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Background Despite high commercial fisheries value and ecological importance as prey
item for higher marine predators, very limited taxonomic work has been done on
cephalopods in Malaysia. Due to the soft-bodied nature of cephalopods, the identification
of cephalopod species based on the beak hard parts can be more reliable and useful than
conventional body morphology. Since the traditional method of manual classification was
time-consuming, this study aimed to develop an automated identification model that can
identify cephalopod species based on beak images. Methods 174 samples for seven
cephalopod species were collected from the west coast of Peninsular Malaysia. Both upper
and lower beaks were extracted from the samples and the left lateral views of upper and
lower beak images were acquired. Three types of traditional morphometric features were
extracted namely grey histogram of oriented gradient (HOG), colour HOG, and
morphological shape descriptor (MSD). In addition, deep features were extracted by using
three pre-trained convolutional neural networks (CNN) models which areVGG19,
InceptionV3, and Resnet50. Eight machine learning approaches were used in the
classification step and compared for model performance. Results The results showed that
the Artificial Neural Network (ANN) model achieved the best testing accuracy of 91.14%,
using the deep features extracted from the VGG19 model from lower beak images. The
results indicated that the deep features were more accurate than the traditional features
in highlighting morphometric differences from the beak images of cephalopod species. In
addition, the use of lower beaks of cephalopod species provided better results compared
to the upper beaks, suggesting that the lower beaks possess more significant
morphological differences between the cephalopod species. Future works should include
more cephalopod species and sample size to enhance the identification accuracy and
comprehensiveness of the developed model.
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30 ABSTRACT

31 Background

32 Despite high commercial fisheries value and ecological importance as prey item for higher 

33 marine predators, very limited taxonomic work has been done on cephalopods in Malaysia. Due 

34 to the soft-bodied nature of cephalopods, the identification of cephalopod species based on the 

35 beak hard parts can be more reliable and useful than conventional body morphology. Since the 

36 traditional method of manual classification was time-consuming, this study aimed to develop an 

37 automated identification model that can identify cephalopod species based on beak images.

38 Methods

39 174 samples for seven cephalopod species were collected from the west coast of Peninsular 

40 Malaysia. Both upper and lower beaks were extracted from the samples and the left lateral views 

41 of upper and lower beak images were acquired. Three types of traditional morphometric features 

42 were extracted namely grey histogram of oriented gradient (HOG), colour HOG, and 

43 morphological shape descriptor (MSD). In addition, deep features were extracted by using three 

44 pre-trained convolutional neural networks (CNN) models which areVGG19, InceptionV3, and 

45 Resnet50. Eight machine learning approaches were used in the classification step and compared 

46 for model performance.  

47 Results

48 The results showed that the Artificial Neural Network (ANN) model achieved the best testing 

49 accuracy of 91.14%, using the deep features extracted from the VGG19 model from lower beak 

50 images. The results indicated that the deep features were more accurate than the traditional 

51 features in highlighting morphometric differences from the beak images of cephalopod species. 

52 In addition, the use of lower beaks of cephalopod species provided better results compared to the 

53 upper beaks, suggesting that the lower beaks possess more significant morphological differences 

54 between the cephalopod species. Future works should include more cephalopod species and 

55 sample size to enhance the identification accuracy and comprehensiveness of the developed 

56 model.

57

58
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59 Introduction

60 Cephalopods (phylum: Mollusca, class: Cephalopoda) refer to a group of soft-bodied, bilaterally 

61 symmetrical animals with well-developed head and body, which includes octopus, squid, 

62 cuttlefish and nautilus. This taxon is the third largest molluscan class which comprises more than 

63 800 identified species in the world (Lindgren et al. 2004). Globally, cephalopods contribute as 

64 much as 55% of fishery landings and 70% in fishery value (USD) (Hunsicker et al., 2010). Their 

65 economic contribution as fisheries resources has been on the rise globally as the landings of 

66 finfish had decreased due to overfishing. Cephalopods also play an important role in marine food 

67 webs, particularly in supporting top marine predators such as sharks and dolphins (Wolff, 1984; 

68 Hunsicker et al., 2010).

69 In Malaysia, cephalopods contribute about 12% of total fisheries landing valued at 

70 MYR1,067 million (approximately USD 250 million) in retail markets (Department of Fisheries 

71 Malaysia, 2015). The west coast of Peninsular Malaysia contributed more than 50% of the 

72 country’s cephalopod landings, and the taxonomic composition was dominated by squids, 

73 followed by cuttlefish and octopus (Abu Talib and Mahyam, 1986). Limited local biodiversity 

74 surveys found 17 species from 6 families and common families included Sepiidae (cuttlefish), 

75 Octopodidae (octopus), and Loliginidae (squid) (Samsudin, 2001; Rubaie et al., 2012). 

76 Cephalopods are popular in local cuisines such as grilled squids (known locally as ‘sotong 

77 bakar’), fried calamari, and dried squids. Despite their high fisheries profile and economic value 

78 as well as ecological importance, there has been virtually no comprehensive taxonomic studies 

79 on cephalopods in Malaysia.

80 One major reason for lack of local taxonomic information on cephalopods is due to their 

81 soft body mass which renders morphological descriptions based on length measurements very 

82 challenging. The soft tissue nature makes these animals easily damaged during sampling and 

83 rapidly digested inside the stomachs of predators; only the intact upper and lower chitinized 

84 beaks will typically remain as evidence of their consumption (Markaida & Hochberg, 2005). It 

85 had been established that the morphological characteristics of these beaks are species-specific 

86 and thus allow for taxonomic identification of the cephalopod prey from beaks isolated from 

87 stomach contents of their predators (Clarke 1962, 1986; Furness et al.,1984). The lower beak 

88 displays greater inter-specific morphological variations than the upper beak; thus the former is 
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89 generally used for identification purpose (Xavier et al., 2011). The inclusion of beak size 

90 information has been shown useful to differentiate between two cephalopod species from the 

91 same family (Clarke, 1962).

92 Machine learning approaches such as Artificial Neural Network (ANN), k-Nearest 

93 Neighbors (kNN), Random Forest (RF), and Support Vector Machine (SVM) are used 

94 increasingly to automate taxonomic identification efforts and to improve accuracy of 

95 classification tasks. Many taxonomic studies to date focused on the application of machine 

96 learning in the identification of plant species (Tan et al. 2020; Murat et al. 2017), land animals 

97 (Nguyen et al., 2017; Norouzzadeh et al., 2018), and insects (Thenmozhi et al., 2020) while a 

98 small number of marine-related studies had been conducted with a focus on fish identification. 

99 Examples of these studies included the use of machine learning and deep learning methods for 

100 tracking and estimation of fish abundance (Marini et al., 2018), identification of fish species 

101 using whole-body images (Allken et al., 2018) and using otolith contours in fish species 

102 identification (Salimi et al., 2016). 

103 Very limited machine learning techniques had been applied on cephalopod classification 

104 problems. Orenstain et al. (2016) used whole-body laboratory images of cuttlefish for 

105 classification of camouflaging behaviour with SVM classifiers. Beak and statolith images were 

106 used in the classification of three squid species found in the South China Sea (Jin et al., 2017). 

107 Himabindu et al. (2017) classified 50 squid species based on morphometric features measured 

108 from whole-body samples using ANN classifier. These examples showed the usefulness of 

109 machine learning methods for classification of cephalopods but their application had been 

110 limited to a single taxon (either cuttlefish or squid).

111 Hence, in this study, all three taxa of cephalopods namely squid, cuttlefish, and octopus 

112 were included. Images of whole body, upper beak and lower beak for all samples were taken. 

113 These images were then pre-processed using feature descriptors that extract useful information 

114 and omit extraneous ones. Specifically, traditional morphometric features were extracted from 

115 the images using three feature extraction methods, i.e., grey histogram of oriented gradient 

116 (HOG), colour HOG and morphological shape descriptors (MSD). For comparison, deep features 

117 were extracted using three convolutional neural networks (CNN) models namely VGG19, 

118 InceptionV3 and Resnet50. Next, a cephalopod species classification tool was developed using 
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119 an integrated analysis of morphometric, machine learning and deep learning approaches. Eight 

120 machine learning algorithms were analysed and benchmarked which included ANN, SVM, RF, 

121 kNN, Decision Tree (DT), Logistic Regression (LR), Linear Discriminant Analysis (LDA), and 

122 Gaussian Naïve Bayes (GNB). The proposed automated identification model will reduce time 

123 needed for future cephalopod identification work and increase identification accuracy with 

124 reduced costs. Our work also provides baseline estimate of species richness of cephalopods in 

125 Peninsular Malaysia which is important for documentation of the country’s rich marine 

126 biodiversity.

127

128 Materials & Methods

129 Generally, there were five main steps involved in this study namely sample collection, image 

130 acquisition, image processing, machine learning identification and model evaluation. Figure 1 

131 shows the proposed framework of the cephalopod species identification model using an 

132 integrated analysis of machine learning and deep learning approaches. For sample collection, 

133 seven cephalopod species were acquired from fisheries landing sites and brought back to the 

134 laboratory for subsequent processing including beak extraction. For image acquisition, the 

135 images of both upper and lower beaks were captured by using a smartphone.  In the image 

136 processing step, methods such as pre-processing, rescaling, and segmentation were performed on 

137 the images acquired, followed by feature extraction. In the machine learning identification step, 

138 eight machine learning methods were used to classify the cephalopod species. Finally, in the 

139 model evaluation step, both confusion matrix and precision-recall curve were used to evaluate 

140 the performance of the eight machine learning models. 

141

142 Sample Collection

143 Sampling trips were conducted from November 2017 to January 2018. A total of 174 cephalopod 

144 samples were collected from two major fisheries landing sites located on the west coast of 

145 Peninsular Malaysia, namely Hutan Melintang, Perak and Pasir Penambang, Kuala Selangor. 

146 The specimens were selected to represent the diversity of distinctive morphological groups and 

147 size classes available during sampling.  Seven putative cephalopod species were selected 
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148 including four putative species for squid (n = 96), two for cuttlefish (n = 49) and one for octopus 

149 (n = 29). Samples collected were kept on ice in the field and frozen immediately upon arrival in 

150 the laboratory.

151

152 Species Identification and Confirmation 

153 After defrosting, the specimens were measured for dorsal mantel length (mm) and wet body 

154 mass (g) and were photographed (see steps described below). Initial species identification using 

155 morphological characters were conducted using available taxonomic references (Reid et al., 

156 2005, Jereb et al., 2016) and were cross-checked against current species checklists in reputable 

157 databases, namely the Malaysia Biodiversity Information System (MyBIS, 2020), the World 

158 Register of Marine Species (MolluscaBase eds., 2020), and SeaLifeBase (Palomares & Pauly, 

159 2020). The upper and lower beaks were then extracted from the buccal mass and preserved 

160 separately in labelled jars containing 80% alcohol.

161 Species identification from morphological characteristics was subsequently confirmed 

162 with molecular approaches using the mitochondrial 16S rRNA gene which was amplified with 

163 the universal primers 16Sar and 16Sbr (Simon et al., 1994). 

164

165 Software and Hardware

166 The hardware used for the image acquisition included a lightbox, a laptop (Intel i7 with 4 

167 GB RAM), and a smartphone (16MP camera with 1440×250 pixels). The Adobe Photoshop CS6 

168 (version 13.1.2) and Python 3 software were used in the feature extraction and identification 

169 step. 

170

171 Image Acquisition

172 The images of both upper and lower beaks were captured using the Samsung Galaxy 

173 Note 4 smartphone camera. The samples were placed against a white background, i.e., lightbox 

174 with white light, and were centred on the camera screen to ensure high-quality images.  A 

175 distance of 10 cm between the smartphone camera and the beak samples was fixed and no 
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176 zooming was used for all specimen images taken (Figure 2). Only the left lateral views of the 

177 upper and lower beaks were captured. All beak images were stored using the JPEG format.

178

179 Image Processing and Feature Extraction

180 A digital image has to be processed before performing feature extraction and 

181 computational analysis to enhance the image, remove the noises, minimize the amount of storage 

182 needed and to increase the computation performance. Firstly, unwanted parts in the images were 

183 cropped. Next, all the beak images were downscaled to 10% of its original size to eliminate 

184 unnecessary pixel information without compromising the quality of the images. The original 

185 image resolution was 5312px×2988px while the rescaled image resolution was approximately 

186 532px×299px. Gaussian smoothing was then carried out on the rescaled images to reduce the 

187 noises on the images. 

188 Image segmentation was performed to convert the rescaled images into red-green-blue 

189 (RGB) colour, grayscale and binary images to obtain the region of interest (ROI), which is the 

190 beak. Firstly, the colour space of the image was converted to the common RGB colour space. 

191 The colour image was then converted to a grayscale image by using equation (1) (OpenCV, 

192 2020).   

193 (1)𝑌 = 0.299(𝑅) + 0.587(𝐺) + 0.114(𝐵)
194

195 A thresholding algorithm was used to convert the grayscale image into a binary image by 

196 classifying all the pixels into two groups using a threshold value set at 240. Those below the 

197 threshold value (0–239) formed the image background and those above the threshold (240–255) 

198 formed the object of interest, i.e. the beak. The boundary of the beak (ROI) was then determined, 

199 outlined and extracted from the image.

200 Next, HOG feature descriptor was calculated by determining the occurrences of gradients 

201 and orientation in localized portions of each image, i.e., an image is broken down into small 

202 regions and the gradients and orientation were calculated for each region. The magnitude of the 

203 gradient increases wherever there is a sharp change in intensity (brightness) of the image. The 

204 magnitude of the gradient, G was computed using equation (2) (Mallick, 2016).
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205  = (2)|G| G
2
x +  G

2
y

206 The gradient orientation, Ѳ was computed using equation (3) where  is horizontal gradient in Gx

207 the X direction and  is vertical gradient in the Y direction (Mallick, 2016).Gy

208 Ѳ = arctan (3)
Gx

Gy

209 A single image was divided into several cells, where each cell formed a square region 

210 which contained 128×128 pixels each. Using calculated gradient magnitude and orientation, 

211 every pixel within a cell casted a weighted vote for an orientation based histogram. The 

212 orientation bin was set as nine and this generated a frequency table for nine angles, i.e., 0, 20, 40, 

213 60, 80, 100, 120, 140 and 160 (Singh, 2019). Using the set number of bins, a 9×1 matrix 

214 histogram was counted for each cell. Next, 2×2 cells were grouped to form a block, resulting in a 

215 total of 3 (3×1) blocks of 128×128 pixels for each image.  Each block contained four 9×1 or a 

216 single 36×1 matrix and a total of 108 (3×36×1) features were produced for each image. In this 

217 manner, HOG was used in extracting the colour features from grayscale and RGB images and 

218 converted them into feature datasets.

219 The MSD consisted of both geometrical and morphological features (Aakif & Khan, 2015) 

220 and extracted the shape features from the highlighted region in the binary images. The binary 

221 image is used commonly due to clear delineation of the boundary of the object. Firstly, the image 

222 was computed to determine the contour of the object. Next, all the noises were eliminated by 

223 adjusting the threshold. After the contour was shown, ten morphological features, including beak 

224 size, were extracted from each image (Table 1).

225 In addition to the traditional methods, three deep learning CNN models, namely VGG19, 

226 InceptionV3 and ResNet50, were used to automatically extract features from the images.. The 

227 VGG19 model consists of 3×3 convolutional layers.  The original beak images were firstly 

228 resized to 224×224 pixels of RGB images as the inputs for VGG19. The VGG19 model pre-

229 processed the images by subtracting the mean RGB value from each pixel of the image. Next, the 

230 max-pooling layer was used to reduce the feature dimensionality and two fully connected layers 

231 were used to produce the feature vector, with the presence of 4,096 neurons (Mateen et al., 

232 2019). 
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233 The InceptionV3 model requires the input RGB image size of 299×299 pixels. Unlike the 

234 fixed kernel size for VGG19, the InceptionV3 allowed the features of the images to vary within 

235 an image frame and include multiple sizes of kernels in the same layer. There are four operations 

236 constructed in parallel, including a 1×1 convolutional layer for depth reduction, a 3×3 

237 convolutional layer for capturing distributed features, a 5×5 convolutional layer for capturing the 

238 global features and a max-pooling layer for capturing the low-level features. Each layer is 

239 responsible to extract the deep features from the images, concatenate and pass them to the next 

240 layer (Anwar, 2019). 

241 The ResNet50 model requires the input RGB image size of 224×224 pixels. ResNet50 is 

242 composed of 48 convolutional layers with 7×7 and 1×1 kernel size, max pooling layer and the 

243 fully connected layer. One of the important features of ResNet50 is the shortcut connections, that 

244 skip one or more layers, in order to solve the problem of vanishing gradient in deep neural networks 

245 by allowing the gradient to flow through the layer (Wen et al., 2019).

246

247 Machine Learning Identification

248 Machine learning techniques are capable of analysing weighty amounts of image data 

249 accurately and successfully. The supervised machine learning methods used for the cephalopod 

250 classification problem were Artificial Neural Network (ANN), Support Vector Machine (SVM), 

251 Random Forest (RF), Decision Tree (DT), k-Nearest Neighbours (kNN), Logistic Regression 

252 (LR), Linear Discriminant Analysis (LDA), and Gaussian Naïve Bayes (GNB). Table 2 shows 

253 the list of parameters adjusted for each classifier.

254 The ANN method is a machine learning technique that processes information by adopting 

255 the way neurons of human brains work and consists of a set of nodes that imitates the neuron and 

256 carries activation signals of different strengths (Daliakopoulos et al., 2005). 

257 The SVM method is another popular algorithm in solving classification problems with 

258 limited amount of data. First, each sample data is plotted as a point in n-dimensional spaces, 

259 where n is the number of features obtained from the image, also known as the support vectors. 

260 The SVM algorithm finds the best-fit hyperplane that maximizes the margin between the nearest 

261 support vectors of both classes with the hyperplane chosen (Yu & Kim, 2012).
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262 A decision tree (DT) model is constructed for each feature selected. It starts from the root 

263 node and splits at the leaf nodes. Each leaf node determines the best split approach while the 

264 Gini impurity function is used to measure the quality of the split. The final leaf node shows the 

265 final prediction of each DT (Fan et al., 2006). 

266 The RF method is a meta-estimator that fits several decision trees (DTs). The RF model 

267 is constructed and trained by the bagging method (decision tree) while the result is based on 

268 majority voting. All the predictions resulting from each DT are voted and the majority is the final 

269 output of the RF model (Svetnik et al., 2003). 

270 For the kNN model, each data point is coordinated in the n-dimensional space while an 

271 unknown sample is introduced, the distance between the unknown sample with each data point is 

272 calculated based on the Euclidean distance matrix (Alimjan et al., 2018). 

273 The multinomial LR model has two or more discrete outcomes where the most frequent 

274 species in the dataset was chosen as the reference category while the probability of other 

275 categories was compared against the reference category. This resulted in n–1 binary regression 

276 models, where n=number of species in the classification problem. Prediction of the LR model is 

277 based on the Maximum Likelihood Estimation (MLE) approach, where the MLE determines the 

278 mean and variance that best describe the sample (Brownlee, 2019).

279 The LDA algorithm assumes that each feature has the same variance and calculates the 

280 between-class and within-class variance (Balakrishnama & Ganapathiraju, 1998). The LDA 

281 approach maximizes the between-class variance and minimizes the within-class variance. Once 

282 the LDA model is trained, the probability of an unknown sample is calculated by using the Bayes 

283 Theorem (Hamsici & Martinez, 2008). The result of the prediction is chosen based on the highest 

284 probability of the species. 

285 The normal distribution method is also applied in the GNB model that estimates the mean 

286 and standard deviation of each species from the training data given. The Bayes Theorem is 

287 applied to calculate the probabilities of each species. Species with the highest probability 

288 matched will be selected (Pattekari & Parveen, 2012). 

289 The features extracted from each feature extraction methods were used as the input 

290 datasets in the machine learning identification step. Each dataset was split into 80% of training 
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291 and 20% of the testing set. The training set was used to trained all eight models by minimizing 

292 the error formed while the model performance was evaluated using the testing dataset. Five-fold 

293 cross-validation (CV) stratified shuffle split method was used and tested for 10 times to avoid 

294 any overfitting. A significant feature of stratified shuffle split is the ability to preserve the ratio 

295 of the training and testing set in the dataset. Figure 3 shows an example of sample splitting for 

296 one of the ANN models. 

297

298 Performance Evaluation

299 The performance of the classification model was evaluated through the confusion matrix, 

300 i.e., a table that displays the number of true positives (TP), true negatives (TN), false positives 

301 (FP) and false negatives (FN). The testing accuracy, precision and recall were calculated using 

302 equations (7) to (9) respectively. 

303 Testing accuracy =                        (7)
TP +  TN

TP +  TN +  FP +  FN

304 (8)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑇𝑃 + 𝐹𝑃

305 (9)𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑇𝑃 + 𝐹𝑁

306

307 In addition, the performance of each classifier model was visualized from the area under 

308 the Precision-Recall (PR) curve (AUC), where the precision value was plotted on the y-axis 

309 while the recall value at the x-axis (Narkhede, 2018). The precision and recall values were 

310 computed from the testing set for each cephalopod species and the average AUC of each model 

311 was calculated. The higher the AUC, the better the model performance in identifying cephalopod 

312 species from the beak images. According to Saito & Rehmsmeier (2015), the PR curve is more 

313 informative and reliable than the Receiver Operating Characteristic (ROC) curve for imbalanced 

314 datasets. 

315

316 Results

317 Data Collection and Feature Extraction
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318 Seven species of cephalopod were morphologically identified (Table 3) and confirmed 

319 through 16S rRNA sequencing. Out of these, two species were cuttlefish (Sepia aculeata, and 

320 Sepia esculenta), four were squids (Sepioteuthis lessoniana, Loliolus uyii, Uroteuthis chinensis 

321 and Uroteuthis edulis) and one was an octopus (Amphioctopus aegina).

322 A range of 10 to 108 features such as shape and colour features were extracted from the 

323 left lateral beak images using HOG and MSD descriptors. Using deep learning methods of 

324 VGG19, ResNet50 and InceptionV3, 2048 to 4096 features were extracted. Table 4 lists the 

325 number of traditional and deep features extracted by each descriptor. 

326

327 Traditional Features

328 Firstly, the extracted features were tested individually as a single descriptor of grey HOG, 

329 colour HOG and MSD. Each of the descriptors was fit into eight different classifiers to test for 

330 the model performance in identifying the cephalopod species. Five-fold cross-validation with 

331 80%-20% stratified shuffle splitting was used to avoid overfitting. Each test was continuously 

332 run for 10 times to achieve more reliable results. The testing results were averaged and the PR 

333 curves were plotted based on the descriptors used. Table 5 shows the average testing accuracy of 

334 each classifier with traditional descriptors for the upper and lower beak images. Grey HOG 

335 descriptors achieved the highest testing accuracy of 55.43% (± 0.14) for the KNN model using 

336 upper beak images while HOG descriptors with ANN achieved the best accuracy of 68.69% (± 

337 0.12) with lower beak images. MSD descriptors with GNB achieved the best accuracy at 64.00% 

338 (± 0.11) using the upper beak images. 

339 Next, the descriptors were combined as the hybrid descriptors which are (grey HOG + 

340 MSD) and (colour HOG + MSD) and tested. Table 5 shows the average testing accuracy of each 

341 classifier with hybrid descriptors. The hybrid descriptors of (Grey HOG + MSD) and (colour 

342 HOG + MSD) with ANN had the best testing accuracy at 61.09% (± 0.14) for the upper beak 

343 image and 73.09% (± 0.12) for lower beak images. An improvement in the testing accuracy was 

344 observed in comparison with the single descriptor with the increment from 68.69% to 73.09% for 

345 the ANN model with lower beak images. Figure 4(a) shows the confusion matrix from one of 

346 the runs of the ANN model for hybrid descriptor (colour HOG + MSD) and lower beak image. 
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347 The ANN model appeared to classify the test samples of S. esculenta and L. uyii perfectly. The 

348 performance of the ANN model can be observed through the precision recall-curve (Figure 

349 4(b)).

350

351 Deep Features

352 Both upper and lower beak images were used as inputs into CNN models to extract the deep 

353 features. Table 6 shows the average testing accuracy of each classifier with deep features 

354 extracted. All CNN models achieved good results with the best result of 91.14% (± 0.09), 

355 89.43% (± 0.09), and 86.86% (± 0.09) for VGG19, InceptionV3 and ResNet50 respectively. 

356 Figure 5(a) shows the confusion matrix from one of the runs of the ANN model for deep 

357 features extracted from the VGG19 with lower beak images. The ANN model was shown to 

358 classify most of the species perfectly, except for S. esculenta and L. uyii. The performance of the 

359 ANN model can be observed through the precision recall-curve (Figure 5(b)). 

360

361 Discussion

362 To the best of our knowledge, this automated identification study is the first of its kind 

363 using beak images from cephalopods sampled in the region of Southeast Asia. In general, the 

364 easiest way to identify a cephalopod species is based on the appearance of the whole-body. This 

365 approach however hinges on one having access to a readily available, comprehensive taxonomic 

366 key and working with fresh or well-preserved whole specimens. Development of an 

367 identification approach using cephalopod hard parts, especially beaks, is fundamentally 

368 important to resolve species identity from digested cephalopod within stomachs of predators. 

369 Our study takes this approach further to develop an automated classification of beak images, thus 

370 widening the toolkit available for species identification with lesser reliance on manual labour.

371 It should be clarified that the method developed in this study could also be applied to 

372 images of whole cephalopod bodies. However, their soft-bodied nature makes them difficult to 

373 manipulate, easily broken during sampling, cleaning and photographing processes, as well as 

374 decay rapidly. Based on the samples collected in our study, the tiny, long tentacles of the 

375 cephalopod were mostly broken prior to the image acquisition process. This may cause some 
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376 errors in extracting useful information from whole body images, such as shape features of the 

377 cephalopods. Therefore, images of beaks instead of whole bodies were chosen to train each 

378 classifier to obtain an automated cephalopod species identification model.

379 We used a smartphone to capture the beak images as this is a readily available tool that 

380 can be used by both researchers and citizen scientists. The smartphone was relatively easy to 

381 handle and could be focused on the small-sized beak and adjusted for specific angles. During the 

382 image acquisition, the left lateral view of the upper beak and lower beak was taken and used in 

383 training the cephalopod species identification model. The left lateral view of the beaks was found 

384 to provide more distinctive features among the seven cephalopod species collected. The low-

385 quality images did render the image pre-processing more challenging, specifically the actual 

386 edge of the beak and the background could not be differentiated. Some noises were left and may 

387 affect the quality of information extracted. Nevertheless, the image segmentation process 

388 through the thresholding method had efficiently eliminated the noises left in the images and 

389 increased the accuracy of the features extracted from the beak images. 

390 From the results shown in Table 5, the colour feature was found to be better than shape 

391 features in differentiating the beaks extracted from each cephalopod species. The HOG 

392 descriptor had obtained the best accuracy of 68.69% using ANN and lower beak images. The 

393 main reason for this is due to the limited shape features extracted from the beak images which 

394 led to difficulty in resolving the tiny differences between the beaks of each cephalopod species.  

395 Also, the colour HOG gave better results than the grey HOG descriptor in extracting the colour 

396 features from the cephalopod beak images. The gradient or colour changes of the species-specific 

397 beaks were significantly distinguished by the three colour channel images (RBG) of the colour 

398 HOG descriptor instead of the single colour channel (grey-level intensity) of the grey HOG 

399 descriptor. The better performance of the beak colour feature for species identification can also 

400 be explained by the close relationship between the beak’s darkening stages and age for each 

401 cephalopod family (Clarke, 1962).

402 The model performance of the selected classifier increased by combining two out of the 

403 three single descriptors. The hybrid descriptor of (colour HOG + MSD) obtained the highest 

404 accuracy of 73.09% with the ANN model and lower beak images. The combination of the colour 

405 and the shape features had provided more details in differentiating the seven cephalopod species 
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406 from the beak image provided. The hybrid features can best describe the differences between the 

407 beaks since the colour information or the shape information can support each other and result in 

408 a higher accuracy of the identification model. The ANN model worked better with hybrid 

409 descriptors as the ANN classifier usually performed the best in classification problems which 

410 involve small sample sizes (Pasini, 2015). 

411 Incorporation of the deep features (Table 6) greatly improved the accuracy of the 

412 identification model. The pre-trained CNN model helped to scan the beak images, searched for 

413 features that were correlated to the classification problem and combined all the selected features 

414 as the input feature vector. Most of the classifiers could achieve accuracy of more than 85% with 

415 the deep features, except for DT. The lower accuracy of the DT model was due to the insufficient 

416 samples provided. DT model tended to overfit as compared to other classifiers and resulted in 

417 lower accuracy (Liu et al., 2005). This was because the DT model used only one tree to make the 

418 node splitting and generalization. However, by increasing the number of trees, such as in RF, it 

419 could overcome the weakness of DT. Since the sample size of this study was small for each 

420 cephalopod species, only the important features that can best describe the differences between 

421 the cephalopod species were required to train the classifiers. Too many features in the input may 

422 cause overfitting, i.e. a well fitted model with data provided but with weak power of 

423 generalisation and low accuracy of prediction (Loughrey & Cunningham, 2004). For example, 

424 the RF and LDA models showed overfitting, as testing accuracy was much lower than the 

425 training accuracy. This overfitting problem could be minimized with larger sample sizes for 

426 future studies (Steyerberg, 2019).

427 The performance of this study was compared to some related previous studies as shown in 

428 Table 7. The related previous studies either involved only one type of cephalopod species 

429 (Orenstein et al., 2016), or using the whole-body morphometric measurements of the squid 

430 species only (Himabindu et al., 2017) and there were no deep features extracted (Jin et al., 2017; 

431 Himabindu et al., 2017; Orenstein et al., 2016).  The most distinct advantage of this study is the 

432 introduction of the deep features in identifying the cephalopod species using upper and lower 

433 beaks.  From the results of this study, the deep features are better in describing the characteristics 

434 of cephalopod beaks of each species than the traditional features. 
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435 Our study comparing lower and upper beak images is in concordance with findings from other 

436 studies that lower beaks are more useful in species identification for cephalopods (Richoux et al., 

437 2010; Xavier et al. 2011). However for applications of the model to quantify cephalopod prey 

438 contributions, improving species identification from upper beaks remain an area of priority due 

439 to differing numbers of lower and upper beak samples in studies of the same predator stomachs 

440 (Xavier et al. 2011). Future work in evaluating the performance of the beak images for 

441 identification of cephalopods from stomach contents should also focus on evaluating accuracy of 

442 identification on both fresh and old samples of beaks due to varying degree of erosion of the 

443 beak materials (Xavier et al., 2015). 

444 Our limited sampling from the two locations within the Strait of Malacca over a short time 

445 duration originally yielded 18 putative species of cephalopods; however only five, five, and three 

446 could be identified to the species level out of seven cuttlefishes, six squids, and five octopus 

447 putative species respectively (Muhammad, 2017). Seven of these cephalopod species had 

448 sufficient sample sizes which permitted their inclusion in this machine learning study. The best 

449 estimated species richness of cephalopods for the Strait area is 33 species from a global study 

450 that focused only on coastal cephalopods (Rosa et al., 2019). For context, the Strait is one of the 

451 three hotspot ecoregions for cephalopod species richness within the Indo-Pacific area, and 

452 inshore squids made up 11 out of the 33 species, and this species richness is likely an 

453 underestimate (Rosa et al., 2019). Thus the number of species included in the automated 

454 identification model developed in this work represented about 20% of the best species richness 

455 estimate. In general, classification error would reduce with increasing sample size per class, or 

456 species in this case (Jain et al., 2000). Therefore, future research work should focus on increasing 

457 images per species and including the unsampled species within the model development and 

458 validation. 

459

460 Conclusions

461 Traditional features and deep features were extracted from beak images of seven 

462 cephalopod species and evaluated using eight classifiers. This study found that ANN achieved 

463 the best testing accuracy of 91.14% with deep features extracted by the VGG19 from the lower 

464 beak images. Deep features performed better than the traditional features and lesser pre-
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465 processing works are needed for deep feature extraction. However, there are some limitations in 

466 this proposed model which included unbalanced and limited sample size, a single view of beak 

467 included and the limited number of shape features in the MSD descriptors. Hence, future works 

468 should include increasing the species variety and the number of samples, adding more shape 

469 features such as convex area, eccentricity, and Euler number, and also evaluation of other CNN 

470 models. These approaches may help to recognize the minor beak differences between the 

471 cephalopod species by increasing details in the extracted features.

472
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1 Table 1: List of morphological features

Features Definition Formula

Area Size of the beak -

Perimeter The length of the contour of the beak -

Aspect Ratio
The ratio of major axis length over 

minor axis length 

𝑤𝑖𝑑𝑡ℎ (𝑤)ℎ𝑒𝑖𝑔ℎ𝑡 (ℎ)
Extent

The proportion of pixels in the 

bounding box that also contains the 

beak.

𝑎𝑟𝑒𝑎𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑎𝑟𝑒𝑎
Solidity / 

convexity

The proportion of the pixels in the 

convex hull that also contains beak.

𝑎𝑟𝑒𝑎𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑎𝑟𝑒𝑎
Equivalent 

Diameter

The diameter of a circle with the same 

area as the beak

(4 𝑥 𝑎𝑟𝑒𝑎)𝑝𝑖
Circularity

The ratio of the area of the beak to the 

convex circle

(4 𝑥 𝑝𝑖 𝑥 𝑎𝑟𝑒𝑎)
(𝑐𝑜𝑛𝑣𝑒𝑥 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2

Rectangularity
The ratio of the beak to the area of the 

minimum bounding rectangle

𝑤 𝑥 ℎ𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑎𝑟𝑒𝑎
Form Factor

The ratio of the area of the beak to the 

circle

(4 𝑥 𝑝𝑖 𝑥 𝑎𝑟𝑒𝑎)𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
Narrow Factor

The ratio of the diameter of the beak to 

the height of the beak

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟ℎ
2

3
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1 Table 2: List of parameters adjusted for each classifier

Classifiers Parameters

ANN Hidden layer sizes = 1 layer and 30 hidden neurons, Learning rate 

schedule for weight updates = 0.001, Maximum number of iteration = 

200, Weight optimization = stochastic gradient-based optimizer

SVM C = 30, Decision function shape = One-vs-one decision function, Kernel 

type = ‘sigmoid’

RF Number of trees = 100, Function in measuring the quality of split = ‘Gini 

impurity’, Maximum number of features = sqrt(number of features)

DT Function in measuring the quality of split = Information gain, Maximum 

depth of the tree = 2

KNN Distance metric = minkowski (standard Euclidean metric), Number of 

neighbors = 8, Weights function = uniform weights

LR C = 0.15, Multiclass = multinomial loss fit across the probability 

distribution, Weight optimization algorithm = newton-cg

LDA C = 0.15, Weight optimization = Singular value decomposition, tol = 

0.0001

GNB Largest variance for calculation stability = 1e-09
2 Notes: 

3 C = regularization parameter based on the squared l2 penalty, the smaller the strong regularization power, 

4 tol = tolerance for stopping criteria

5

PeerJ reviewing PDF | (2020:10:54676:2:1:NEW 27 May 2021)

Manuscript to be reviewed



Table 3(on next page)

List of Cephalopod Species Collected

PeerJ reviewing PDF | (2020:10:54676:2:1:NEW 27 May 2021)

Manuscript to be reviewed



1 Table 3: List of Cephalopod Species Collected 

Scientific Name

(Common Name)

Upper Beak 

Image*

Lower beak

 Image*

Sample 

size

Sepia aculeata

(Needle cuttlefish) Size ≈ 1cm

 

Size ≈ 1cm

25

Sepia esculenta

(Golden cuttlefish)

 

Size ≈ 1cm

 

Size ≈ 1cm

24

Amphioctopus aegina

(Sandbird octopus)

 

Size ≈ 0.5cm

 

Size ≈ 0.5cm

29

Sepioteuthis lessoniana

(Bigfin reef squid)

 

Size ≈ 1cm

 

Size ≈ 1cm

17

Loliolus uyii

(Little squid)

 

Size ≈ 0.5cm

 

Size ≈ 0.5cm

32

Uroteuthis chinensis

(Mitre squid)

 

Size ≈ 0.5cm

 

Size ≈ 0.5cm

19

Uroteuthis edulis

(Swordtip squid)

 

Size ≈ 0.5cm

 

Size ≈ 0.5cm

28

2 * Image is not to scale
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Number of traditional features and deep features extracted
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1 Table 4: Number of traditional features and deep features extracted 

Descriptors Number of features

Gray HOG 108

Colour HOG 108

MSD 10

Gray HOG + MSD 118

Colour HOG + MSD 118

VGG19 4096

ResNet50 2048

InceptionV3 2048

2

3
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Performance for single and hybrid descriptor of traditional features
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1 Table 5 Performance for single and hybrid descriptor of traditional features

Testing Accuracy (%)* (AUC)

Gray HOG Colour HOG MSD
Gray HOG + 

MSD

Colour HOG + 

MSD
Model

UB LB UB LB UB LB UB LB UB LB

ANN 54.34

(0.59)

52.69

(0.59)

60.40

(0.62)

68.69

(0.76)

55.43

(0.56)

44.91

(0.51)

61.09

(0.65)

58.06

(0.65)

64.91

(0.70)

73.09

(0.79)

SVM 46.51

(0.56)

45.31

(0.56)

51.66

(0.59)

66.69

(0.74)

62.17

(0.66)

52.06

(0.58)

52.97

(0.61)

51.14

(0.61)

59.34

(0.62)

68.23

(0.77)

RF 57.77

(0.64)

51.20

(0.57)

66.06

(0.74)

71.03

(0.76)

64.57

(0.69

63.66

(0.68)

77.03

(0.84)

65.03

(0.72)

79.14

(0.87)

76.91

(0.81)

KNN 55.43

(0.61)

48.74

(0.55)

53.77

(0.62)

71.14

(0.75)

61.20

(0.66)

50.63

(0.58)

59.31

(0.67)

50.86

(0.58)

62.69

(0.69)

70.40

(0.74)

DT 42.40

(0.55)

36.86

(0.49)

45.77

(0.61)

40.29

(0.53)

45.71

(0.61)

46.46

(0.63)

43.31

(0.57)

48.69

(0.65)

44.97

(0.62)

53.14

(0.67)

LR 50.91

(0.58)

50.63

(0.58)

55.94

(0.61)

65.26

(0.75)

42.00

(0.55)

41.03

(0.51)

60.06

(0.66)

56.63

(0.64)

62.34

(0.69)

69.89

(0.78)

LDA 57.14

(0.58)

45.83

(0.41)

64.80

(0.67)

61.89

(0.61)

62.74

(0.66)

59.26

(0.60)

74.34

(0.74)

58.23

(0.54)

76.74

(0.80)

64.34

(0.62)

GNB 41.71

(0.51)

44.97

(0.48)

48.17

(0.57)

53.54

(0.57)

64.00

(0.66)

52.74

(0.60)

51.66

(0.58)

50.06

(0.53)

54.97

(0.62)

57.49

(0.61)

2 Notes:

3 * Average testing accuracy from the five-fold CV results with 10 times runs

4 UB = Upper beak, LB = Lower beak

5 AUC = Average area under the precision-recall curve in one of the runs

6 Bolded text indicated the best results for each traditional feature model

7

8

9
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1 Table 6: Performance of eight classifiers with deep features extracted

Testing Accuracy* (AUC)

VGG19 InceptionV3 ResNet50Model

UB LB UB LB UB LB

ANN
88.63

(0.95)

91.14

(0.96)

87.54

(0.94)

87.49

(0.94)

86.86

(0.93)

85.77

(0.91)

SVM
81.94

(0.11)

88.57

(0.94)

81.54

(0.89)

84.57

(0.91)

79.03

(0.90)

83.89

(0.92)

RF
85.31

(0.93)

89.83

(0.95)

84.29

(0.90)

82.97

(0.90)

85.43

(0.93)

83.31

(0.90)

KNN
76.97

(0.87)

85.60

(0.93)

76.00

(0.85)

81.09

(0.88)

76.74

(0.86)

79.31

(0.87)

DT
58.63

(0.73)

56.63

(0.71)

49.37

(0.66)

50.63

(0.65)

48.11

(0.66)

53.20

(0.69)

LR
89.66

(0.96)

91.71

(0.95)

85.77

(0.95)

85.37

(0.92)

84.86

(0.93)

85.83

(0.92)

LDA
83.14

(0.88)

86.34

(0.91)

88.86

(0.95)

89.43

(0.95)

82.11

(0.90)

82.34

(0.89)

GNB
82.23

(0.85)

86.97

(0.89)

77.54

(0.82)

77.60

(0.83)

67.60

(0.72)

70.11

(0.75)

2 Notes:

3 * Average testing accuracy from the five-fold CV results with 10 times runs

4 UB = Upper beak, LB = Lower beak

5 AUC = Average area under the precision-recall curve in one of the runs

6 Bolded text indicated the best results for each deep feature model. 
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1 Table 7: Comparison of previous and current study

Methodology

Study Sample Feature 

Extraction
Classification

Results

Orenstein et al. 

(2016)

7 specimens of 

Sepia officinalis 

(cuttlefish)

Texton-based 

(mottle and 

pattern) of 

cuttlefish

SVM 
Best accuracy 

= 94%

Himabindu et 

al. (2017)
50 squid species

Size 

measurements of 

mantle, fin and 

head

ANN 
Best accuracy 

= 98.6%

Jin et al. (2017)

3 Loliginidae 

Squid Species 

(256 samples)

Extract feature 

from statolith and 

beak 

Geometric 

outline with 

PCA and SDA

Accuracies 

between 75.0% 

- 88.7% 

Current study

7 cephalopod 

species (174 

samples)

Traditional 

features and deep 

features of upper 

and lower beaks

ANN, SVM, 

RF, KNN, DT, 

LR, LDA, 

GNB

Best accuracy 

= 91.14%.

2

3
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Figure 1
The framework for cephalopod species identification using integrated analysis of
machine learning and deep learning
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Figure 2
The setting up of the image acquisition for beak samples of cephalopod (a) The setting
up of lightbox (b) The smartphone was used to capture the photos of the beaks
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Figure 3
Example of Stratified Shuffle Split Cross-Validation Approach for one of the ANN models
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Figure 4
Performance evaluation from one of the runs in the ANN model with hybrid descriptor
(colour HOG +MSD) of lower beak images: (a) Confusion Matrix (b) Precision-Recall
Curve.

For the confusion matrix, the precision and recall value of the identification model was
computed from the testing set. Each cephalopod species was computed for its precision and
recall values to visualize the differences in the performance of the model. The average
precision-recall curve of the model was calculated. For the Precision-Recall curve, the area
under the curve was measured. The higher the area under the curve, the better the model
performance in identifying cephalopod species from the beak images

PeerJ reviewing PDF | (2020:10:54676:2:1:NEW 27 May 2021)

Manuscript to be reviewed



PeerJ reviewing PDF | (2020:10:54676:2:1:NEW 27 May 2021)

Manuscript to be reviewed

Sticky Note
The species names should be in italics



Figure 5
Performance evaluation from one of the runs in the VGG19-ANN model of lower beak
images: (a) Confusion Matrix (b) Precision-Recall Curve

For the confusion matrix, the precision and recall value of the identification model was computed from the
testing set. Each cephalopod species was computed for its precision and recall values to visualize the
differences in the performance of the model. The average precision-recall curve of the model was
calculated.

For the Precision-Recall curve, the area under the curve was measured. The higher the area under the
curve, the better the model performance in identifying cephalopod species from the beak images.
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