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ABSTRACT

Background. Despite the high commercial fisheries value and ecological importance
as prey item for higher marine predators, very limited taxonomic work has been
done on cephalopods in Malaysia. Due to the soft-bodied nature of cephalopods,
the identification of cephalopod species based on the beak hard parts can be more
reliable and useful than conventional body morphology. Since the traditional method
for species classification was time-consuming, this study aimed to develop an automated
identification model that can identify cephalopod species based on beak images.
Methods. A total of 174 samples of seven cephalopod species were collected from the
west coast of Peninsular Malaysia. Both upper and lower beaks were extracted from the
samples and the left lateral views of upper and lower beak images were acquired. Three
types of traditional morphometric features were extracted namely grey histogram of
oriented gradient (HOG), colour HOG, and morphological shape descriptor (MSD).
In addition, deep features were extracted by using three pre-trained convolutional
neural networks (CNN) models which are VGG19, InceptionV3, and Resnet50. Eight
machine learning approaches were used in the classification step and compared for
model performance.

Results. The results showed that the Artificial Neural Network (ANN) model achieved
the best testing accuracy of 91.14%, using the deep features extracted from the VGG19
model from lower beak images. The results indicated that the deep features were
more accurate than the traditional features in highlighting morphometric differences
from the beak images of cephalopod species. In addition, the use of lower beaks of
cephalopod species provided better results compared to the upper beaks, suggesting
that the lower beaks possess more significant morphological differences between the
studied cephalopod species. Future works should include more cephalopod species
and sample size to enhance the identification accuracy and comprehensiveness of the
developed model.

Subjects Computational Biology, Marine Biology, Data Mining and Machine Learning
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INTRODUCTION

Cephalopods (Phylum: Mollusca, Class: Cephalopoda) refer to a group of soft-bodied,
bilaterally symmetrical animals with well-developed head and body, which includes
octopus, squid, cuttlefish and nautilus. This taxon is the third largest molluscan class which
comprises more than 800 described species in the world (Lindgren et al., 2004). Globally,
cephalopods contribute as much as 55% of fishery landings and 70% in fishery value (USD)
(Hunsicker et al., 2010). Their economic contribution as fisheries resources has been on
the rise globally as the landings of finfish had decreased due to overfishing. Cephalopods
also play an important role in marine food webs, particularly in supporting top marine
predators such as sharks and dolphins (Wolff, 1984; Hunsicker et al., 2010).

In Malaysia, cephalopods contribute to about 12% of total fisheries landing valued
at MYR1,067 million (approximately USD 250 million) in retail markets (Department
of Fisheries Malaysia, 2015). The west coast of Peninsular Malaysia contributed more
than 50% of the country’s cephalopod landings, and the taxonomic composition was
dominated by squids, followed by cuttlefish and octopus (Abu & Isa, 1986). Limited local
biodiversity surveys found 17 species from six families and common families included
Sepiidae (cuttlefish), Octopodidae (octopus), and Loliginidae (squid) (Samisudin, 2001;
Rubaie et al., 2012). Cephalopods are popular in local cuisines such as grilled squids
(known locally as ‘sotong bakar’), fried calamari, and dried squids. Despite their high
fisheries profile and economic value as well as ecological importance, there has been
virtually no comprehensive taxonomic studies on cephalopods in Malaysia.

One major reason for the lack of local taxonomic information on cephalopods is
due to their soft body mass which renders morphological descriptions based on length
measurements very challenging. The soft tissue nature makes these animals easily damaged
during sampling and rapidly digested inside the stomachs of predators; only the intact upper
and lower chitinized beaks will typically remain as evidence of their consumption (Markaida
¢ Hochberg, 2005). It had been established that the morphological characteristics of
these beaks are species-specific and thus allow for taxonomic identification of the
cephalopod prey from beaks isolated from stomach contents of their predators (Clarke,
19625 Clarke, 1986; Furness, Laugksch ¢ Duffy, 1984). The lower beak displays greater
inter-specific morphological variations than the upper beak; thus the former is generally
used for identification purpose (Xavier, Phillips ¢~ Cherel, 2011). The inclusion of beak size
information has been shown useful to differentiate between two cephalopod species from
the same family (Clarke, 1962).

Machine learning approaches such as Artificial Neural Network (ANN), k-Nearest
Neighbors (kNN), Random Forest (RF), and Support Vector Machine (SVM) are used
increasingly to automate taxonomic identification efforts and to improve accuracy
of classification tasks. Many taxonomic studies to date focused on the application of
machine learning in the identification of plant species (Tan et al., 2020; Murat et al., 2017),
land animals (Nguyen et al., 2017; Norouzzadeh et al., 2018), and insects (Thenmozhi,
Dakshayani ¢ Srinivasulu, 2020) while a small number of marine-related studies had been
conducted with a focus on fish identification. Examples of these studies included the use of
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machine learning and deep learning methods for tracking and estimation of fish abundance
(Marini et al., 2018), identification of fish species using whole-body images (Allken et al.,
2018) and using otolith contours in fish species identification (Salimi, SK ¢ Chong, 2016).

Very limited machine learning techniques had been applied on cephalopod classification
problems. Orenstain et al. (2016) used whole-body laboratory images of cuttlefish for
classification of camouflaging behaviour with SVM classifiers. Beak and statolith images
were used in the identification of three squid species found in the South China Sea
(Jin et al., 2017). Himabindu, Jyothi ¢~ Mamatha (2017) identified 50 squid species based
on morphometric features measured from whole-body samples using ANN classifier.
These examples showed the usefulness of machine learning methods for identification of
cephalopods but their application had been limited to a single taxon (either cuttlefish or
squid).

Hence, in this study, all three taxa of cephalopods namely squid, cuttlefish, and octopus
were included. Images of whole body, upper beak and lower beak for all samples were
taken. These images were then pre-processed using feature descriptors that extract
useful information and omit extraneous ones. Specifically, traditional morphometric
features were extracted from the images using three feature extraction methods, i.e., grey
histogram of oriented gradient (HOG), colour HOG and morphological shape descriptors
(MSD). For comparison, deep features were extracted using three convolutional neural
networks (CNN) models namely VGG19, InceptionV3 and Resnet50. Next, a cephalopod
species classification tool was developed using an integrated analysis of morphometric,
machine learning and deep learning approaches. Eight machine learning algorithms were
analysed and benchmarked which included ANN, SVM, RF, kNN, Decision Tree (DT),
Logistic Regression (LR), Linear Discriminant Analysis (LDA), and Gaussian Naive Bayes
(GNB). The proposed automated identification model will reduce time needed for future
cephalopod identification work and increase identification accuracy with reduced costs.
Our work also provides baseline estimate of species richness of cephalopods in Peninsular
Malaysia which is important for documentation of the country’s rich marine biodiversity.

MATERIALS & METHODS

Generally, there were five main steps involved in this study namely sample collection, image
acquisition, image processing, machine learning identification and model evaluation.
Figure 1 shows the proposed framework of the cephalopod species identification model
using an integrated analysis of machine learning and deep learning approaches. For
sample collection, seven cephalopod species were acquired from fisheries landing sites and
brought back to the laboratory for subsequent processing including beak extraction. For
image acquisition, the images of whole body, upper beaks and lower beaks were captured
by using a smartphone. In the image processing step, methods such as pre-processing,
rescaling, and segmentation were performed on the images acquired, followed by feature
extraction. In the machine learning identification step, eight machine learning methods
were used to classify the cephalopod species. Finally, in the model evaluation step, both
confusion matrix and precision—recall curve were used to evaluate the performance of the
eight machine learning models.

Tan et al. (2021), PeerJ, DOI 10.7717/peerj.11825 3/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.11825

Peer

Sample Collection

G [ Sampling Sites ] 1 noion
Sz Hutan Melintang, Pasir Penambang, 3 S
Hutan Melintang [ Perak ] [ Kuala Selangor J’asw Penambang

seremban
% Kuala Lumpur
Kelang ot tam
[Rp—

Sample Collection PonDkson

Species Confirmation
(Seven species - 174 cephalopod samples)

Image Acquisition

y

Whole Sample Images ]
Beak Extraction
(174 beak samples)

5
Upper Beak [ Lower Beak p ~

[ Image Processing

|

[ Image Pre-processing
> 4—[ Image Rescaling ](— >

Image Resolution: [ Image Segmentation ] Image Resolution
532px X 299px ‘ 5312 x 2988 px

[ RGB Colour Image [ Grayscale Image

| ‘ ‘ ‘ [ B\nary||mage ‘
v

[ Feature Extraction ]

—

[Tradmcna\Features] [ Deep Features ]

v i

‘ Colour HOG ‘ ‘ VGG19

Gray HOG InceptionV/3
MSD ResNet50

%

[ Feature Vectors ]

[ Machine Learning Identification ]

[ Performance Evaluation ]

v v

[ Confusion Matrix ] [ Precision-Recall Curve ]

Figure 1 The framework for cephalopod species identification using integrated analysis of machine
learning and deep learning.
Full-size tal DOTI: 10.7717/peer;j.11825/fig-1
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Sample collection

Sampling trips were conducted from November 2017 to January 2018. A total of 174
cephalopod samples were collected from two major fisheries landing sites located on the
west coast of Peninsular Malaysia, namely Hutan Melintang, Perak and Pasir Penambang,
Kuala Selangor. The specimens were selected to represent the diversity of distinctive
morphological groups and size classes available during sampling. Seven putative cephalopod
species were selected including four putative species for squid (n=96), two for cuttlefish
(n=49) and one for octopus (n=29). Samples collected were kept on ice in the field and

frozen immediately upon arrival in the laboratory.

Species identification and confirmation
After defrosting, the specimens were measured for dorsal mantle length (mm) and wet body
mass (g) and were photographed (see steps described below). Initial species identification
using morphological characters were conducted using available taxonomic references
(Reid, Jereb & Roper, 2005; Jereb et al., 2016) and were cross-checked against current species
checklists in reputable databases, such as the Malaysia Biodiversity Information System
(Malaysia Biodiversity Information System, 2020), the World Register of Marine Species
(MolluscaBase, 2020), and SealifeBase (Palomares ¢ Pauly. Editors, 2020). The upper and
lower beaks were then extracted from the buccal mass and preserved separately in labelled
jars containing 80% alcohol.

Species identification from morphological characteristics was subsequently confirmed
with molecular approaches using the mitochondrial 16S rRNA gene which was amplified
with the universal primers 16Sar and 16Sbr (Simon et al., 1994).

Software and hardware

The hardware used for the image acquisition included a lightbox, a laptop (Intel i7
with 4 GB RAM), and a smartphone (16MP camera with 1440x 250 pixels). The Adobe
Photoshop CS6 (version 13.1.2) and Python 3 software were used in the feature extraction
and identification step.

Image acquisition

The images of both upper and lower beaks were captured using the Samsung Galaxy Note
4 smartphone camera. Samples were placed against a white background, i.e., lightbox
with white light, and were centred on the camera screen to ensure high-quality images. A
distance of 10 cm between the smartphone camera and the beak samples was fixed and no
zooming was used for all specimens photographed (Fig. 2). Only the left lateral views of the
upper and lower beaks were captured. All beak images were stored using the JPEG format.

Image processing and feature extraction

A digital image has to be processed before performing feature extraction and computational
analysis to enhance the image, remove the noises, minimize the amount of storage needed
and to increase the computation performance. Firstly, unwanted parts in the images were
cropped. Next, all the beak images were downscaled to 10% of its original size to eliminate
unnecessary pixel information without compromising the quality of the images. The
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Figure 2 Set up for the image acquisition for beak samples of the studied cephalopods: (A) Lightbox;
(B) the smartphone was used to capture the photos of the beaks.
Full-size & DOI: 10.7717/peer;j.11825/fig-2

original image resolution was 5312px x2988px while the rescaled image resolution was
approximately 532px x299px. Gaussian smoothing was then carried out on the rescaled
images to reduce the noises on the images.

Image segmentation was performed to convert the rescaled images into red-green-blue
(RGB) colour, grayscale and binary images to obtain the region of interest (ROI), which is
the beak. Firstly, the colour space of the image was converted to the common RGB colour
space. The colour image was then converted to a grayscale image by using Eq. (1) (OpenCV,
2020).

Y =0.299(R) +0.587(G) +0.114(B). (1)

A thresholding algorithm was used to convert the grayscale image into a binary image
by classifying all the pixels into two groups using a threshold value set at 240. Those below
the threshold value (0-239) formed the image background and those above the threshold
(240-255) formed the object of interest, i.e., the beak. The boundary of the beak (ROI) was
then determined, outlined and extracted from the image.

Next, HOG feature descriptor was calculated by determining the occurrences of gradients
and orientation in localized portions of each image, i.e., an image is broken down into small
regions and the gradients and orientation were calculated for each region. The magnitude
of the gradient increases wherever there is a sharp change in intensity (brightness) of the
image. The magnitude of the gradient, G was computed using Eq. (2) (Mallick, 2016).

Gl = /G2 +G2. 2)

The gradient orientation, was computed using Eq. (3) where Gy is horizontal gradient in
the X direction and Gy is vertical gradient in the Y direction (Mallick, 2016).

0= arctan%. (3)
Gy

A single image was divided into several cells, where each cell formed a square region which
contained 128x 128 pixels each. Using calculated gradient magnitude and orientation,
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every pixel within a cell casted a weighted vote for an orientation based histogram. The
orientation bin was set as nine and this generated a frequency table for nine angles, i.e.,
0, 20, 40, 60, 80, 100, 120, 140 and 160 (Singh, 2019). Using the set number of bins, a
9x 1 matrix histogram was counted for each cell. Next, 2x2 cells were grouped to form a
block, resulting in a total of 3 (3x 1) blocks of 128 x 128 pixels for each image. Each block
contained four 9x 1 or a single 36x 1 matrix and a total of 108 (3x 36x1) features were
produced for each image. In this manner, HOG was used in extracting the colour features
from grayscale and RGB images and converted them into feature datasets.

The MSD consisted of both geometrical and morphological features (Aakif ¢ Faisal
Khan, 2015) and extracted the shape features from the highlighted region in the binary
images. The binary image is used commonly due to clear delineation of the boundary of
the object. Firstly, the image was computed to determine the contour of the object. Then,
all the noises were eliminated by adjusting the threshold. After the contour was shown, ten
morphological features, including beak size, were extracted from each image (Table 1).

In addition to the traditional methods, three deep learning CNN models, namely
VGG19, InceptionV3 and ResNet50, were used to automatically extract features from the
images. The VGG19 model consists of 3x 3 convolutional layers. The original beak images
were firstly resized to 224 x 224 pixels of RGB images as the inputs for VGG19. The VGG19
model pre-processed the images by subtracting the mean RGB value from each pixel of the
image. Next, the max-pooling layer was used to reduce the feature dimensionality and two
fully connected layers were used to produce the feature vector, with the presence of 4,096
neurons (Mateen et al., 2019).

The InceptionV3 model requires the input RGB image size of 299x299 pixels. Unlike
the fixed kernel size for VGG19, the InceptionV3 allowed the features of the images to vary
within an image frame and include multiple sizes of kernels in the same layer. There are four
operations constructed in parallel, including a 1x 1 convolutional layer for depth reduction,
a 3x3 convolutional layer for capturing distributed features, a 5x5 convolutional layer for
capturing the global features and a max-pooling layer for capturing the low-level features.
Each layer is responsible to extract the deep features from the images, concatenate and pass
them to the next layer (Anwar, 2019).

The ResNet50 model requires the input RGB image size of 224 x224 pixels. ResNet50
is composed of 48 convolutional layers with 7x7 and 1x1 kernel size, max pooling layer
and the fully connected layer. One of the important features of ResNet50 is the shortcut
connections, that skip one or more layers, in order to solve the problem of vanishing
gradient in deep neural networks by allowing the gradient to flow through the layer (Wen,
Li & Gao, 2020).

Machine learning identification

Machine learning techniques are capable of analysing weighty amounts of image data
accurately and successfully. The supervised machine learning methods used for the
cephalopod classification problem were Artificial Neural Network (ANN), Support Vector
Machine (SVM), Random Forest (RF), Decision Tree (DT), k-Nearest Neighbours (kNN),
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Table 1 List of morphological features.

Features Definition Formula

Area Size of the beak -

Perimeter The length of the contour of the beak -

Aspect Ratio The ratio of major axis length over minor axis length mg’}f’t ((Wh;

Extent The proportion of pixels in the bounding box that also P
ounding box area

Solidity / convexity

contains the beak.

The proportion of the pixels in the convex hull that also

area

K convex hull area
contains beak.

Equivalent Diameter The diameter of a circle with the same area as the beak “Xp%m

Circularity The ratio of the area of the beak to the convex circle ((w%
convex pertmerer)

Rectangularity The ratio of the beak to the area of the minimum bounding h“’iﬂ'
ounding box area

rectangle

(4 X pix areu)

Form Factor The ratio of the area of the beak to the circle

perimeter?

equivalent diameter

Narrow Factor h

The ratio of the diameter of the beak to the height of the
beak

Table 2 List of parameters adjusted for each classifier.

Classifiers Parameters

ANN Hidden layer sizes = 1 layer and 30 hidden neurons,
Learning rate schedule for weight updates = 0.001,
Maximum number of iteration = 200, Weight optimization
= stochastic gradient-based optimizer

SVM C =30, Decision function shape = One-vs-one decision
function, Kernel type = ‘sigmoid’

RF Number of trees = 100, Function in measuring the quality
of split = ‘Gini impurity’, Maximum number of features =
sqrt(number of features)

DT Function in measuring the quality of split = Information
gain, Maximum depth of the tree = 2

kNN Distance metric = minkowski (standard Euclidean metric),
Number of neighbors = 8, Weights function = uniform
weights

LR C = 0.15, Multiclass = multinomial loss fit across the
probability distribution, Weight optimization algorithm =
newton-cg

LDA C =0.15, Weight optimization = Singular value
decomposition, tol = 0.0001

GNB Largest variance for calculation stability = 1e—09

Notes.

C, regularization parameter based on the squared 12 penalty, the smaller the strong regularization power; tol, tolerance for

stopping criteria.
Logistic Regression (LR), Linear Discriminant Analysis (LDA), and Gaussian Naive Bayes
(GNB). Table 2 shows the list of parameters adjusted for each classifier.

The ANN method is a machine learning technique that processes information by
adopting the way neurons of human brains work and consists of a set of nodes that imitates
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the neuron and carries activation signals of different strengths (Daliakopoulos, Coulibaly ¢
K. Tsanis, 2005).

The SVM method is another popular algorithm in solving classification problems with
limited amount of data. First, each sample data is plotted as a point in n-dimensional
spaces, where n is the number of features obtained from the image, also known as the
support vectors. The SVM algorithm finds the best-fit hyperplane that maximizes the
margin between the nearest support vectors of both classes with the hyperplane chosen (VY
¢ Kim, 2012).

A decision tree (DT) model is constructed for each feature selected. It starts from the
root node and splits at the leaf nodes. Each leaf node determines the best split approach
while the Gini impurity function is used to measure the quality of the split. The final leaf
node shows the final prediction of each DT (Fan, Ong ¢ Koh, 2006).

The RF method is a meta-estimator that fits several decision trees (DTs). The RF model
is constructed and trained by the bagging method (decision tree) while the result is based
on majority voting. All the predictions resulting from each DT are voted and the majority
is the final output of the RF model (Svetnik et al., 2003).

For the kNN model, each data point is coordinated in the #n-dimensional space while an
unknown sample is introduced, the distance between the unknown sample with each data
point is calculated based on the Euclidean distance matrix (Alimjan et al., 2018).

The multinomial LR model has two or more discrete outcomes where the most frequent
species in the dataset was chosen as the reference category while the probability of other
categories was compared against the reference category. This resulted in n—I binary
regression models, where # = number of species in the classification problem. Prediction
of the LR model is based on the Maximum Likelihood Estimation (MLE) approach, where
the MLE determines the mean and variance that best describe the sample (Brownlee, 2019).

The LDA algorithm assumes that each feature has the same variance and calculates the
between-class and within-class variance (Balakrishnama ¢ Ganapathiraju, 1998). The LDA
approach maximizes the between-class variance and minimizes the within-class variance.
Once the LDA model is trained, the probability of an unknown sample is calculated by
using the Bayes Theorem (Hamisici ¢ Martinez, 2008). The result of the prediction is chosen
based on the highest probability of the species.

The normal distribution method is also applied in the GNB model that estimates the
mean and standard deviation of each species from the training data given. The Bayes
Theorem is applied to calculate the probabilities of each species. Species with the highest
probability matched will be selected (Pattekari ¢ Parveen, 2012).

The features extracted from each feature extraction methods were used as the input
datasets in the machine learning identification step. Each dataset was split into 80% of
training and 20% of the testing set. The training set was used to trained all eight models by
minimizing the error formed while the model performance was evaluated using the testing
dataset. Five-fold cross-validation (CV) stratified shuffle split method was used and tested
for 10 times to avoid any overfitting. A significant feature of stratified shuffle split is the
ability to preserve the ratio of the training and testing set in the dataset. Figure 3 shows an
example of sample splitting for one of the ANN models.
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Figure 3 Example of stratified shuffle split cross-validation approach for one of the ANN models.
Full-size Gal DOI: 10.7717/peerj.11825/fig-3

Performance evaluation

The performance of the classification model was evaluated through the confusion matrix,
i.e.,a table that displays the number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). The testing accuracy, precision and recall were
calculated using Eqs. (7) to (9) respectively.

. TP + TN
Testing accuracy = TP + TN + FP + FN 7

.. P
Precision = ——— (8)
TP+ FP
TP
Recall = —— 9
= TPrEN ®)

In addition, the performance of each classifier model was visualized from the area under
the Precision-Recall (PR) curve (AUC), where the precision value was plotted on the y-axis
while the recall value at the x-axis (Narkhede, 2018). The precision and recall values were
computed from the testing set for each cephalopod species and the average AUC of each
model was calculated. The higher the AUC, the better the model performance in identifying
cephalopod species from the beak images. According to Saito ¢ Rehmsmeier (2015), the PR
curve is more informative and reliable than the Receiver Operating Characteristic (ROC)
curve for imbalanced datasets.

RESULTS

Data Collection and Feature Extraction
Seven species of cephalopod were morphologically identified (Table 3) and confirmed
through 16S rRNA sequencing (Table 4). Out of these, two species were cuttlefish (Sepia
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Table 3 List of the Cephalopod Species Collected.

Scientific Name Upper Beak Lower beak Sample
(Common Name) Image* Image* size
25
Sepia aculeata ) )
(Needle cuttlefish) Size ~ lem Size = lem
» L\ A
24
Sepia esculenta
(Golden cuttlefish) Size = lcm Size =~ lcm
e N »~
s 29
Amphioctopus aegina Size ~ 0.5cm Size ~ 0.5cm
(Sandbird octopus)
— - »
— 17
Sepioteuthis lessoniana o Size ~ lem
(Bigfin reef squid) Size = lem
AW y »
: 32
Loliolus uyii o Size ~ 0.5cm
(Little squid) Size = 0.5cm '
e A p
19
Uroteuthis chinensis o .
(Mitre squid) Size = 0.5cm Size = 0.5cm
=~ =D ~ »
28
Uroteuthis edulis
(Swordtip squid) Size ~ 0.5cm Size = 0.5cm
Notes.

*Images are not to scale.

aculeata, and Sepia esculenta), four were squids (Sepioteuthis lessoniana, Loliolus uyii,
Uroteuthis chinensis and Uroteuthis edulis) and one was an octopus (Amphioctopus aegina).

A range of 10 to 108 features such as shape and colour features were extracted from the
left lateral beak images using HOG and MSD descriptors. Using deep learning methods of
VGG19, ResNet50 and InceptionV3, 2048 to 4096 features were extracted. Table 5 lists the
number of traditional and deep features extracted by each descriptor.

Tan et al. (2021), PeerJ, DOI 10.7717/peerj.11825 11/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.11825

Peer

Table 4 Seven cephalopod species with GenBank accession number.

Species Sample code Sequence ID GenBank
accession number

Sepia aculeata C2-1 SeqC2-1 MZ413930
Sepia esculenta C6-25 SeqC6-25 MZ413931
Sepioteuthis lessoniana C3-1 SeqC3-1 MZ413932
Loliolus uyii S1-1 SeqS1-1 MZ413933
Uroteuthis chinensis $3-1 SeqS3-1 MZ413934
Uroteuthis edulis S4-1 SeqS4-1 MZ413935
Amphioctopus aegina 02-6 SeqO2-6 MZ413936

Table 5 Number of traditional features and deep features extracted.

Descriptors Number of features
Gray HOG 108

Colour HOG 108

MSD 10

Gray HOG + MSD 118

Colour HOG + MSD 118

VGG19 4096

ResNet50 2048

InceptionV3 2048

Traditional features
Firstly, the extracted features were tested individually as a single descriptor of grey HOG,
colour HOG and MSD. Each of the descriptors was fit into eight different classifiers to
test for the model performance in identifying the cephalopod species. Five-fold cross-
validation with 80%—20% stratified shuffle splitting was used to avoid overfitting. Fach test
was continuously run for 10 times to achieve more reliable results. The testing results were
averaged and the PR curves were plotted based on the descriptors used. Table 6 shows the
average testing accuracy of each classifier with traditional descriptors for the upper and
lower beak images. Grey HOG descriptors achieved the highest testing accuracy of 55.43%
(% 0.14) for the KNN model using upper beak images while HOG descriptors with ANN
achieved the best accuracy of 68.69% (&£ 0.12) with lower beak images. MSD descriptors
with GNB achieved the best accuracy at 64.00% (£ 0.11) using the upper beak images.
Next, the descriptors were combined as the hybrid descriptors which are (grey HOG +
MSD) and (colour HOG + MSD) and tested. Table 6 shows the average testing accuracy
of each classifier with hybrid descriptors. The hybrid descriptors of (Grey HOG + MSD)
and (colour HOG + MSD) with ANN had the best testing accuracy at 61.09% (= 0.14) for
the upper beak image and 73.09% (= 0.12) for lower beak images. An improvement in the
testing accuracy was observed in comparison with the single descriptor with the increment
from 68.69% to 73.09% for the ANN model with lower beak images. Figure 4A shows the
confusion matrix from one of the runs of the ANN model for hybrid descriptor (colour
HOG + MSD) and lower beak image. The ANN model appeared to classify the test samples
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Table 6 Performance for single and hybrid descriptor of traditional features.

Model Testing Accuracy (%)* (AUC)
Gray HOG Colour HOG MSD Gray HOG + MSD Colour HOG + MSD
UB LB UB LB UB LB UB LB UB LB
ANN 54.34(0.59)  52.69(0.59)  60.40(0.62)  68.69 (0.76)  55.43(0.56)  44.91(0.51)  61.09(0.65)  58.06(0.65)  64.91(0.70)  73.09(0.79)
SVM 46.51(0.56) 45.31(0.56) 51.66(0.59) 66.69(0.74) 62.17(0.66) 52.06(0.58) 52.97(0.61) 51.14(0.61) 59.34(0.62) 68.23(0.77)
RF 57.77(0.64)  51.20(0.57)  66.06(0.74)  71.03(0.76)  64.57(0.69)  63.66(0.68)  77.03(0.84)  65.03(0.72)  79.14(087)  76.91(0.81)
kNN 55.43 (0.61) 48.74(0.55) 53.77(0.62) 71.14(0.75) 61.20(0.66) 50.63(0.58) 59.31(0.67) 50.86(0.58) 62.69(0.69) 70.40(0.74)
DT 42.40(0.55)  36.86(0.49)  45.77(0.61)  40.29(0.53)  45.71(0.61)  46.46(0.63)  43.31(0.57)  48.69(0.65)  44.97(0.62)  53.14(0.67)
LR 50.91(0.58) 50.63(0.58) 55.94(0.61) 65.26(0.75) 42.00(0.55) 41.03(0.51) 60.06(0.66) 56.63(0.64) 62.34(0.69) 69.89(0.78)
LDA 57.14(0.58)  45.83(0.41)  64.80(0.67)  61.89(0.61)  62.74(0.66)  59.26(0.60)  74.34(0.74)  5823(0.54)  76.74(0.80)  64.34(0.62)
GNB 41.71(0.51) 44.97(0.48) 48.17(0.57) 53.54(0.57) 64.00(0.66) 52.74(0.60) 51.66(0.58) 50.06(0.53) 54.97(0.62) 57.49(0.61)
Notes.

*Average testing accuracy from the five-fold CV results with 10 times runs.
UB, Upper beak; LB, Lower beak; AUC, Average area under the precision—recall curve in one of the runs.
Bolded text indicated the best results for each traditional feature model (RF and LDA models showed overfitting as testing accuracy was much lower than the training accuracy).
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Figure 4 Performance evaluation from one of the runs in the ANN model with hybrid descriptor
(colour HOG +MSD) of lower beak images: (A) confusion matrix; (B) precision-recall curve. For the
confusion matrix, the precision and recall value of the identification model was computed from the testing
set. Each cephalopod species was computed for its precision and recall values to visualize the differences
in the performance of the model. The average precision—recall curve of the model was calculated. For the
Precision-Recall curve, the area under the curve was measured. The higher the area under the curve, the
better the model performance in identifying cephalopod species from the beak images.

Full-size Gl DOI: 10.7717/peerj.11825/fig-4

of S. esculenta and L. uyii perfectly. The performance of the ANN model can be observed
through the precision recall-curve (Fig. 4B).

Deep features

Both upper and lower beak images were used as inputs into CNN models to extract the deep
features. Table 7 shows the average testing accuracy of each classifier with deep features
extracted. All CNN models achieved good results with the best result of 91.14% (&£ 0.09),
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Table 7 Performance of eight classifiers with deep features extracted.

Model Testing Accuracy* (AUC)
VGG19 InceptionV3 ResNet50
UB LB UB LB UB LB

ANN 88.63(0.95)  91.14(0.96)  87.54(0.94)  87.49(0.94)  86.86(0.93)  85.77(0.91)
SVM 81.94(0.11)  88.57(0.94)  81.54(0.89)  84.57(0.91)  79.03(0.90)  83.89(0.92)

RF 85.31(0.93)  89.83(0.95)  84.29(0.90)  82.97(0.90)  85.43(0.93)  83.31(0.90)
kNN 76.97(0.87)  85.60(0.93)  76.00(0.85)  81.09(0.88)  76.74(0.86)  79.31(0.87)
DT 58.63(0.73)  56.63(0.71)  49.37(0.66)  50.63(0.65)  48.11(0.66)  53.20(0.69)
LR 89.66(0.96)  91.71(0.95)  85.77(0.95)  85.37(0.92)  84.86(0.93)  85.83(0.92)

LDA 83.14(0.88)  86.34(0.91)  88.86(0.95)  89.43(0.95)  82.11(0.90)  82.34(0.89)
GNB 82.23(0.85)  86.97(0.89)  77.54(0.82)  77.60(0.83)  67.60(0.72)  70.11(0.75)

Notes.
*Average testing accuracy from the five-fold CV results with 10 times runs.
UB, Upper beak; LB, Lower beak; AUC, Average area under the precision—recall curve in one of the runs.
Bolded text indicated the best results for each traditional feature model (RF and LDA models showed overfitting as testing ac-
curacy was much lower than the training accuracy).

87.54% (£ 0.10), and 86.86% (£ 0.09) for VGG19, InceptionV3 and ResNet50 respectively.
Figure 5A shows the confusion matrix from one of the runs of the ANN model for deep
features extracted from the VGG19 with lower beak images. The ANN model was shown
to classify most of the species perfectly, except for S. esculenta and L. uyii. The performance
of the ANN model can be observed through the precision recall-curve (Fig. 5B).

DISCUSSION

To the best of our knowledge, this automated identification study is the first of its
kind using beak images from cephalopods sampled in the region of Southeast Asia. In
general, the easiest way to identify a cephalopod species is based on the appearance of the
whole-body. This approach however hinges on one having access to a readily available,
comprehensive taxonomic key and working with fresh or well-preserved whole specimens.
Development of an identification approach using cephalopod hard parts, especially beaks,
is fundamentally important to resolve species identity from digested cephalopod within
stomachs of predators. Our study takes this approach further to develop an automated
classification of beak images, thus widening the toolkit available for species identification
with lesser reliance on manual labour.

It should be clarified that the method developed in this study could also be applied to
images of whole cephalopod bodies. However, their soft-bodied nature makes them difficult
to manipulate, easily broken during sampling, cleaning and photographing processes, as
well as rapidly decay. Based on the samples collected in our study, the tiny, long tentacles
of the cephalopod were mostly broken prior to the image acquisition process. This may
cause some errors in extracting useful information from whole body images, such as shape
features of the cephalopods. Therefore, images of beaks instead of whole bodies were
chosen to train each classifier to obtain an automated cephalopod species identification
model.
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Figure 5 Performance evaluation from one of the runs in the VGG19-ANN model of lower beak im-
ages: (A) confusion matrix; (B) precision-recall curve. For the confusion matrix, the precision and recall
value of the identification model was computed from the testing set. Each cephalopod species was com-
puted for its precision and recall values to visualize the differences in the performance of the model. The
average precision-recall curve of the model was calculated.For the Precision-Recall curve, the area under
the curve was measured. The higher the area under the curve, the better the model performance in identi-
fying cephalopod species from the beak images.

Full-size & DOLI: 10.7717/peerj.11825/fig-5

We used a smartphone to capture the beak images as this is a readily available tool that
can be used by both researchers and citizen scientists. The smartphone was relatively easy to
handle and could be focused on the small-sized beak and adjusted for specific angles. During
the image acquisition, the left lateral view of the upper beak and lower beak was taken and
used in training the cephalopod species identification model. The left lateral view of the
beaks was found to provide more distinctive features among the seven cephalopod species
collected. The low-quality images did render the image pre-processing more challenging,
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specifically the actual edge of the beak and the background could not be differentiated.
Some noises were left and may affect the quality of information extracted. Nevertheless, the
image segmentation process through the thresholding method had efficiently eliminated
the noises left in the images and increased the accuracy of the features extracted from the
beak images.

From the results shown in Table 6, the colour feature was found to be better than
shape features in differentiating the beaks extracted from each cephalopod species. The
HOG descriptor had obtained the best accuracy of 68.69% using ANN and lower beak
images. The main reason for this is due to the limited shape features extracted from the
beak images which led to difficulty in resolving the tiny differences between the beaks of
each cephalopod species. Also, the colour HOG gave better results than the grey HOG
descriptor in extracting the colour features from the cephalopod beak images. The gradient
or colour changes of the species-specific beaks were significantly distinguished by the three
colour channel images (RBG) of the colour HOG descriptor instead of the single colour
channel (grey-level intensity) of the grey HOG descriptor. The better performance of the
beak colour feature for species identification can also be explained by the close relationship
between the beak’s darkening stages and age for each cephalopod family (Clarke, 1962).

The model performance of the selected classifier increased by combining two out of
the three single descriptors. The hybrid descriptor of (colour HOG + MSD) obtained the
highest accuracy of 73.09% with the ANN model and lower beak images. The combination
of the colour and the shape features had provided more details in differentiating the seven
cephalopod species from the beak image provided. The hybrid features can best describe
the differences between the beaks since the colour information or the shape information
can support each other and result in a higher accuracy of the identification model. The
ANN model worked better with hybrid descriptors as the ANN classifier usually performed
the best in classification problems which involve small sample sizes (Pasini, 2015).

Incorporation of the deep features (Table 7) greatly improved the accuracy of the
identification model. The pre-trained CNN model helped to scan the beak images, searched
for features that were correlated to the classification problem and combined all the selected
features as the input feature vector. Most of the classifiers could achieve accuracy of more
than 85% with the deep features, except for DT. The lower accuracy of the DT model was
due to the insufficient samples provided. DT model tended to overfit as compared to other
classifiers and resulted in lower accuracy (Liu et al., 2005). This was because the DT model
used only one tree to make the node splitting and generalization. However, by increasing
the number of trees, such as in RF, it could overcome the weakness of DT. Since the sample
size of this study was small for each cephalopod species, only the important features that
can best describe the differences between the cephalopod species were required to train the
classifiers. Too many features in the input may cause overfitting, i.e., a well fitted model
with data provided but with weak power of generalisation and low accuracy of prediction
(Loughrey & Cunningham, 2004). For example, the RF and LDA models showed overfitting,
as testing accuracy was much lower than the training accuracy. This overfitting problem
could be minimized with larger sample sizes for future studies (Steyerberg, 2019).
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Table 8 Comparison of previous and current study.

Study Sample Methodology Results
Feature extraction Classification
Orenstain et al. (2016) Seven specimens of Sepia Texton-based (mottle and SVM Best accuracy = 94%
officinalis (cuttlefish) pattern) of cuttlefish
Himabindu, Jyothi & Ma- 50 squid species Size measurements of mantle, fin ~ ANN Best accuracy = 98.6%
matha (2017) and head
Jinetal. (2017) Three Loliginidae Squid Extract feature from statolith Geometric outline Accuracies between
Species (256 samples) and beak with PCA and SDA 75.0%—-88.7%
Current study Seven cephalopod species Traditional features and deep ANN, SVM, RF, Best accuracy = 91.14%.
(174 samples) features of upper and lower kNN, DT, LR, LDA,
beaks GNB

The performance of this study was compared to some related previous studies as shown in
Table 8. These studies either involved only one type of cephalopod species (Orenstain et al.,
2016), or using the whole-body morphometric measurements of squids (Himabindu, Jyothi
& Mamatha, 2017) and there were no deep features extracted (Jin ef al., 2017; Himabindu,
Jyothi & Mamatha, 2017; Orenstain et al., 2016). The most distinct advantage of this study
is the introduction of the deep features in identifying the cephalopod species using upper
and lower beaks. From the results of this study, the deep features are better suited in
describing the characteristics of cephalopod beaks of each species than the traditional
features.

Our study comparing lower and upper beak images is in concordance with findings from
other studies that lower beaks are more useful in species identification for cephalopods
(Richoux et al., 2010; Xavier, Phillips ¢ Cherel, 2011). However, for applications of the
model to quantify cephalopod prey contributions, improving species identification from
upper beaks remain an area of priority due to differing numbers of lower and upper beak
samples in studies of the same predator stomachs (Xavier, Phillips ¢ Cherel, 2011). Future
work in evaluating the performance of the beak images for identification of cephalopods
from stomach contents should also focus on evaluating accuracy of identification on both
fresh and old samples of beaks due to varying degree of erosion of the beak materials
(Xavier et al., 2015).

Our limited sampling from the two locations within the Strait of Malacca over a short
time duration originally yielded 18 putative species of cephalopods; however only five
cuttlefishes, five squids, and three octopus could be identified to the species level out of seven
cuttlefishes, six squids, and five octopus putative species respectively (Muhammad, 2017).
Seven of these cephalopod species had sufficient sample sizes which allowed their inclusion
in this machine learning study. The best estimated species richness of cephalopods for the
Strait area is 33 species from a global study that focused only on coastal cephalopods (Rosa
et al., 2019). For context, the Strait is one of the three hotspot ecoregions for cephalopod
species richness within the Indo-Pacific area, and inshore squids made up 11 out of the 33
species, and this species richness is likely an underestimation (Rosa et al., 2019). Thus the
number of species included in the automated identification model developed in this work
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represented about 20% of the best species richness estimate. In general, classification error
would reduce with increasing sample size per class, or species in this case (Jain AK ¢ Mao,
2000). Therefore, future research work should focus on increasing images per species and
including the unsampled species within the model development and validation.

CONCLUSIONS

Traditional features and deep features were extracted from beak images of seven cephalopod
species and evaluated using eight classifiers. This study found that ANN achieved the best
testing accuracy of 91.14% with deep features extracted by the VGG19 from the lower
beak images. Deep features performed better than the traditional features and lesser
pre-processing works are needed for deep feature extraction. However, there are some
limitations in this proposed model which included unbalanced and limited sample size,
a single view of beak included and the limited number of shape features in the MSD
descriptors. Hence, future works should include increasing the species variety and the
number of samples, adding more shape features such as convex area, eccentricity, and
Euler number, and also evaluation of other CNN models. These approaches may help to
recognize the minor beak differences between the cephalopod species by increasing details
in the extracted features.
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