the same position across picture sets.
For each gecko, we obtained four picture sets to measure the error associated with the data
capture. (See Supplemental Information for further details.)

Image analysis
The melanistic spotted patterns were studied on the head, four limbs, dorsal trunk, and
tail of each of the 25 geckos. There were thus 25×7 =175 separate body parts analyzed in
this work (Fig. 4). Not all these body parts showed melanistic spotted skin patterns and
only twelve of the geckos had qualifying spotted patterns on all seven body parts (Fig. 3;
see details below for how qualifying patterns were recognized).

For our analyses, each of the seven regions for each gecko was isolated by automated
removal of background pixels from the images where possible and additionally by hand
using the GIMP photo editing tool (Fig. 4). When cutting the regions, we worked along
the natural boundary of the body and had defined rules for the edges of the body region
(e.g., the trunk was separated from the head by a straight line segment connecting the two
most anterior points where each front leg met the main body, and the legs were separated
from the body using a straight line segment perpendicular to the limb that was the most
proximal line segment that could be drawn without including any portion of the trunk.
See Fig. SA3 for more details). We note that the use of these rules meant that only a subset
of morphological regions was selected from the entire body. For example, the cervical and
sacral regions were not included in either the head region nor the trunk region due to a lack
of clear landmarks in this region to define the boundary. For each of the 700 images (25
geckos, seven body parts, four independent photos of each), we identified and isolated the
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Figure 4 Flow chart. Flow chart of image acquisition and processing.
Full-size DOI: 10.7717/peerj.11829/fig-4

Table 1 Determination of thresholds. Algorithm criteria for determining the threshold for spots for the four body parts (limbs, head, trunk, and
tail) including the color channel that was used for identifying spots (the green channel, for all) and the color channel that was used for identifying
regions of the picture requiring lighting adjustment (the green channel for the legs and the blue channel for the trunk; the mean and standard devi-
ation of the pixel values in the region are denoted as µG,σG and µB,σB, respectively) and the final threshold rule that was applied to the green chan-
nel.

Body
part
type

Channel used
to compute the
mean pixel intensityµ

Channel and
threshold used
to identify shadows

Threshold

Limbs Green shadows: green<µG−0.3σG
glare: green>µG+0.3σG

maximum of these two quantities: µG−0.85σG,60

Head Green N/A maximum of these two quantities:
µG−0.50σG, 60

Trunk Green shadows: blue<µB−0.85σB maximum of these two quantities:
µG−0.85σG, 60 additionally, maximally: 108

Tail Green N/A maximum of these two quantities: µG−0.85σG,60

spotted melanistic pattern as a simple binary pattern of black pixels on a white background
(i.e., in every image, each pixel has either value of 1 = black or 0 = white). Using criteria
to help in isolating the melanistic spotted pattern amongst other patterns of the skin and
background noise of the image, a threshold was applied to each of the regions to define the
binary pattern of black spots on a white background (see below for details and Table 1). A
spot identification algorithm was applied for each type of body pattern to identify spots. A
final image processing step with Matlab removed stray pixels, filled in holes, and smoothed
the contour of the spots to generate the final spot patterns used for measuring the pattern
statistics. TheMatlab code for these scripts is available in anOpen Science Framework (OSF)
repository. Link: https://osf.io/zauwe/?view_only=97c4846fb5f34357b0943c2f5c6bc571.

Limb, trunk, head, and tail spot identification algorithms
We designed an algorithm to identify the melanistic pigmentation patterns for the four
types of body parts (legs, trunk, head, tail) of the 25 geckos. Melanistic patterns were
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typically spotted, but there were occasionally stripes or more complex shapes for some
body parts and for some geckos.

To identify these patterns, we first binarized the images by labeling each pixel by a
value of either 1 or 0, corresponding to relatively darker and lighter regions, respectively.
A straightforward method for identifying relatively darker regions - and thus to carry out
the binarization step - is to identify pixels that are darker than the average pixel brightness
by a fixed multiple of the standard deviation. This approach is popular in cell imaging
and document imaging applications as ‘‘robust background thresholding’’ and found
within the CellProfiler pipeline (Kamentsky et al., 2011) and as the backbone of the Niblack
method (Niblack, 1986). This method has the advantage of having a relatively simple rule
for thresholding but yet has the flexibility to accommodate patterns with varying contrast.
This flexibility is achieved without observer input since the variation of the pixel intensities
within the image itself is used to define what is meant by ‘relatively’ dark. Among our
geckos, the melanistic patterns were consistently darker than the background, but the pixel
darkness of the melanistic regions, and the absolute difference in darkness between the two
binary regions, varied widely among body parts and among geckos.

In a preliminary ‘‘supervised’’ step for identifying/defining patterning, rules for the
thresholding algorithmwere chosen for a good fit between paucity (tominimize the number
of criteria) and robust pattern capturing ability to capture the melanistic patterning for
the greatest number of gecko images. For example, it was determined during this step that
the relatively simple robust background thresholding/ Niblack method (Niblack, 1986)
was adequate for the given collection of patterns. Due to morphological differences in
the four types of body parts (legs, trunk, head, tail), the thresholding was independently
supervised for each type of body part for whether the lighting across the images would be
adjusted to correct for shadows (since the body parts had different contours) and to choose
Niblack’s factor for the thresholding (since the body parts had different fractional areas
for the patterning). While the algorithms used to determine the melanistic pattern from
the photographic images thus varied for shadow removal and with the Niblack factor for
each body part, the algorithm was otherwise applied the same way to every gecko image
for uniformity and consistency.

All of the specific rules for the algorithm are summarized in the Supplemental
Information, see also the MATLAB code in the Open Science Framework (OSF)
repository. (Link: https://osf.io/zauwe/?view_only=97c4846fb5f34357b0943c2f5c6bc571.)
See Supplemental Information for images of all 7 body parts and binarized images for 25
geckos (times 4 repeated measurements); also see Fig. SA2 for a representative example of
the binarized images for one body part for one gecko.

Image length scale
For each image, the length scaling factor (length per pixel) was computed via determining
the number of pixels for one centimeter using the imaging software GIMP. This was used
in converting values measured in pixels to lengths, see Table 2. For example, 350 pixels
(the lower bound for a region of dark pixels to be identified as a spot) was approximately
0.5 mm2. The total areas of the regions evaluated for patterning (for the four types of body
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Table 2 Indices used in this work to describe patterns. LikeMiyazawa, Kondo & Okamoto (2010), we include a measure for the ratio of black to
white pixels (FM) and a measure of the circularity of spots (EE) among the 14 variables used in this work. See Supplemental Information for defini-
tion of interior spots.

Abbr. Name Units Description Spot type used
for the computation

FM fraction of melanistic area dimensionless Ratio of black pixels to all pixels in binarized image (ratio of
melanistic area to total area)

All Spots

SS mean spot diameter
(‘spot size’)

cm Mean of the length of the major axes of the ellipses that
have the same second moment as the spots (Matlab
functionMajorAxisLength)

Interior Spots

SSD st.dev. of SS cm Standard deviation of the lengths of major axes used in
definition of SS

Interior Spots

EE mean ellipticity dimensionless Mean ratio of major axes to minor axes of ellipses that have
the same second moment as the spots (Matlab function
Eccentricity)

Interior Spots

EED st. dev. of EE dimensionless Standard deviation of the ratios used in definition of EE Interior Spots
PL peak length cm Measure of characteristic wavelength; (typical distance

between spots; seeMiura, Komori & Shiota (2000))
All Spots

MD mean minimum distance cm Mean of the mean distance of the centroid of a spot to the
closest three other spots’ centroids

All Spots

MDD minimum distance st. dev. cm Standard deviation of the distances used in the definition of
MD

All Spots

SA spot area cm2 Mean area of spots Interior Spots
SAD st. dev. of spot area cm2 Standard deviation of the spot areas Interior Spots
SI spot intensity dimensionless Mean green values (G) of the RGB values of spots (between

0 and 255 for each pixel)
All Spots

SID st. dev. of spot intensity dimensionless Standard deviation of the intensities used in the definition
of SI

All Spots

EL mean spot elongation dimensionless Mean of the spot elongation EL = area
2d2

where d is the thickness of the spot (number of erosion
steps needed before the pot disappears)

Interior Spots

ELD st. dev. of spot elongation dimensionless Standard deviation of the spot elongation Interior Spots

parts) varied from 125 to 1,882 mm2 (the legs were the smallest patterning regions, varying
from 125 to 300 mm2; the tail regions varied from 524 to 1,230 mm2, the head regions
varied from 694 to 1,046 mm2 and the trunk regions varied from 953 to 1,882 mm2).

Application of a threshold to define spots
A straightforward method for identifying relatively darker regions is to identify pixels that
are darker than the average pixel brightness by a fixed multiple of the standard deviation.

Generally, for a region of pixels withmean intensityµand standard deviation σ , a central
pixel is identified as ‘‘dark’’ (and assigned the value 1) if it is darker than a threshold value
T =µ−kσ where k is Niblack’s factor (Niblack, 1986). To apply the method, multichannel
images are converted to a single-channel image by converting a color image to grayscale
or selecting a particular channel. Then, in a supervised approach, an initial value of the
Niblack parameter k is chosen by the user and then tuned manually for an image or set of
images by trial and error to visually optimize spot detection.
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This robust background thresholdingmethod /Niblack method was applied with a single
algorithm to identify melanistic patterning for all our gecko images. For all thresholding,
the Niblack window was the entire region being analyzed (one body part of one gecko).
Each pixel of our photographic images was multichannel with an R, a G and a B value,
which are integers that each range from 0 to 255. We used the green channel G as a measure
of the intensity of a spot since in our images shadows versus pigmented regions with similar
brightness were best distinguished by differences in the intensity of their green hue (see
Table 1). For the trunk, shadows were distinguished by relatively low values in the blue
channel. The thresholding was supervised independently for each morphological region
(limbs, tail, trunk and head) for the choice of the Niblack factor since the brightness and
relative area of pigmented regions varied for each morphological region. For the legs, trunk
and tail, a threshold of µ−0.85σ was chosen to best capture the melanistic pattern across
the entire set of geckos. For the head, which had a larger fractional area of melanistic spots,
a threshold µ−0.5σ was determined to identify the set of melanistic spot pixels best. A
high fraction of melanistic area relative to total skin area (combined with exceptionally
dark spots) would decrease the average intensity to values that were too low to identify
more lightly melanistic spots so a rule for a minimum threshold was applied that the
threshold for the value of a pixel would be at least 60 out of 255. Pixels with values this low
were invariably melanistic. A maximal threshold of 108 out of 255 was applied to the trunk
since a very low fractional melanistic area could cause the average intensity to be too large
for good spot detection; however, higher threshold values were frequently appropriate for
other body parts (for the legs for example) so no maximal threshold was applied for parts
other than the trunk.

Generalization of the method for extracting patterns for other contexts
We found that each morphological region of the gecko (limb, tail, trunk, and head) was
best served by a slightly modified pattern extraction algorithm parameters even though in
each case we desired to extract the same pattern of interest, a binary pattern corresponding
to relatively light versus relatively dark regions of pigmentation. This was because there
were systematic differences among the morphological regions including differences in
background colors of the skin and non-pattern artifacts such as shadows and dimples.
Likewise, morphologically tailored algorithms would likely be required for different animal
species and for different patterning contexts. For instance, patterns in different colors
(e.g., red spots) could be detected via an appropriate choice of color channels or linear
combination of channels. However, we recommend that even when comparing patterns
from a wide variety of sources, ideally a single pattern recognition method should be
applied and potential anthropomorphic bias should be minimized.

Final pattern processing
The application of the threshold identified a set of pixels that are darker than the threshold
value for each evaluated image. This set of pixels included stray pixels as well as larger
contiguous areas of pixels that were likely to be pigmented spots. A minimum spot size of
350 pixels (∼0.5 mm2) was required for the spot to be qualified as such in this work. This
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number was determined by visual inspection to remove stray pixels and very small dark
artifacts. Although the size of pigmented regions varied (especially the size of these regions
could be very large on the head and the trunk), none of the pigmented areas that should be
identified as spots were smaller than about 750 pixels in total area, so the minimum spot
size was chosen to be smaller than the pigmented areas the algorithm needed to identify
but larger than most artifacts.

In the last processing steps, any holes within pigmented regions (see Fig. S1F) were
filled, and the contour of the spots was smoothed using successive dilations and erosions
(this removes small scale granular effects at the edges of spots without changing the shape
of the spot). See the Supplemental Information for details.

Final pattern classification
For both the limb and trunk patterns, the spotted pigmented pattern would occasionally
be very faint and barely present or not present at all. To distinguish among these, an image
was classified as a patterned only if there were at least four interior spots for limb patterns
and at least six interior spots for the trunk and tail. The head was invariably well-patterned,
with at least 26 spots found on the heads of all the geckos, so no minimum was applied.

Description of indices
For each of the 25 geckos, we excluded images without patterns as determined by the
algorithm described above (Fig.4 and Table 1) giving a total of 132 qualifying patterns
(14–16 patterns for each of the 4 legs, 23 trunk patterns, 25 head patterns and 25 tail
patterns). For each such qualifying combination of body parts and gecko, we used Matlab
to calculate the 14 indices summarized in Table 2. The value of each index is the average
of the 4 independent measurements, giving a total of 132 × 4 = 528 images that were
analyzed. For an assessment of the measurement error, see below and the Supplemental
Information.

Definition of distances on pattern space: Mahalanobis and
developmental noise distances
Each qualifying pattern (the average of the four images of one of seven body parts of one
of 25 geckos) is described by the 14 indices in Table 2. Thus we can think of a pattern as a
point Ex = (x1,...,x14)T in a 14-dimensional pattern space. (The superscript ‘‘T’’ denotes
the transpose). To quantify the similarity of two patterns, we measure the distance between
two points in this pattern space.We consider two different definitions of a distance (metric)
on pattern space. Let Ex = (x1,...,x14)T and Ey =

(
y1,...,y14

)T denote two points. The first
distance we consider is the standard Mahalanobis distance given by

dN
(
Ex,Ey

)
=

√(
Ex−Ey

)TS−1(Ex−Ey).
Here S is the covariance matrix of the complete data set. One can think of the

Mahalanobis distance as the Euclidean distance computed after transforming the data
to principal components and normalizing each principal component (Krzanowski,
2000). The advantage of this method over the Euclidean distance on the untransformed
pattern space is that the principal components are uncorrelated, and so the Mahalanobis
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distance is not skewed by correlations between the different indices. It is generally
regarded as an appropriate generic choice for a statistical distance in sample spaces with
differential variances and correlations (Krzanowski, 2000). As a generic choice however,
the Mahalanobis distance does not take into account any specific information from the
particular structure of our data set. In the case at hand, the data points can be grouped by
animal, by body part, or for instance by pairs of front legs or back legs of the same animal.
In general, differences among patterns can be attributed to differences in the genotype,
the environment experienced, and developmental noise. The differences among patterns
within the pairs of data points describing the front legs or the back legs of the same animal
are likely primarily the result of developmental noise, as opposed to two different genotypes
or different environmental conditions. Data obtained from the legs allow then to separate
the influence of developmental noise from genetic and environmental factors. We take this
into account and define a second metric called ‘‘Developmental Noise metric’’, defined as
a weighted Euclidean metric:

dD
(
Ex,Ey

)
=

√√√√ 14∑
i=1

wi
(
xi−yi

)2
,

where the weights wi,i =1 ,...,14 are defined via the variance of the two front leg patterns
of each gecko. More specifically, for the index i (with (1≤ i≤ 14), let Sni denote the variance
of the indices of the two front leg patterns of the nth gecko (we only included geckos that
have patterns on all four legs; see Fig. 3). Then we define the weight wi as the inverse of the
mean of the variances Sni ,i.e.,

wi=
1

mean
(
Sni
) (1≤ i≤ 14),

where the mean is taken over all geckos who have patterns on front legs. Note that this
distance function is scale invariant, i.e., independent of the units used for the different
indices. The reason for using these weights is that the mean variance between the two front
legs is a rough measure for the importance of noise in the establishment of the pattern;
thus effectively the smaller influence noise has on a measurement, the more weight it is
given in the computation of the distance between patterns. While this distance takes into
account the special structure of the data set, its computation is based only on a subset of the
data, namely leg patterns of those geckos that have patterned front legs. This is in contrast
to the standard Mahalanobis metric, which ignores the special structure, but is based on
all data points. It is a priori not clear which of these distances is more appropriate, and
for this reason we use both in the following analyses. In fact, we found that in general,
the results for these two metrics agree qualitatively, giving added confidence in our results
(see Results section). Many other reasonable concepts of distances on pattern space are
possible. Results are reported in all cases for the squares of the distances.

Quantification of measurement error
We took four independent photos of each body part, where the animal was picked up and
rearranged for each repetition so that the four measurements would be independent. A
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measurement error was introduced by slight differences in the rotation and placement,
especially for the limbs and tail. To quantify the measurement error, we took two
approaches: in the first, we compared the mean distances in pattern space between the
different measurements to the mean between-individual distances of the same body part.
The second consisted of a two-way ANOVA test for the front legs and the back legs, where
the two factors are ‘‘sides’’ (S, fixed) and ‘‘individuals’’ (I, random). For more details, see
the ‘‘Results’’ section below.

Statistical analysis and software
Images of various body parts were extracted via automated removal of background
pixels and consequent manual selection from photos of the geckos with the image editor
GIMP. All computations for image analysis and statistical analysis were performed with
Matlab. The computations of statistical significance of results (p-values) were performed
either with standard statistical tests as implemented in Matlab where indicated, or via
nonparametric permutation tests (see the Appendix for details on the procedure). The
Matlab code for these scripts is available in an Open Science Framework (OSF) repository.
Link: https://osf.io/zauwe/?view_only=97c4846fb5f34357b0943c2f5c6bc571.

RESULTS
Patterning
Figure 3 shows that not all geckos had melanistic patterns that were identified on all
body parts. In some cases there was no visible spot pattern by eye as well, in some cases
the pigmented melanistic pattern visible by eye was very light and not discerned by the
algorithm.To ensure a robust pattern with enough spots to measure average characteristics,
we included a spot pattern only if the algorithm identified a minimum number of spots (at
least four or six interior spots). All of the geckos had patterning on the heads and tails, only
two were missing patterns on the trunk, and approximately half (13/25) of the geckos were
missing patterns on their legs. There is furthermore an identifiable hierarchy of patterning
{head;tail}→ {trunk}→ {front legs;back legs} for each individual gecko, where absence
of patterns in one of the body parts entails absence of patterning in all ‘‘downstream’’
body parts with respect to this hierarchy. For instance, absence of patterning on the trunk
means that all legs have no patterns as well. There was no clear hierarchy between the front
legs and back legs. Of those missing patterns on legs, most geckos (7/13) were missing
patterns on both sets of legs, two were missing patterns on their back legs only, and four
were missing patterns on their front legs only. Although our sample size is limited for the
‘‘lemon frost’’ morph, there appeared to be an effect of morphotype: for the ‘‘normal’’
morphotype, absence of patterns on the front legs always meant that the back legs were
also unpatterned, whereas this was reversed for this morph, since no gecko had patterned
front legs.

Measurement error
We took four independent photos of each body part. To estimate the amount of
measurement error in each of the 14 indices, we took two different approaches (see
Methods).
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In the first, we consider body part patterns as points in 14-dimensional phenotype space
and measure the distances between them. We determined first the mean distance of the
four repeated measurements of the same body part of the same animal from their centroid.
This is an absolute measure of the measurement error. Table SA1 lists these errors for
all seven body parts as well as the relative error as the ratio of these errors relative to (i)
the mean between-individual distances for the same body part, or (ii) the corresponding
within-individual distances for front or back legs (comparing the left and right leg of the
same gecko). The results for both the Mahalanobis distance and the Developmental Noise
distance are listed. In all cases, the mean within- or between-individual distances were
significantly greater than the mean distance due to the measurement error, with factors
varying from 2.2 (back leg, within-individual distance relative to measurement error,
Mahalanobis distance) to 86.1 (tail, between-individual distance relative to measurement
error, Developmental Noise distance). A factor of 1 would mean that within- or between-
individual distances were of the same magnitude (and thus indistinguishable) from
measurement error. However these distances were at least twice as large (and often much
larger), indicating that the measurement error is relatively small.

In the second approach for characterizing the measurement error, we conducted a
two-way ANOVA test where the two factors are ‘‘sides’’ (S; fixed) and ‘‘individuals’’ (I;
random) separately for both pairs of front legs and pairs of back legs for each of the 14
indices. This is a standard approach to compare the relative contributions of nondirectional
asymmetry (biological) and measurement error (technical variation) in the investigation
of paired structures (Palmer & Strobeck, 1986;Merila & Biorklund, 1995; Breuker, Patterson
& Klingenberg, 2006). For each index, an F-test yielded that nondirectional asymmetry is
making a significant contribution to the variation observed relative to measurement error.
The F-values had a median value of 6.8, meaning that the measurement error made up
about 15% (median value) of the total observed variation between the left and right leg
patterns. See Table SA2 for details.

General pattern variation across geckos and body parts
For each body part of each of the 25 studied animals, we determined the value of each of
the 14 indices listed in Table 2 via the mean of four repeated independent measurements.

An examination of the coefficient of variation (ratio of standard deviation and mean)
for the 14 indices shows that melanistic pattern is highly variable for measures that concern
the proportion of melanistic areas (FM), how large these individual areas are (SA and SSD),
and, to a lesser extent, what their typical distances are from each other (PL andMD) (Table
A4). This is not an artifact of the measurement error, which actually tended to be larger for
MD than the other indices by some measures (see Table SA2). In essence, spots can be in
higher or lower density across geckos and body parts and larger or smaller. However, once a
melanistic pattern is established, the spots are all similar in shape (EE, EL). Figure 5 displays
the pairwise Pearson correlation coefficients showing how much one index is correlated
with another. For example, measures of the size of spots such as FM, SS and SA are strongly
positively correlated. The two indices of the typical wavelength (roughly representing the
typical distance among melanistic areas), PL and MD, are also positively correlated. It is
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FM SS SSD EE EED PL MD MDD SA SAD SI SID EL ELD

FM 1 0.76**** 0.7**** 0.39**** 0.14 -0.63**** -0.5**** -0.65**** 0.68**** 0.62**** -0.76**** -0.55**** 0.42**** 0.45****

SS 0.76**** 1 0.9**** 0.42**** 0.16 -0.39**** -0.063 -0.27** 0.97**** 0.91**** -0.65**** -0.35**** 0.57**** 0.54****

SSD 0.7**** 0.9**** 1 0.38**** 0.27** -0.4**** -0.15 -0.28** 0.84**** 0.93**** -0.55**** -0.36**** 0.6**** 0.64****

EE 0.39**** 0.42**** 0.38**** 1 -0.47**** -0.4**** -0.061 -0.14 0.26** 0.29*** -0.094 -0.26** 0.58**** 0.37****

EED 0.14 0.16 0.27** -0.47**** 1 -0.004 -0.1 -0.097 0.18* 0.19* -0.2* -0.079 -0.0041 0.15

PL -0.63**** -0.39**** -0.4**** -0.4**** -0.004 1 0.63**** 0.58**** -0.33*** -0.34**** 0.35**** 0.35**** -0.29*** -0.3***

MD -0.5**** -0.063 -0.15 -0.061 -0.1 0.63**** 1 0.85**** -0.029 -0.06 0.28*** 0.36**** 0.12 -0.011

MDD -0.65**** -0.27** -0.28** -0.14 -0.097 0.58**** 0.85**** 1 -0.23** -0.21* 0.49**** 0.47**** 0.082 0.022

SA 0.68**** 0.97**** 0.84**** 0.26** 0.18* -0.33*** -0.029 -0.23** 1 0.93**** -0.64**** -0.29*** 0.45**** 0.44****

SAD 0.62**** 0.91**** 0.93**** 0.29*** 0.19* -0.34**** -0.06 -0.21* 0.93**** 1 -0.58**** -0.3*** 0.52**** 0.54****

SI -0.76**** -0.65**** -0.55**** -0.094 -0.2* 0.35**** 0.28*** 0.49**** -0.64**** -0.58**** 1 0.46**** -0.11 -0.18*

SID -0.55**** -0.35**** -0.36**** -0.26** -0.079 0.35**** 0.36**** 0.47**** -0.29*** -0.3*** 0.46**** 1 -0.11 -0.068

EL 0.42**** 0.57**** 0.6**** 0.58**** -0.0041 -0.29*** 0.12 0.082 0.45**** 0.52**** -0.11 -0.11 1 0.9****

ELD 0.45**** 0.54**** 0.64**** 0.37**** 0.15 -0.3*** -0.011 0.022 0.44**** 0.54**** -0.18* -0.068 0.9**** 1

Figure 5 Correlation matrix.Values color coded from negative (blue) to positive (red). Symbols for each
of the 14 indices are as in Table 2. One star (*) indicates p-values less than 0.05, ∗∗p-values less than 0.01,
∗∗∗p-values less than 0.001, ∗∗∗∗p-values less than 0.00001. Data obtained on all the 25 geckos together in-
dependently of morphotype. See the Supplemental Information for differences among morphotypes.

Full-size DOI: 10.7717/peerj.11829/fig-5

also noteworthy that EE, which quantifies aspects of the shape of individual spots, is only
weakly correlated with the other indices, with the exception of the mean elongation (EL),
which also quantifies aspects of the shape of individual spots. This indicates that the spot
shape only weakly depends on size or distribution of the spots. A negative correlation value
indicates that two indices are anti-correlated. For example, fractional melanistic area (FM)
and peak length (PL) are moderately anti-correlated since fractional melanistic area –the
proportion of melanistic area to total skin area- tends to increase with the number of spots
while peak length a measure of the typical distance between spots - decreases with the
number of spots. EE and EED are moderately anti-correlated, which indicates that spots
with large eccentricity tend to have a lower variation in their eccentricity, which indicates
an eccentricity that is non-random.

We also computed the correlation coefficients of within-individual indices of the
various body parts. The results are summarized in Fig. 6. A total of 127 out of the 294
correlation coefficients were statistically significant at the 0.05 level of significance (39.8%),
meaning that we can statistically reject the hypothesis that variation of these indices is
independent among these body parts. The number of statistically significant coefficients
varied substantially by the pair of body parts. Correlation is significant for most indices for
the two front leg patterns and the head and tail patterns (FL-FR, HD-TA; each 11 out of
14). To a somewhat lesser extent, the indices for the two back legs tended to be correlated
(BL-BR; 9 out of 14 significant). Correlation between front and back legs (FL-BL, FL-BR,
FR-BL, FR-BR) was much weaker. The trunk pattern was most strongly correlated with
the tail pattern (TR-TA; 8 out of 14). Interestingly, within-individual correlation tends to
be weak for indices describing the typical shape of the spot (EE, EL), whereas measures of
the relative size of the spots (FM, SS, SA) tend to be highly correlated between body parts.

We performed a principal component analysis on the 14 indices taken across all the 25
studied geckos and across the different body parts, the results of which are summarized
in Table SA3 and Figs. 7–9. A principal component analysis is a statistical method to
convert a set of observations (in our case, among 14 indices that have many overlaps in the
information they are describing) into a smaller number of uncorrelated variables called
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FM SS SSD EE EED PL MD MDD SA SAD SI SID EL ELD

FL-FR 0.95**** 0.84*** 0.48 0.4 -0.26 0.78** 0.89**** 0.78** 0.85**** 0.86**** 0.98**** 0.56* 0.7** 0.74**

HD-TA 0.7**** 0.43* 0.51** 0.19 0.011 0.64*** 0.72**** 0.45* 0.53** 0.58** 0.65*** 0.5* 0.53** 0.4

BL-BR 0.98**** 0.81*** -0.09 0.45 -0.36 0.43 0.85**** 0.77*** 0.91**** 0.73** 0.96**** 0.79*** 0.64* 0.33

FR-HD 0.89**** 0.57* 0.45 0.017 -0.0058 0.42 0.66** 0.56* 0.79*** 0.72** 0.84*** 0.56* 0.12 0.28

TR-TA 0.71*** 0.61** 0.45* 0.15 0.27 0.17 0.34 0.34 0.67*** 0.43* 0.56** 0.6** 0.53** 0.2

BL-TR 0.85**** 0.61* 0.05 0.29 0.34 0.29 0.61* 0.22 0.6* 0.42 0.84**** 0.037 0.57* 0.16

HD-TR 0.66*** 0.41 0.16 0.67*** 0.38 0.26 0.61** 0.39 0.37 0.052 0.66*** 0.32 0.57** 0.45*

BL-HD 0.52* 0.43 0.23 0.18 -0.15 0.12 0.83**** 0.57* 0.33 0.17 0.67** 0.51* 0.29 -0.12

BR-TR 0.81*** 0.54* 0.17 0.043 -0.14 0.2 0.4 0.24 0.64** 0.62* 0.73** -0.063 0.3 0.2

FL-HD 0.81*** 0.31 0.28 -0.14 -0.22 0.36 0.62* 0.29 0.56* 0.57* 0.9**** 0.17 0.19 0.37

FL-TA 0.65* 0.48 0.62* 0.44 -0.18 0.4 0.64* 0.56* 0.45 0.46 0.67** -0.096 0.19 0.34

FR-TR 0.61* 0.25 0.4 0.54* -0.00097 0.8*** 0.63* 0.28 0.37 0.33 0.66* 0.13 0.16 0.2

BL-FL 0.61* 0.56 -0.21 -0.2 -0.43 0.064 0.56 0.67* 0.68* 0.2 0.84*** -0.068 -0.22 -0.52

BL-FR 0.65* 0.41 0.008 0.13 0.15 0.13 0.64* 0.67* 0.44 0.15 0.84*** 0.083 0.014 -0.46

BL-TA 0.71** 0.54* -0.023 0.3 0.21 0.31 0.47 0.71** 0.52* 0.35 0.45 0.34 0.16 -0.4

BR-FR 0.62* 0.59* 0.11 -0.3 -0.36 0.066 0.44 0.18 0.62* 0.25 0.84*** 0.15 -0.05 -0.23

BR-HD 0.53* 0.32 -0.4 0.18 0.024 0.5 0.74** 0.57* 0.38 -0.0023 0.61* 0.3 0.24 0.18

FR-TA 0.69** 0.39 0.14 0.22 0.21 0.19 0.64* 0.8*** 0.44 0.38 0.7** 0.13 0.16 0.12

BR-FL 0.54 0.71** 0.38 -0.24 0.48 0.01 0.32 0.32 0.74** 0.33 0.82** 0.033 -0.022 -0.081

BR-TA 0.7** 0.74** 0.33 0.11 0.21 0.47 0.36 0.48 0.61* 0.38 0.46 0.048 0.3 0.23

FL-TR 0.5 0.27 0.28 -0.16 -0.53 0.54* 0.55* 0.33 0.41 0.31 0.65* 0.058 0.11 0.47

Figure 6 Correlation coefficients of within-individual indices.Values are color coded from negative (blue) to positive (red). Each row corre-
sponds to a different pair of body parts indicated as in Fig. 2. E.g. ‘‘BL-HD’’ denotes comparison of the left back leg and the head of an individual.
Columns correspond to the 14 indices of pattern characteristics as in Table 2. Correlation coefficients were calculated based on all geckos who had
patterns on the corresponding body parts; e.g. the ‘‘BL-HD’’ values are computed over all geckos with patterned back legs and patterned heads. One
star (*) indicates p-values less than 0.05, ∗∗p-values less than 0.01, *** p-values less than 0.001, **** p-values less than 0.00001. Rows are sorted by
the number of significant correlation coefficients. Data obtained on all the 25 geckos together independently of morphotype. See the Supplemental
Information for differences among morphotypes.

Full-size DOI: 10.7717/peerj.11829/fig-6

the principal components. Together, the first seven components account for over 94%
of the total variance between the 132 different patterns we analyzed. The first principal
component (explaining 45% of the variance) has larger coefficients for those indices that
are associated with the average size of the spots, while the second component (18% of the
variance) tends to have larger coefficients for those indices associated with the characteristic
wavelength (roughly corresponding to the distance among spots) of the pattern. The third
principal component (12% of the variance) is strongly associated with EE and EED, which
describes how close the individual spots are to circular shapes, and how much they vary in
this regard.

Figures 7–9 summarize the PCA data graphically. Together PC1 and PC2 (generally,
variation in spot size and separation, respectively) explain nearly two thirds of the pattern
variation (62.8%) and provide insight into systematic differences among patterns of the
legs, head, tail and trunk. Clusters of leg patterns are well separated and distinct from
clusters of the head and tail patterns for plots of PC1 versus PC2 (Fig. 7). Since they sort
along the PC1 axis (roughly, summarizing measures of spot size), we find that for example
the head and tail patterns tend to have larger average spot areas, while leg spots have smaller
average spot areas (Fig. 8, top right and bottom left). This is true for both the absolute size
of the spots (indices SA and SS) as well as the size of the melanistic area as a fraction of
total skin area (FM), indicating that leg spots tend to be disproportionately smaller than
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Figure 7 Data visualization 1. Plot of principal components 1 and 2. Each dot in the plot corresponds to
a specific body part of a gecko. Body parts are colored coded and indicated by the same symbol as in Fig.
2. A few outliers are labeled via the corresponding gecko id (See Fig. A1 for images of all individuals. Note
that the two outliers for the trunk patterns in the top left corner correspond to two normal morphs ob-
tained from different sources, suggesting that grouping between these two individuals is not due to them
being blood related). Data from all the 25 geckos with pattern in the specific body part indicated.

Full-size DOI: 10.7717/peerj.11829/fig-7

body spots. When looking at pattern variation only for legs, we observe that the front legs
are clustered with lower PC2 values (PC2 is more associated with measures corresponding
to the distance among spots) and also variation in the front legs tends to be smaller than
variation in back legs (Fig. 9, left).

Within-individual and between-individual distances in pattern
space—a measure of the influence of developmental noise in pattern
formation
Pattern distances among pairs of legs
We investigated whether the patterns on each pair of the four legs on each gecko are more
similar than the patterns on different geckos. In fact, variation in pattern among the two
front legs or the two back legs for each gecko most likely reflects the level of developmental
noise in pattern formation on the legs. In Fig. 9 (left panel)—where variation reflects mostly
differences in the size of the spots and distance among them—a clustering of the legs of
individual geckos is not readily visible, suggesting that the contribution of noise generally is
more important than the contribution of genetic factors. It should be noted that although
a considerable measurement error also contributes to the differences between the legs,
random variation due to developmental noise is significantly larger than the measurement
error (see Tables SA1 and SA2). We compared the within-individual differences in pairs
of leg patterns to the between-individual differences in the same pairs (Fig. 10). We found
qualitatively somewhat similar results for both the Mahalanobis distance (gray and black
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Figure 8 Data visualization 2. Plots of principal components 1 and 3 (top left); spot area (SA) vs.mean
distance between neighboring spots (MD; top right); fractional area (FM) vs. spot diameter (SS; bottom
left) and ellipticity (EE) vs. peak length (PL; bottom right). Percentages in parentheses give the fraction of
the total standard deviation explained by the given principal component. Body parts are color coded as in-
dicated in Fig. 7. Axes bounds are chosen so that in some cases, a few outliers are not shown. Data from all
the 25 geckos with pattern in the specific body part indicated.

Full-size DOI: 10.7717/peerj.11829/fig-8

bars in Fig. 10) and the Developmental Noise distance (pink and red bars in Fig. 10)
concerning the distance between the two front legs and the distance between the two back
legs. In both cases, thewithin-individual distances were smaller than the between-individual
distances. Their ratio was between 0.55 and 0.57 for the Mahalanobis distance and even
0.16–0.19 for the developmental noise metric (a ratio of 1.0 would indicate no difference
between the within-individual and the between-individual distances). The differences
were highly statistically significant except for the case of back legs and the Mahalanobis
distance. The within-individual pair of the two front leg patterns is thus found to be very
significantly more similar than two leg patterns from different individuals. (Statistical
significance was assessed via nonparametric permutation tests, see the Appendix for more
details). Similarly, the within-individual distance between the two back leg patterns is also
found to be significantly smaller than the mean between-individual leg distance. For both
distances, a front leg and a back leg of the same gecko were closer to each other than a front
leg and a back leg patterns randomly taken from two different geckos. However, overall,
the mean distance between leg patterns of the same gecko is 64% of the mean distance
between patterns on different geckos for the Developmental Noise distance and 91% for
the Mahalanobis distance, a not statistically significant difference in the latter case. This
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Figure 9 Data visualization 3. Left: Plot of principal components 1 and 2 of all leg patterns. Geckos are
color coded as indicated in the legend and each dot in the plot corresponds to a specific leg of a gecko. The
two back legs of the same gecko are connected via a blue line; the two front legs by a purple (‘fuchsia’) line.
Right: Plot of principal components 1 and 2 of head (HD), trunk (TR) and tail (TA) patterns. Geckos are
color coded by morph.

Full-size DOI: 10.7717/peerj.11829/fig-9

Figure 10 Distances of leg patterns. (Squared) distances among leg patterns. For each type of leg com-
parison, within individual distance (gray and pink bars) and between individual distance (black and red
bars) and their ratio (value indicated above each pair of bars) are shown. Gray and black bars show the
Mahalanobis distance, pink and red bars show the Developmental Noise distance (see inset next to the fig-
ure). Squared distances are scaled so that the mean between-individual leg distance, i.e., the distance be-
tween two leg patterns of different individuals, is 1 in each metric. Stars are based on the p-values for the
null hypothesis that the mean within-individual distance is greater or equal to the between- individual dis-
tance; equivalently, that the ratio between the two is greater or equal to one. The alternative hypothesis
is that the mean within-individual distance is strictly less than the between-individual distance. Data ob-
tained on all the 25 geckos together independently of morphotype. One star (*) indicates p-values less than
0.05, ** p-values less than 0.01, *** p-values less than 0.001, **** p-values less than 0.00001.

Full-size DOI: 10.7717/peerj.11829/fig-10
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Figure 11 Distances of patterned body parts. (Squared) distances among head, trunk, tail, and (front)
legs. For each type of leg comparison, within individual distance (gray and pink) and between individual
distance (black and red bars) and their ratio (value indicated above each pair of bars) are shown. Gray and
black bars show the Mahalanobis distance, red and pink bars show the Developmental Noise distance (see
also the legend to Fig. 10). Scaling of distances as in Fig. 10. Stars are based on the p-values for the null hy-
pothesis that the mean within-individual distance is greater or equal to the between- individual distance;
equivalently, that the ratio between the two is greater or equal to one. The alternative hypothesis is that
the mean within-individual distance is strictly less than the between-individual distance. One star (*) indi-
cates p-values less than 0.05, ** p-values less than 0.01, *** p-values less than 0.001, **** p-values less than
0.00001. Data obtained on all the 25 geckos together independently of morphotype.

Full-size DOI: 10.7717/peerj.11829/fig-11

further indicates that there is large variation in leg pattern (Figs. 7 and 9), and specifically
that the variation observed between legs within each individual is only slightly less than the
one observed among individuals, consistent with the small within-individual correlation
coefficients observed for some indices (Fig. 6). Our results indicate that within each gecko,
two front legs and the two back legs are much more similar to each other than a front and
a back leg. This would suggest that the difference between a front and a back leg is not just
due to developmental noise. In fact, the results support the hypothesis that the mechanisms
- including timing of it - of pattern formation and/or regulation of pattern establishment
are distinct for the front and back legs.

Within-individual and between-individual pattern distances among heads,
trunks, tails and legs
We also investigated the distances between the head, trunk, tail, and leg patterns. The
results are summarized in Fig. 11. The distances are scaled with the same factor as in
Fig. 10, i.e., the average distance between the patterns of two legs from different geckos is
scaled to 1. We compared the within-individual and between-individual distances for all
possible pairs of head, trunk, tail and leg patterns.

The comparisons of leg patterns with other body parts (legs-head, legs-trunk, legs-tail)
yielded that the mean within-individual distance was slightly smaller than the mean
between-individual distances for both the Mahalanobis distance and the Developmental
Noise distance. However, the differences were relatively small, between 5% and 12% for
the Mahalanobis distance and 6% and 18% for the Developmental Noise metric. For
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the Mahalanobis distance, these differences did not reach statistical significance. In other
words, if you take a leg pattern of one individual, the difference between this leg pattern
and, say, the head pattern of the same individual is on average not statistically significantly
smaller than the difference to the head pattern of a second individual. This is different for
the tail, head and trunk patterns. For all three pairs - trunk and tail; head and tail; head
and trunk - the within-individual distance is significantly less than the between-individual
distance. This means that on average, the patterns of any two body parts of the same animal,
e.g., the head and the trunk, is more similar than two patterns from different animals, e.g.,
the head pattern of one animal and the trunk pattern of another animal. This holds true
for both Mahalanobis and Developmental Noise distances.

DISCUSSION AND CONCLUSIONS
The goal of this paper was to develop tools and methods to quantitatively study skin
pattern variation within and between individuals. We developed a pipeline to collect
the data from images of live geckos and then computed various geometric indices to
describe characteristics of the patterns. Similar approaches have been taken for giraffe coat
patterns (Lee, Cavener & Bond, 2018) and salmonid fish skin patterns (Miyazawa, Kondo
& Okamoto, 2010); however in our work, we captured different aspects of pattern elements
and looked at variation for each of the elements, and we also used two concepts of distances
to quantify the degree of similarity of patterns as whole.

Our method is not only relevant for the analysis of experimental data, but also for
the evaluation of mathematical models of skin pattern formation. There are in fact
many such models (e.g., Murray, 2002; Cruywagen, Maini & Murray, 1992; Painter, 2001;
Cooper et al., 2018; Kondo, Iwashita & Yamaguchi, 2009), encoding various hypothesized
mechanisms of pattern formation. It is far from straightforward to rigorously compare the
synthetic patterns these models generate with the real skin patterns due to the complexity
and irregularity of the patterns. Most authors typically either compare only one or two
indices, such as the typical wavelength of the pattern, or just rely on the judgment of
human pattern recognition. While this method of comparing patterns ‘‘by eye’’ lacks
rigorous quantification, in some ways it is arguably far more developed and sophisticated
than current methods of pattern comparison based on lower-dimensional, quantifiable
measures. Therefore, our method represents a hybrid approach in which numerous,
not necessarily independent measures (the 14 indices used in this work, considered as
pattern elements) are chosen at the discretion of a human, based on the pattern variation
and characteristics that are perceived as important. The values of these measures are then
obtained using automaticmethods andmathematical definitions are used to supply suitable
weights for the measures to define the distances between patterns. This approach therefore
permits us to fully depict variation in melanistic patterns within and among individuals
and to quantify differences.

The 14 indices used for this project were chosen for the characteristics of the patterning
we found among the 25 geckos, which were largely spotted but also occasionally included
stripes and more complex shapes. Different pattern features and characteristics would
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motivate different indices, which could then be analyzed using the methods described here.
An exciting avenue for developing relevant indices for complex patterns (for example,
for patterns at different points along the transition between spots and stripes) is to
map patterns to a parameter space defined by a pattern generating algorithm such as a
reaction diffusion model. In a previous work, we used statistical methods to map complex
intermediate patterns to parameters corresponding to regions in a defined ‘‘LALI’’ pattern
space (Kiskowski et al., 2019).

Hierarchy of patterned body parts based on developmental sequence
of melanistic patterning
We found an identifiable hierarchy of melanistic patterning head/ tail→ trunk→legs in
the studied leopard geckos; for example presence of patterns on the front legs also entails
patterns on the trunk, tail and head, but not necessarily on the back legs (Fig. 3). There is no
clear hierarchy between the front legs and the back legs, although for the ‘‘normal’’ geckos
in our sample, unpatterned front legs implied unpatterned back legs. These results point to
a corresponding order of the establishment of patterns during development: it appears that
pattern formation occurs simultaneously in an anterior-posterior and a proximal-distal
direction, forming first on the head, then on the trunk, followed by the legs. Patterning of the
front legs and the back legs appears to be independent, due to the independent presence of
pattern, the low correlation of the pattern indices (Fig. 6) and the fact that within-individual
comparisons of front and back legs yielded very similar results as between-individual
comparisons (Fig. 10). Pattern formation and establishment on the tail appears to be based
on a related mechanism as the head and trunk, as indicated by the similarity of tail and
head patterns, as well as tail and trunk patterns. The observed hierarchy of patterning
partially follows pigmentation development in this species. Melanistic pigmentation in the
leopard gecko starts to appear around the developmental stage 40 (hatching occurs at stage
42) as a banded pattern on the body and spots on the front legs (but not on the back legs)
(Wise, Vickaryous & Russell, 2009). At the beginning of developmental stage 41, the banded
pattern is clearly distinct across the body while a spotted pattern occurs on the upper part
of the front leg. However, by the end of this stage, pigmentation is occurring across the
whole body (Wise, Vickaryous & Russell, 2009). Although the body (head, trunk, and tail)
of hatchling and juvenile leopard geckos generally presents a banded pattern, this species
undergoes ontogenetic color and pattern changes, with adults generally having a spotted
pattern (Fig. 1) (Landová et al., 2013). Ontogenetic change in color pattern however does
not occur for the legs after hatching (see above). Therefore, head, tail, and trunk follow a
process of pattern development and establishment that is different from the one occurring
on the legs, with the pattern on the front legs establishing before the one of the back legs
(Wise, Vickaryous & Russell, 2009), potentially explaining why absence of pattern is more
common in the back legs than the front legs and in the front legs more than in the rest of
the body.
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General pattern variation across geckos and body parts
Variation and correlation among pattern indices
We found large variation and strong correlation among indices related to the amount of
melanistic area and the density and size of the spots among the different studied geckos
and among the different body parts (Figs. 5 and 6). Although variation in spot size across
body parts and among individuals may partially be related to size differences, this is
less the case for the fraction of melanistic area on the total area. Independently on the
observed variation, once spots are formed, their average shape is similar across individuals
(Table SA4), suggesting a strong constraint on this pattern element (EE), which is also
weakly correlated to the other indices (Fig. 5). While variation in spot size and density has
also been observed in other organisms (e.g., Asai et al., 1999; Morgan et al., 2014; Rudh,
Rogell & Höglund, 2007; Balogová & Uhrin, 2015; Druml et al., 2017), less is known about
variation in spot shape. Potential genetic or developmental mechanisms may have evolved
to ensure maintenance of spot shape and low variability of this trait. On the other hand,
other elements of the spotted pattern (e.g., density and size) may be freer to vary in a
coordinated way –as suggested by the observed high positive correlation between some
indices. Future research could further investigate if low variation in spot shape also occurs
in other spotted vertebrates and if it is similarly achieved across organisms. In zebrafish,
different alleles of the leopard gene result in changes in spot size, density, and connectivity
among spots, suggesting that this gene may regulate the synthesis of an activator in a model
of reaction–diffusion pattern formation (Asai et al., 1999). Later studies identified the role
of leopard in regulating interaction among melanophores (or among xanthophores) and
in controlling boundary shape for the spots (reviewed in Kondo, Iwashita & Yamaguchi,
2009; Singh & Nüsslein-Volhard, 2015). Similarly, in horses, two genes with different alleles
determine the occurrence and amount of melanistic spots on a white colored coat (Druml
et al., 2017). The availability of the leopard gecko genome (Xiong et al., 2016), the relative
easiness to breed this species, and the existence of CRISPR-Cas9 technology already tested
to create mutations in lizards (Rasys et al., 2019) will allow us to develop future research to
uncover the genetic basis of variation in pattern elements in this species, similarly to what
has been done for mammals and other non-mammalian model species (Van Belleghem et
al., 2020; Concha et al., 2019).

Variation and correlation in pattern among body parts
Phenotypic correlation among traits, in this case the correlation of patterns among different
body parts of the same individual, may provide information on how these patterns are
related developmentally. Phenotypic correlation was investigated in two ways. The first
is the standard method of Pearson correlation coefficients for each pair of body parts
and for each measurement, summarized in Fig. 6. The second measure is the ratio of the
mean within-individual distance and the mean between-individual distance in pattern
space for each pair of body parts, summarized in Figs. 10 and 11. Patterns on the legs are
statistically almost independent of patterning on the head, trunk and tail. In contrast, the
similarity of head, trunk and tail patterns, as well as the similarity of the two front legs
and the two back legs for the same animal are statistically significant for both metrics.
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The similarity of pattern variation observed on the head, trunk and tail suggests that
patterning mechanisms are most likely not independent among these body parts, and the
same holds for the two front legs and the two back legs (Figs. 10 and 11; see also Fig. 9 for
each index separately). However, as melanistic patterns in the legs, and especially the back
legs, are more variable and independent in their variation from the rest of the body, this
may indicate a different timing or developmental mechanisms of pattern formation and
establishment in these body parts. In this sense, the relatively easiness of captive-breeding of
this species may provide a unique opportunity into understanding the underlying genetic
and developmental processes and mechanisms producing the observed variation in color
pattern in the different body parts (for similar questions, see Cieslak et al., 2011; Druml et
al., 2017;Wasik et al., 2014).

Comparison of within-individual and between-individual differences
in leg patterns as a measure of developmental noise
A within-individual comparison of the two front leg patterns yields that the front legs of
an individual gecko are significantly more similar than two between-individual front leg
patterns. The same holds true for the two back legs. A simple measure of the magnitude of
the contribution of developmental noise is given by the ratio of the mean within-individual
distance and the mean between-individual distance, which is the amount of variation
presumably due to developmental noise alone normalized by the average amount of
pattern variation due to all sources (including genetic and environmental). A ratio of 0
would indicate that the legs of individuals show no variation at all within a gecko, meaning
that developmental noise plays no part in the establishment of patterns at all. Conversely,
a ratio of 1 would mean that the variation between leg patterning of the same animal is
indistinguishable to the variation between patterning for two different animals. This would
indicate that the process of patterning even between geckos would be entirely dominated
by random noise. In our data, the contribution of developmental noise to patterning is
quite large by this measure with ratios of within-individual distances to between-individual
distances between 0.55 and 0.16 for the Mahalanobis and Developmental Noise metrics,
respectively, for the front legs and 0.57 and 0.16 for the back legs. While the measurement
error contributes to this estimate—it accounts for between 47% and 33% of the within-
individual distances (Table SA1)—the variation due to developmental noise exceeds this
error significantly (Tables SA1 and SA2). These indices indicate that although variation
in melanistic pattern observed within individuals is not produced by developmental noise
alone, overall, developmental noise has a very strong influence on this variation. Together
with controlled captive-breeding experiments, the combination of mathematical modeling
(see section below) and empirical data can be used in the future to further investigate the
relative importance of genotype, environment and developmental noise on the variation in
color pattern on the different body parts in these animals. Furthermore, ourmethodological
approach can also be applied to other patterned organisms to study similar questions.

Methodological significance for the analysis of mathematical models
Our method also serves the purpose of establishing a systematic high dimensional
quantitative approach to the analysis of synthetic patterns produced by mathematical
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models of skin pattern formation (see e.g., Murray, 2002; Cruywagen, Maini & Murray,
1992; Painter, 2001; Cooper et al., 2018; Kondo, Iwashita & Yamaguchi, 2009). Indeed, the
distance between synthetic patterns and the actual patterns is a quantifiable overall measure
of how similar the synthetic patterns produced by such models are to the actual patterns.
More importantly, our method gives a way to quantify the effect of developmental noise
on patterns, which in turn can be used to calibrate and test mathematical models of
skin pattern formation. More concretely, we can think of the two front leg patterns of
an animal as two points in our 14-dimensional pattern space. The two leg patterns are
similar, but not identical. These two points represent the variation from a ‘‘typical’’
pattern that corresponds to the environmental and genetic conditions of the particular
individual’s development. We postulate the differences between the two legs to be the effect
of developmental noise. Indeed, we can conceptualize abstract sets of possible patterns that
can be attained under the same combination of environmental and genetic conditions, but
with the random contribution of developmental noise. In a previous work, we have called
this set a ‘phenotype cloud’ (Kiskowski et al., 2019); see Fig. 12 below. In our case, it is a
subset of a 14-dimensional pattern space. These phenotype clouds can be interpreted as
confidence regions for the phenotypes of individuals with the same genetics and similar
environments, extending the ideas of confidence intervals to higher dimensions. One can
think for example of a 95% phenotype cloud as an abstract set of patterns that contains
a randomly generated pattern (with fixed environmental and genetic conditions, but a
random contribution of developmental noise) in 95% of the cases. Since the distribution
function for random noise is completely unknown, and we only have two sample points
for each instance—the pairs of front legs or the pairs of back legs for each individual—, the
actual shapes of these phenotype clouds are unclear. However, in the context of stochastic
mathematical models of pattern formation, such model-dependent phenotype clouds can
be determined computationally (Kiskowski et al., 2019), which then allows us to test such
model prediction against the empirical data.

Thus our approaches can be used to test the validity of mathematical models for
skin patterning, and gain insights and formulate predictions on the cellular and genetic
mechanisms of pattern formation (e.g.,Maini, 2004;Othmer et al., 2009). Besides providing
a framework for quantitatively analyzing various aspects of patterns, the concept of the
phenotype cloud gives an additional empirical approach to interrogating models.
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Figure 12 Visualization of phenotype cloud. Illustration of the concept of a ‘‘phenotype cloud’’. The
images show the gecko pattern data in FM-SS space (left) and PL-SA space (right). Each gecko corre-
sponds to a unique color and the body part is indicated by a two letter-combination (see Fig. 2). The el-
lipses shown are visualizations of the concept of phenotype clouds of gecko #10001 (indicated in bright
red). In fact, these ellipses are projections of certain balls (with respect to the Developmental Noise met-
ric) in 14-dimensional pattern space onto the FM-SS subspace (left) and on the SA-PL subspace (right).
These balls are centered at the centroid of the two front leg patterns of gecko #10001 (indicated in bright
red). The radius of the innermost ball is equal to the distance of one of the front legs to the centroid in the
14-dimensional pattern space. The other concentric balls have twice and three times this radius. Pheno-
type clouds can be conceptualized as such balls, e.g., the 95% phenotype cloud is a set that contains ran-
domly generated patterns with the same environmental and genetic conditions and the same level of de-
velopmental noise as the front legs of gecko #10001 in 95% of the cases. While it is not possible to gener-
ate such phenotype clouds for a single pattern from our data empirically—we only have two data points
for each cloud, corresponding to the left and right leg—it is possible for stochastic mathematical models of
pattern formation. The size of the cloud then indicates the contribution of developmental noise to pattern
formation - the larger the cloud, the larger the influence of developmental noise.
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