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ABSTRACT

Upland cotton is the most widely planted for natural fiber around the world, and
either lint percentage (LP) or fiber length (FL) is the crucial component tremendously
affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-
053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL)
population presenting different phenotypes in LP and FL traits were chosen to conduct
RNA sequencing on ovule and fiber samples, aiming at exploring the differences
of molecular and genetic mechanisms during cotton fiber initiation and elongation
stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated
differentially expressed genes (DGEs) in L2 were obtained at —3, 0, 5 and 10 days
post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated
using Short Time-series Expression Miner (STEM) analysis; seven modules and hub
genes were identified using weighted gene co-expression network analysis. The DEGs
were mainly enriched into energetic metabolism and accumulating as well as auxin
signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub
genes were identified as 14-3-3w, TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc.,
where the DEGs and hub genes revealed the genetic and molecular mechanisms and
differences during cotton fiber development.

Subjects Agricultural Science, Genomics, Molecular Biology, Plant Science
Keywords G. hirsutum, Fiber initiation, Fiber elongation, DEGs, RNA-seq, WGCNA

INTRODUCTION

Cotton is one of the most important cash crops around the world, providing the main
natural fiber for the textile industry. Due to its adaptability and yield, upland cotton has
been the most widely cultivated Gossypium species, which could contribute to almost 95%
production of all planted cotton in spite of presenting the relatively ordinary fiber quality
(Yoo & Wendel, 2014). However, either fiber yield or quality traits of cotton are sensitive
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to the environment, belonging to quantitative traits controlled by multi-genes, therefore
breeders focus on developing new upland cotton varieties simultaneously performing
superior fiber quality and high yield. It would be not only significantly beneficial for
upland cotton breeding, but also for the global textile industry (Kim ¢ Triplett, 2001).

On the basis of previous researches on cotton, both fiber yield and quality performances
are collectively determined by the four developmental stages, which could be classified into:
initiation (—3 to 3 DPA), elongation (3 to 23 DPA), secondary wall biosynthesis (20 to
40DPA) and maturity (40 to 50DPA) (Basra ¢ Malik, 1984; Kim ¢ Triplett, 2001; Lee et al.,
20065 Lee, Woodward ¢ Chen, 2007; Haigler et al., 2012). The developmental stages of fiber
initiation, elongation and secondary wall biosynthesis prevailingly affect fiber number,
length and strength, respectively (Basra ¢» Malik, 1984; Patel et al., 2020). During fiber
initiation, trichome protrusion and enlargement of epidermal cells (Qin ¢» Zhu, 2011), and
fiber initiation had great impact on the number of lint fibers because the later initials always
develop as fuzz fibers (Lee ef al., 2006). In fiber elongation, fiber cells started primary cell
wall biosynthesis alongside pectin biosynthesis genes expressed, which promoted fiber
elongation by ethylene signaling pathways (Pang et al., 2010). Therefore, to explore the
upland cotton agronomy traits of lint percentage (LP) and fiber length (FL), we focused
on initiation and elongation stages.

Along with the rapid development of sequencing technology, reference genomes of
diploid and allotetraploid Gossypium species have been successfully sequenced, constructed
and published, which provide a solid foundation for researching on the genetic mechanisms
at the genome level (Paterson et al., 2012; Li et al., 2014; Li et al., 2015; Zhang et al., 2015
Hu et al., 2019; Wang et al., 2019; Yang et al., 2019; Huang et al., 2020). Transcriptome
sequencing, known as RNA-seq, provides a suitable procedure to analyze individual
gene transcription and the entire transcriptome profile during various stages of fiber
development. Concentrating on analysis of differential expressed genes, comparative
transcriptome is an efficient tool to scan candidate genes between different samples. In
the past few years, numerous studies have used comparative transcriptome analysis on
cotton fiber development (Applequist, Cronn ¢ Wendel, 2001; Gilbert et al., 20145 Yoo ¢
Wendel, 2014; Islam et al., 2016; Li et al., 2017a; Li et al., 2017b; Lu et al., 2017; Zou et al.,
2018). However, there were few studies concentrating on fiber initiation and elongation
stages or using extreme materials in breeding population.

To explore the parental source of potential alleles, CCRI70 RIL population was
developed. In this study, the two lines MBZ70-053 (L1, high-FL) and MBZ70-236 (L2,
high-LP) derived from upland cotton RIL population, presenting excellent performances
either in cotton yield or in fiber quality trait, were applied to comparative transcriptome
analysis using RNA sequencing aimed at revealing the differences on a transcription level
between the two lines during fiber initiation and elongation. Through DEG and WGNCA
analyses, two GAMMA-TIP, GhAcs6, Sus4, PME3 and other key candidate genes were
identified, which might have great influence on cotton fiber initiation and elongation. All
those provided insights and evidences for understanding molecular mechanism of cotton
fiber development and differences leading to the negative correlation between quality and
yield traits on transcription level that would be beneficial for upland cotton breeding.
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MATERIALS AND METHODS

Plant materials

Upland cotton hybrid CCRI70 (F;), the first national approved higher fiber quality
hybridized upland cotton variety for utilizing heterosis between the conventional cotton
varieties in China, was developed from two upland cotton cultivars sGK156 and 901-001,
which performed superior yield and fiber quality, respectively. While CCRI70 showed
excellent performance in fiber quality while moderate performance in lint percentage. To
investigate the parental source of potential alleles and to explore the molecular and genetic
mechanisms aiming at improving fiber quality and yield, we developed the CCRI70 RIL
population (Zou et al., 2018; Deng et al., 2019). The CCRI70 RIL population was planted
in 2015 and 2016 (Zou et al., 2018). Phenotypic data in five environments were used in this
study, including Anyang of Henan Province in 2015 and 2016 (15AY and 16AY), Linqing of
Shandong Province in 2015 and 2016 (15LQ and 16LQ) and Changde of Hunan Province
in 2016 (16CD).

In 2017, MBZ70-053 (L1) and MBZ70-236 (12), designated from Fg.9 family of CCRI70
RIL population, were used as plant materials for conducting RNA-seq. The two lines were
planted under standard field conditions in Anyang Experimental Station (Anyang, Henan,
China) (Zou et al., 2018). Among the two materials, L1 showed positive extreme-parent
performance in FL and negative extreme-parent in LP as well as L2 possessed positive
extreme-parent performance in LP and negative extreme-parent in FL. The day of anthesis
was marked as 0 DPA. According to the size of the buds and extensive field experience, the
flower buds at 3 days before anthesis were recorded as —3 DPA. At —3 and 0 DPA, cotton
ovules were collected from ovaries, while fiber samples were collected from bolls at 5 and
10 DPA, respectively. Both the ovule and fiber samples prepared for RNA-seq analysis were
collected with three biological repeats and frozen by liquid nitrogen. For convenience,
samples of L1 and L2 used in this research were recorded as L1_-3DPA, L1_0DPA,
L1_5DPA, L1_10DPA, L2_-3DPA, L2_0DPA, L2_5DPA and L2_10DPA, respectively.

Phenotypic data evaluation in multiple environments

Two RILs and two parents were planted with two replications in five environments
across two years and three locations. To evaluate the phenotypic date of FL and LP,
thirty mature fully-opened bolls from every plot were harvested to test fiber length using
an HVI1000 (Uster Technologies, Switzerland) with HVICC Calibration in the Cotton
Quality Supervision, Inspection and Testing Center, Ministry of Agriculture, Anyang,
China. Briefly, after the seed cotton samples were weighed and ginned, lint percentage was
evaluated.

RNA isolation, cDNA library construction, lllumina deep sequencing
and RNA-seq data analysis

Total RNAs of ovule and fiber samples were extracted by RNAprep Pure Plant Kit
(Polysaccharides& Polyphenolics-rich, Tiangen, Beijing, China), and RNA degradation and
contamination were checked by 1% agarose gel electrophoresis. The RNA concentration
was confirmed using NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham,
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MA, USA). RNA purity was detected using the NanoPhotometer spectrophotometer
(IMPLEN, CA, USA). The RNA integrity was confirmed using the RNA Nano 6000 Assay
Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). According to the
manufacturer’s recommendations, an amount of 2 g RNA per sample was used for
transcriptome library construction using Illumina TruSeq™ RNA Sample Preparation
Kit (Illumina, San Diego, CA, USA) Totally, 24 libraries were separately sequenced using
[llumina Novaseq 6000 sequencing platform with 150 base pair (bp) paired-end (PE) raw
reads (BerryGenomics Co., Ltd., Beijing, China).

Subsequently, Trimmomatic software was utilized to process all the generated raw data
in Fastq format (Bolger, Lohse ¢ Usadel, 2014). Clean data were obtained by removing reads
that contained the adapter, poly-N and low-quality reads, of which the reads harbored
>10% unidentified nucleotides (N) and >20% bases with Phred quality <5. Meanwhile,
the GC percentage and Q30 were calculated to finally evaluate the quality of clean data,
which were qualified for downstream analysis. HISAT2 v2.1.0 was used to build an index of
reference genome (Pertea et al., 2016), and the sequence alignment was conducted referring
to the G. hirsutum genomes (Wang et al., 2019) with default parameters, where the reference
genome was available at the website http://cotton.hzau.edu.cn/EN/download.php and the
CottonGen database (https://www.cottongen.org/). Then the fragments per kilobase of
exon per million reads (FPKM) values of genes were quantized by StringTie v1.3.5 (Pertea
et al., 2015), which were subjected to Pearson correlation coefficient (PCC) for revealing
the correlation coefficients between samples. As to the correlation coefficients less than 0.8
among the three biological repeats, the samples would be removed from the dataset.

Furthermore, to identify the genetic differences between the two lines, we employed
Samtools v1.4 software to summarize the genotypic data (Li et al., 2009; Li, 2011) and
SNPEff program to annotated the genotypic variants distribution on the reference genome
(Wang et al., 2019) with default parameter (Cingolani et al., 2012).

Differentially expressed gene analysis

Based on the count number of each gene, the DESeq2 R package was employed for
identifying differentially expressed genes (DEGs), of which the screening criterion were
FDR value <0.05, and log, Fold-Change value >1 or <—1 between each pairwise comparison
(Love, Huber ¢ Anders, 2014). The DEGs were identified through vertical and horizontal
comparisons, i.e., at the same developmental stage between the two lines and in the same
line between different stages.

To explore the temporal expression profiles of DEGs during the fiber development,
Short Time-series Expression Miner (STEM) was conducted to analyze the DEGs
expression patterns in two lines (Ernst, Nau ¢ Bar-Joseph, 2005). The enrichment
analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO) analysis were based on KOBAS 3.0 software, BLASTX, and GO databases
(http://archive.geneontology.org/latest-lite/) (Altschul et al., 1990; Wu et al., 2006; Xie
et al., 2011), respectively.
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Scanning DEGs in quantitative trait locis

To identify the potential candidate alleles in CCRI70 RIL population, we compared the
DEGs with previous quantitative trait loci (QTL) result (Deng et al., 2019). Mapping the
simple sequence repeat (SSR) loci sequences of LP and FL stable QTLs to the new reference
genome using bowtie software (Langmead et al., 2009). Scanning the DEGs of —3 and 0
DPA in the physical confidence intervals of LP QTLs while comparing the DEGs of 5 and
10 DPA in FL QTLs.

Hub genes identification and co-expression networks construction
WGCNA (weighted gene co-expression network analysis) R package was used for
identifying modules and hub (or highly correlated) genes that highly associated with
fiber initiation and elongation (Langfelder ¢ Horvath, 2008). The topology overlap matrix
was built with hierarchical clustering method, and the dynamic tree cut and merged into
modules. Among the modules, what containing a coefficient (>0.6) with each sample
were identified as key modules and organized for co-expression networks construction.
In WGCNA, K Mg was a value to describe the eigengene connectivity. In this study, the
DEGs with the highest K \g values in each key module were identified as hub genes (Pei,
Chen ¢ Zhang, 2017). The top 200 pairs of network connections stored in the edges files by
weight value were selected to build interaction networks within DEGs, and the hub genes
were selected by the basis of module membership (Kyg) values, of which the interaction
networks were drawn by Cytoscape 3.7.1 (Shannon et al., 2003).

Hub genes and DEGs expression pattern validation

To validate the expression pattern, we performed qRT-PCR on hub genes and selected
DEGs. The samples of cDNA were synthesized from 1 g of total RNA by using TransScript®
IT All-in-One First-Strand cDNA Synthesis SuperMix for qPCR (TransGen Biotech co.,
Itd, China). Real-time PCR was performed by using TransStart® Taq DNA Polymerase
(TransGen Biotech co., Itd, China) and LightCycler® 480 II Real-time PCR instrument
(Roche, Basel, Switzerland). The specific primers for qRT-PCR were designed referring to
qPrimerDB (https://biodb.swu.edu.cn/qprimerdb) (Lu et al., 2018). Gene expression levels
were calculated according to the 242t method with three biological (Livak ¢ Schmittgen,
2001).

RESULTS

Phenotypic data analysis of the two lines

In the five environments, Lint percentage (Fig. 1A) in L1 and L2 were 34.40% and 42.86%
as well as the fiber length were 32.60 mm and 27.51 mm (Fig. 1B), respectively, which
indicated that L1 had longer FL while L2 had higher LP (Table S1).

Transcriptome sequencing analysis and correlation of replicate
samples

To reveal gene expression during fiber development, we conducted transcriptome
sequencing (RNA-seq) on ovule samples at —3 and 0 DPA as well as fiber samples at
5 and 10 DPA (Fig. 1C). A total of 941.90 million clean reads were obtained from 24
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Figure 1 Phenotypic data, statistics for transcript levels at each development stage and vertical of L1
relative to L2 and horizontal comparisons of DEGs. (A) Phenotypic data of lint percentage (LP) trait in
five environments of L1 and L2; (B) Phenotypic data of fiber length (FL) trait in five environments of L1
and L2; (C) Photos of bolls of L1 and L2 at 5 and 10 DPA, column I, IT and III refer to front photo, lon-
gitudinal cut and crosscut of cotton bolls, respectively; (D) Statistics for transcript levels of each sample
at each development stage, the numbers of expressed genes were divided by 0.5 <FPKM <5, 5 <FPKM
<100 and 100 < FPKM. (E) Vertical and horizontal comparisons showed the DEGs in the same develop-
mental stage between the two lines (L2 relative to L1) and in the same line between different stages. The
numbers of upregulated and downregulated genes were marked in red and black, respectively. (F) Variant
type distribution.

Full-size &al DOI: 10.7717/peer;j.11812/fig-1

libraries with an average of 39.24 million reads per sample. Meanwhile, 91.16% to 95.09%
of the Q30 was calculated with an average of 92.97%, while 43.02% to 51.27% of the GC
content range was calculated with an average of 45.27%, which indicated the reliability
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of RNA-seq data (Table 52 and Fig. S1). The raw data had been submitted to National
Genomics Data Center (accession number CRA002982).

Based on FPKM, genes with FPKM value not less than 1 were considered as expressed in
this study and the Pearson correlation coefficient was conducted on the 24 samples (Table
S3). Consequently, at —3, 0, 5 and 10 DPA, 31456, 31330, 27737 and 25120 expressed genes
were identified in L1, respectively. Meanwhile, 31867, 31494, 25215 and 25146 genes were
expressed in the L2. The percentages of expressed genes with FPKM values of 1-5, 5-100
and >100 were 54.9%, 43.7% and 1.4%, respectively (Fig. 1D).

Differentially expressed genes analysis

To identify the significantly differentially expressed expressed genes during fiber initiation
and elongation, we used DESeq2 R package between each pairwise comparison. Through
vertical (Table S4) and horizontal (Table S5) comparisons, after removing the duplicate
genes, 30352 unique DEGs (Fig. 1C, Table S6) were identified during cotton fiber
development.

At 0 DPA, 369 DEGs were identified, including 206 up-regulated (log, (FC) >1) and 163
down-regulated (log, (FC) <—1), of which the representative DEGs showed high [log, (FC)|
between L1 and L2 were listed in Table S7. Among up-regulated genes, Ghir_A05G006080
was enriched in the carbon metabolism pathway and annotated as NP-GAPDH, which was
involved in catalyzing the oxidation of Ga3P to 3-phosphoglycerate (Valverde et al., 2005)
and was important in fruit development and energetic metabolism (Rius et al., 2006);
Ghir_D08G011800 was annotated as UDP-glycosyltransferase superfamily protein and
participates in starch biosynthetic process presenting a direct influence on starch glycan
composition (Ortiz-Marchena et al., 2014), which might be relevant to accumulating and
mobilizing sugars process. Among the down-regulated genes, Ghir_D13G006000 was
annotated as alpha-galactosidase 2, enriched in the galactose metabolism pathway, related
with cell wall loosening during cell growth in Arabidopsis and barley, it was involved in
lengthening the polymers occurring in the wall, upon secretion, or for binding of the XyGs
to cellulose (Peia et al., 2004) and was specifically localized in the cell wall (Chrost et al.,
2007); Ghir_D06G012250 was annotated as disproportionating enzyme 2 and enriched in
starch and sucrose metabolism pathway, which could utilize maltose as glucosyl donor and
glycogen as acceptor releasing the other hexosyl unit as free glucose that then are further
metabolized by the cellular central carbon metabolism (Andersson ¢ Ridstrom, 2002); Le
(Breton et al., 2005; Smirnova et al., 2017).

At 5 DPA, there were 1198 up-regulated and 3098 down-regulated DEGs between
L1 and L2. 156 representative ones with high expression (FPKM >5) or high |log, (FC)|
(>2) are shown in Table S8. Based on KEGG enrichment analysis on the up-regulated
DEGs, Ghir_A13G021680, Ghir_A11G013660, Ghir_A11G006910, Ghir_D11G007650,
Ghir_A11G025370, and Ghir_D05G001330 were enriched into SNARE interactions of
vesicular transport pathway, which was participated in endoplasmic reticulum to Golgi
vesicle-mediated transport and membrane fusion (Schiller et al., 2012; Bolajios Villegas, Guo
& Jauh, 2015; Sharma et al., 2017). In addition, the down-regulated DEGs were identified to
be mainly enriched in plant hormone signal transduction, starch and sucrose metabolism
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and metabolic pathways, suggesting that in the line with superior fiber quality these
pathways play important roles during fiber elongation. Ghir_D05G014410 was annotated
as pectin methylesterase 3 (PME3) which was ubiquitously expressed, particularly in
vascular tissues and had influence on degree of methylesterification of galacturonic
acids. The reaction of demethylesterification decreased the extracellular pH to increase
the hydrolytic enzyme activities of enzymes such as poly-galacturonic acid and several
pectin enzyme cleavage enzymes (Wen, Zhu & Hawes, 1999), when pectin was subject
to substantial degradation leading to cell wall structure relaxation and enhancing the
growth of cell tips (Catoire et al., 1998; Li et al., 2016). Meanwhile, PME3 was also reported
affecting the number of adventitious roots (Guénin et al., 2011); Ghir_A13G020210 was
annotated as sucrose synthase 4 (Sus 4), where Sus was demonstrated to be critically
important for cotton fiber initiation and elongation (Ruan, Llewellyn ¢ Furbank, 2003).
Ghir_D07G008950, Ghir_D10G022670, Ghir_A05G005960 and Ghir_A10G020870 were
enriched into phenylalanine metabolism pathway, which was involved in lignin polymer
producing and secondary cell wall construction (Barros et al., 2016; Zhou et al., 2017;
Vanholme et al., 2019). Ghir_D05G003750 was annotated as an auxin-responsive factor 7
(ARF7), which was required for leaf expansion and/or lateral root induction (Wilmoth et
al., 2005). There were also some other transcription factors or genes associated with or
response to auxin, such as Ghir_A01G010000 (ARF5), Ghir_D09G022910 (ATAUX2-11),
Ghir_D03G003390 (IAA9), Ghir_D05G022030 (IAA9) and Ghir_D12G011080 (SAUR36)
(Aspuria et al., 2002; Fujita et al., 2012; Hou, Wu & Gan, 2013; Stamm & Kumar, 2013;
Krogan et al., 2016) suggesting that auxin signaling pathway is involved in fiber elongation
phase in high-FL line.

Genotypic variants analysis

To explore the genetic differences between the two lines, we employed SNPEff program to
analyze the genotypic variants distribution on the genome A total of 239493 variants were
identified referring to TM-1 (Wang et al., 2019), and 40522 genes were involved, where
20181 of them were DEGs.

Among the variants, 20128 (8.40%) arisen as missense variant, 8685 frame shift mutation
(3.63%) occurred, 739 variants (0.31%) led to transcription termination and 493 variants
(0.21%) occurred losing of stop codon of the transcripts. These variants had of significance
impact on the gene functions. In addition, 19760 and 23666 variants were identified at
5" and 3’ UTR region, respectively, which might have influence on regulation of gene
transcription (Table S9, Fig. 1F). Comparing to the DEGs in different developmental
stages, 14146 variants were identified in 2662 expressed DEGs (Fig. S4). In the 157 unique
significantly up or down regulated DEGs in 5 and 10 DPA (Tables S7 and 58), 652
variants were identified and 78 performed differently in 26 DEGs between two RILs.
Due to insertion, Ghir_A05G005960 occurred frame shift variant. For the SNP variant,
transcription termination was occurred in Ghir_D07G024380 and there were protein
sequence mutations in 11 DEGs. There were three variants located (Ghir_A05G006080,
Ghir_A04G013900 and Ghir_A10G010640) in splice region and one identified on splice
acceptor (Ghir_D03G003390), which might lead to alternative splicing. Those variants had
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significant impact on the protein sequence and functions of DEGs. Besides, 25 variants
were located 5 or 3’ UTR and 15 variants were identified at upstream or downstream that
might have effects on the regulation of gene transcription.

Temporal gene expression patterns analysis

To identify the temporal expression profiles, we performed STEM analysis using all the
DEGs. 17180 and 17585 DEGs were classified and organized into seven expression profiles
with e-values less than 0.001 in L1 (Fig. 2A) and L2 (Fig. 2B), of which the genes in the
same profile performed similar expression patterns during fiber development (Table S10).
Associated with the fiber development, we focused on the DEGs in profile 14 and 18. In
profile 14, the expression had high expression in -3 and 0 DPA, and then was decreasing
in fiber samples. While the DEGs in profile 18 had low expression in ovule samples and
had a increasing trend in 5 and 10 DPA. The trends of profile 14 and 18 fitted with fiber
developmental stages of initiation and elongation, respectively. Profile 14 contained 820
genes in L1 and 401 in L2, while profile 18 identified 1833 genes in L1 and 1788 in L2.
Venn diagram was utilized to visualize the gene comparison (Fig. 2C). A total of 681 and
262 DEGs were identified in profile 14 of L1 and L2, with 139 genes expressed in common.
Similarly, in profile 18, 1031 and 986 genes were expressed differentially in L1 and L2,
while 802 was in common (Fig. 2D).

To investigate the pathways of the common DEGs of the profile 14 and 18, we employed
KEGG enrichment analysis (Table S11) and visualized the results with bubble graph.
The common DEGs in profile 14 were mainly enriched in the pathways of ribosome,
AGE-RAGE signaling pathway, biosynthesis of unsaturated fatty acids and fatty acid
metabolism (Fig. 2E). Meanwhile, they were mainly enriched in metabolic pathways such
as phagosome, biosynthesis of secondary metabolites, starch and sucrose metabolism and
oxidative phosphorylation in profile 18 (Fig. 2F).

Simultaneously, to further explore the specific DEGs in the two lines of profile 14 and
18, we performed GO enrichment analysis and categorized into 35 most frequent GO
terms based on biological process, cellular component and molecular function (Table
S11). Compared to L1, the specific DEGs of profile 14 in L2 were annotated to the
GO terms of GO:0003735 structural constituent of ribosome, GO:0006412 translation,
GO:0044212 transcription regulatory region DNA binding, GO:0003676 nucleic acid
binding, GO:0009570 chloroplast stroma, GO:0005840 ribosome, GO:0022625 cytosolic
large ribosomal subunit, GO:0005773 vacuole and GO:0003729 mRNA binding (Figs. 2G
and 2H). As for the GO terms of profile 18 in L1, there were three different enrichment
terms compared to those in L2, such as GO:0005622 intracellular, GO:0016787 hydrolase
activity and GO:0006355 regulation of transcription, DNA-templated. The GO enrichment
analysis results suggested that transcription factors play the different roles between the two
RILs during the fiber development (Figs. 21 and 2J).

Gene co-expression network analysis and identification of hub genes
in correlation networks

To broaden the further insight into the relationship between gene expression and fiber
development as well as to identify genes associated with LP and FL, we constructed the
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Figure 2 DEGs analysis. (A) Different gene expression profiles in L1 and L2. Each profile presents a gene
expression trend. The profile ID, gene number and P-value were marked in black, darkblue and darkred,
respectively; (B) Venn diagram showed the same and different genes between L1 and L2 in profile 14 and
18, respectively. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis of the com-
mon genes between L1 and L2 in profile 14 and 18. The size and color of bubbles presented the gene num-
ber enriched in the pathway and the size of Q-value, respectively. (D) Gene ontology (GO) enrichment
analysis of the different genes between L1 and L2 in profile 14 and 18, and the top 35 terms of GO enrich-
ment for 681, 262, 1031 and 986 genes unique to L1 and L2 in profile 14 and 18, respectively. The different
terms were marked in red.
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Figure 3 Weighted gene co-expression network analysis of DEGs at four developmental stages. Hi-
erarchical dendrogram showing co-expression modules in ovule (A) and fiber (B) samples identified by
WGCNA. Each leaf in the tree represents one gene. The major tree was divided into 11 modules in total,
where seven modules were classified in ovule (C) and four in fiber (D) samples.
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co-expression networks for the DEGs of ovule (546 genes) and fiber (6976 genes) samples
and analyzed through weighted gene co-expression network analysis.

The dynamic tree cut and merged analogous expression patterns into modules (Figs. 3A
and 3B). Finally, seven modules and four modules were identified in ovule and fiber
samples (Table S12), respectively (Figs. 3C and 3D). Among them, seven key modules
were identified. In ovule samples, ovule yellow, brown, turquoise and blue modules were
specifically associated with initiation stage of the high-LP line. While fiber brown, blue and
green modules were specifically associated with elongation stage of the high-FL line.

In seven key modules and according to Kyg, 29 DEGs genes with the highest eigengene
connectivity in each module were identified as hub genes (Table 1). All the hub genes
performed the Kyg values greater than 0.94. The hub genes in ovule yellow module encoding
EXORDIUM like 2 protein, SCARECROW-like 21 protein and 1-aminocyclopropane-1-
carboxylic acid (acc) synthase 6 (ACS6) protein, where acs6 was identified involved in cell
division and ethylene biosynthesis (Luo et al., 2014; Yin et al., 2019). GhACS and ethylene
were playing important roles in cotton fiber development (Wang et al., 2007). Hub genes
enriched in ovule brown module, encoded ubiquitin family protein, dsRNA-binding
protein 2 and natural resistance-associated macrophage protein 1. Additionally, in ovule
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Table 1 Candidate hub genes in modules.

Gene Name KME ArabidopsisID Description in Arabidopsis thaliana

Fiber brown module

Ghir_D05G023530 0.99 ATI1G77780 Glycosyl hydrolase superfamily protein

Ghir_A08G023930 0.98 ATI1G65450 HXXXD-type acyl-transferase family protein

Ghir_D13G004870 0.98

Ghir_D11G035770 0.98 AT2G36830 gamma tonoplast intrinsic protein

Ghir_A11G034930 0.98 AT2G36830 gamma tonoplast intrinsic protein

Fiber blue module

Ghir_D08G021430 0.99 AT2G27040 Argonaute family protein

Ghir_D03G003280 0.99 AT5G65700 Leucine-rich receptor-like protein kinase family protein

Ghir_D07G014800 0.99 ATI1G01300 Eukaryotic aspartyl protease family protein

Ghir_D05G019650 0.98 AT5G42800 dihydroflavonol 4-reductase

Ghir_A07G015620 0.98 AT2G45290 Transketolase

Fiber green module

Ghir_A05G020170 0.95 AT5G42655 Disease resistance-responsive (dirigent-like protein) family
protein

Ghir_D05G019950 0.95 ATIG45170 outer envelope pore 24B-like protein

Ghir_D11G004790 0.95 AT2G18170 MAP kinase 7

Ghir_A03G022510 0.94 ATIG29500 SAUR-like auxin-responsive protein family

Ovule yellow module

Ghir_D13G021030 0.98

Ghir_D05G022870 0.97 AT5G64260 EXORDIUM like 2

Ghir_A04G002270 0.95 AT2G04890 SCARECROW-like 21

Ghir_A12G024510 0.95 AT4G11280 1-aminocyclopropane-1-carboxylic acid (acc) synthase 6

Ovule brown module

Ghir_A03G022700 0.98 AT2G17200 ubiquitin family protein

Ghir_D08G021550 0.98 AT2G28380 dsRNA-binding protein 2

Ghir_D05G012040 0.96 ATIG80830 natural resistance-associated macrophage protein 1

Ovule turquoise module

Ghir_A01G001190 0.97 ATI1G78300 general regulatory factor 2

Ghir_A07G020020 0.96 AT5G27260 Myb/SANT-like DNA-binding domain protein

Ghir_A09G017620 0.96 AT5G01620 TRICHOME BIREFRINGENCE-LIKE 35

Ghir_A05G042810 0.94 AT5G54130 Calcium-binding endonuclease/exonuclease/phosphatase
family

Ovule blue module

Ghir_A08G021080 0.98 AT2G30090 Acyl-CoA N-acyltransferases (NAT) superfamily protein

Ghir_A06G019930 0.96 AT3G15820 phosphatidic acid phosphatase-related / PAP2-related

Ghir_A11G031900 0.96 AT2G44260 Plant protein of unknown function (DUF946)

Ghir_D13G001750 0.94 AT3G11210 SGNH hydrolase-type esterase superfamily protein

turquoise module (Fig. 4A), the hub genes were annotated as general regulatory factor 2
(GRF2), myb/SANT-like DNA-binding domain protein, TRICHOME BIREFRINGENCE-
LIKE 35 (TBL35) protein and Calcium-binding endonuclease/exonuclease/phosphatase
family protein, of which Ghir_A09G017620 annotated as TBL35, may participate in xylan
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acetylation (Yuan et al., 2016). Ghir_A01G001190 was annotated as G-box binding factor
GF14 omega encoding a 14 — 3 — 3 protein, which was reported to be located at the regions
of the plant that comprise dividing cells and involved in plant cell cycle (Sorrell et al., 2003).
In the modules of fiber tissues at 5 and 10 DPA, hub genes were critically associated with
the fiber elongation stage. The hub genes in blue module at 5 DPA encoded an argonaute
family protein, a leucine-rich receptor-like protein kinase family protein, a eukaryotic
aspartyl protease family protein, dihydroflavonol 4-reductase and transketolase, which
was involved in vascular development (Qian et al., 2018). Similarly, the green module
contained the hub genes encoding a disease resistance-responsive (dirigent-like protein)
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family protein, an outer envelope pore 24B-like protein, a SAUR-like auxin-responsive
protein and a MAP kinase 7. At 10 DPA, the hub genes in brown module were annotated
with a glycosyl hydrolase superfamily protein, a HXXXD-type acyl-transferase family
protein and two gamma tonoplast intrinsic proteins. Among the hub genes in fiber blue
(Fig. 4B) and brown modules, Ghir_DI11G035770 and Ghir_A11G034930 were both
identified as hub genes in fiber brown module and were annotated as gamma tonoplast
intrinsic protein (GAMMA-TIP1), which is mainly expressed in vessel-flanking cells of
vascular bundles (Beebo et al., 2009) and confirmed to mediate unbalanced water content
in leaves (Zhu et al., 2014). Gh y TIPI during fiber cell elongation played important roles in
supporting the rapid influx of water into vacuoles during cotton fiber cell expansion (Liu et
al., 2008). Besides, Ghir_A01G001290, sharing high eigengene connectivity, was annotated
as APUM-7 translation factor, and Ghir_A01G005740 encoded a domain of unknown
function (DUF1218) family protein, whose homologous gene was knocked-out showing
a reduction in total xylem (Ubeda-Tomas et al., 2007). The protein containing DUF1218
domain played important role in xylogenesis and/or secondary cell wall formation (Mewalal
etal., 2016).

Scanning the genotypic variants in the hub genes, 161 variants were identified in the
transcripts of hub genes and 51 variants performed differently between the two RILs. Due
to the variants, transcription termination of Ghir_A05G042810 and Ghir_D13G001750
occurred in L2 and frame shift mutation of Ghir_A01G001190 occurred in L1 with
one nucleotide deletion, which might have huge impact on the protein sequences. In
addition, one SNP variant located on the intron of Ghir_A05G042810 that might lead
to alternative splicing and changing the protein sequence. Causing by SNP variant,
missense variants occurred in another five hub genes that changed the protein primary
structure (Ghir_A06G019930, Ghir_D05G019650, Ghir_D05G019950, Ghir_D05G022870
and Ghir_A05G042810). 14 variants were identified at 5 or 3’ UTR and 16 were located
at downstream that might have effects on the regulation of gene transcription.

qRT-PCR expression pattern validation

To validate the expression pattern, we performed qRT-PCR on important DEGs and hub
genes using the primers according to qPrimerDB (Table S13). The expression pattern
validation result of the 29 hub genes from ovule yellow (Figs. 5A-5D), ovule brown (Figs.
5E-5G), ovule turquoise (Figs. 5H-5K), ovule blue (51— 50), fiber brown (Figs. 5P-5T),
fiber blue (Figs. 5U-5Y) and fiber green (Figs. 57-5CC) modules was similar to RNA-seq
result. While the 11 key DEGs performed the similar result (Figs. 5 and 5D-5NN) (Table
S14). Those results indicated the RNA-seq result is reliable.

DISCUSSION

Transcriptome sequencing of two extrame-parent RILs provided new
insight for exploring the expression profile in fiber initiation and elon-
gation stages

To explore the genetic and molecular mechanisms during fiber initiation and elongation, we
selected two extreme RILs form CCRI70 RIL population and conducted RNA-seq. In recent
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Figure 5 qPCR analysis of hub genes and key DEGs. qPCR results of the hub genes in ovule yellow (A—
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years, RNA-seq has been largely applied into cotton fiber development researches (Gilbert
etal., 2014; Yoo & Wendel, 2014; Islam et al., 2016; Li et al., 2017b; Li et al., 2017a; Lu et
al., 2017; Zou et al., 2019) as well as under biotic (Xu et al., 2011; Zhang et al., 2017) and
abiotic stresses (Zhang et al., 2016a). Referring to the nearly studies of fiber development
using RNA-seq, elongation and secondary wall biosynthesis were more often concentrated
in, while the initiation stage was seldom focused on. In our work, ovule and fiber samples
collected during cotton fiber initiation and elongation were conducted RNA-seq, which
provided plenty of valuable data for investigating and revealing the differences of genetic
and molecular mechanisms during initiation and elongation on mRNA level. CCRI70 is a
breeding hybrid with excellent performance in fiber length and moderate performance in
lint percentage. The two extreme RILs provide an ideal model to investigate the candidate
genes coming from and the differences in initiation and elongation stages. What’s more,
what good alleles related to lint percentage and fiber length were found would also benefit
upland cotton breeding to improve yield and fiber quality simultaneously. In our study,
941.90 million clean reads were obtained from 24 libraries, with an average of 39.24
million per sample. Among the 24 libraries, the GC% and Q30 were 45.27% and 92.97%
on average, respectively, which indicates that the quality of the RNA-seq data is reliable.
However, three samples in the third biological replicate showed low correlation (<0.8),
which might be affected by environmental and other factors. That provided ideal and fine
basis for exploring the transcriptional differences during fiber initiation and elongation
stages, which prevailingly affect the lint percentage and fiber length traits, respectively.
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DEGs revealing the transcriptional differences in initiation and elon-
gation phases

Due to the initiation and elongation affected the number and length of fibers, which had
influences on LP and FL traits, respectively. DEGs of each period were obtained and used
for identifying the candidate genes that would reveal the genetic basis of fiber development
and provide an insight into the molecular mechanism for the negative correlation between
quality and yield traits. At fiber initiation stage, up-regulated genes in high-LP line L2
were mainly enriched in pentose and glucuronate interconversions, carbon metabolism,
biosynthesis of secondary metabolites and metabolic pathways. Ghir_A05G006080 (Fig.
5DD) might play the role like NP-GAPDH, a cytosolic non-phosphorylating NADP-
dependent GAPDH that catalyzes the oxidation of Ga3P to 3-phosphoglycerate (Valverde
et al., 2005; Rius et al., 2006). Ghir_D08G011800 (Fig. 5SEE) might be involved in starch
biosynthetic process that had a direct influence on starch glycan composition (Ortiz-
Marchena et al., 2014). At 0 DPA, the up-regulated genes were mainly enriched in the
energetic metabolism and accumulating as well as mobilizing sugars process, implying
that energetic metabolism and sugar transport may participate in fiber initiation and
have effect on the number of cotton fiber. Among the up-regulated genes in high-FL
line L1 at 5 DPA, Ghir_D05G014410 (Fig. 5FF), annotated as PME3, had influence on
degree of methylesterification of galacturonic acids (Wen, Zhu ¢» Hawes, 1999; Guénin
etal., 2011). Pectin was subject to substantial degradation leading to cell wall structure
relaxation and enhancing the growth of cell tips (Catoire et al., 1998; Li et al., 2016). During
cotton fiber development, PME played significant physiological role by influencing the
chemical properties of pectin (Liu, Talbot ¢ Llewellyn, 2013). A sucrose synthase 4 (Sus 4),
Ghir_A13G020210 (Fig. 5GG), was specifically expressed in L1 with high FPKM, where it
played a major role in metabolic regulation and sugar signaling, and silencing Sus expression
led to a fiberless seed phenotype. Sus was demonstrated to be significantly important
for cotton fiber development, and suppression of sucrose synthase gene expression
repressed cotton fiber cell initiation, elongation, and seed development (Ruan, Llewellyn
¢ Furbank, 2003). In addition, Ghir_A01G010000 (Fig. SHH), Ghir_D03G003390 (Fig.
511), Ghir_D05G003750 (Fig. 5]]) and some other genes were annotated as transcription
factors or genes related to or responding to auxin demonstrated that auxin regulate fiber
development and auxin signaling was shown to be important for fiber initiation and
elongation (Samuel (Yang et al., 2006; Gou et al., 2007; Liu et al., 2012; Wang et al., 2013;
Zhang et al., 2016b). Overexpressing iaaM, critically important for auxin biosynthesis,
led to enhanced initiation and increased fiber length (Zhang et al., 2011). The DEGs
result suggested that Sus4, PME3 and auxin signaling pathway play important roles in
fiber elongation stage. In the two materials, the DEGs were identified and enriched into
energetic metabolism and sugar transport pathway in initiation stage, while the DEGs were
enriched into auxin signaling pathway in rapid elongation stage.

In addition, comparing the DEGs with CCRI70 previous QTL result, 14 DEGs were
located in LP or FL QTLs (Deng et al., 2019). Among them, Ghir_D01G001580 (Fig. 5KK)
and Ghir_D01G004480 (Fig. 5LL) were up-regulated in L2 at 0 DPA and detected in LP QTL.
Ghir_D01G001580 was annotated as ATXR-2 that was involved in cellular dedifferentiation
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(Lee, Park ¢ Seo, 2017). ATXR2-ARF-LBD axis was key for the epigenetic regulation of
callus formation in Arabidopsis. Ghir_D01G004480 was annotated as Ku70 that was
involved in repair of DNA double-stranded breaks and telomere regulation (Tamura et
al., 2002) demonstrated to be required for the maintenance of chromosome stability and
normal developmental growth in rice (Hong et al., 2010). Besides, Ghir_A02G001110
(Fig. 5SMM) and Ghir_A02G002020 (Fig. 5SNN) were identified in FL stable QTL.
Ghir_A02G002020 was annotated as xyloglucan endotransglucosylase/hydrolases 16
(XTH16) and had a higher expression in L1 at 10 DPA. XTHs worked on xyloglucan-
cellulose network, modified the cell wall via enzymatic mechanisms (Nishitani ¢~ Tominaga,
1992; Rose et al., 2002) and were required during plant growth in cell wall modification
(Campbell & Braam, 1999; Rose et al., 2002). It was confirmed that XTHs were necessary
in cell wall restructuring during cellular expansion, which fueled rapid petiole elongation
(Sasidharan et al., 2010). XTH16 was also involved in radish taproot thickening (Yu et
al., 2015). Ghir_A02G001110 was annotated as IQDI13 and was interacting with both
microtubules and the plasma membrane. It specifically promoted cortical microtubule
rescue, which consequently increased cortical microtubule density (Sugiyama et al., 2017).
All above DEGs provided insight into the differences of molecular mechanism during fiber
development on transcription level, which would be also beneficial for cotton breeding.

Hub genes identified by WGCNA may have significantly impact on lint
percentage and fiber length

In this study, WGCNA was performed to identify hub genes and modules, which were
highly associated with cotton fiber initiation and elongation. To investigate the influences
of the hub genes on fiber yield and quality traits during fiber development, multiple
comparisons with the previous studies were performed. At 5 DPA, Ghir_A07G015620,
sharing high protein sequence identification with Gh_A07G1360, showed highly correlation
with boll weight and seed index traits in Zhang et al.’s (2020) report. In Song et al.’s
(2019) study, Ghir_D05G012040 (Gh_D05G1139) identified in the module associated
with high-LP line L2 at 0 DPA was locating in the QTL related to lint percentage trait.
Ghir_A08G023930 (Gh_A08G2014) and Ghir_A09G017620 (Gh_A09G2422), identified in
Fiber brown module and Ovule turquoise module, were detected in FL QTL in Naoumkina
et al’s (2019) report. In Sun et al’s (2017) and Liu et al.’s (2018) studies, Ghir_D03G003280
(Gh_D03G0303) was reported to have influence on fiber length by GWAS analysis. At 0
DPA, Ghir_A12G024510 was annotated as 1-aminocyclopropane-1-carboxylate synthase
6 in G. hirsutum (GhACS6), which was identified as the key enzyme involved in ethylene
biosynthesis and was considered critically important for cotton fiber elongation (Wang et
al., 2007). Meanwhile, Ghir_A03G022700 showed highly protein sequence identity with

a ubiquitin family protein that could interact with and responds to the degradation of
GbPDFI1. GbPDFI was confirmed playing a critical role in cotton fiber development and
required in fiber initiation, where PDFI-silenced cotton showed retarded fiber initiation
and had shorter fibers or lower lint percentage (Deng et al., 2012). It was hub genes result
suggested that ethylene is significantly important for cotton fiber development. At 10 DPA,
Ghir_D05G023530 shared high identity with endo-1,3-beta-glucanase, which was reported
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to be involved in secondary wall synthesis accompanying the deposition of cellulose in
growing cotton fiber cells (Shimizu et al., 1997), implying that it might have influence on
fiber strength. During fiber development, hub genes played important roles and had impact
on fiber yield and quality traits. Therefore, the functions and genetic mechanisms of the
hub genes were worthy for further exploring.

CONCLUSIONS

In summary, the two extreme G. hirsutum RILs selected from CCRI70 RIL population were
conducted transcriptome research on fiber initiation and elongation, aiming to understand
the parental source of potential alleles and the differential molecular mechanisms associated
with LP and FL. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down-
regulated DEGs were obtained during fiber development at —3, 0, 5 and 10 DPA,
respectively. According to TM-1, 239493 genotypic variants were identified and 40522
genes were involved. Based on KEGG enrichment analysis on the DEGs at 0 and 5 DPA,
galactose metabolism, auxin signaling pathway and etc. were significant enriched into. By
STEM, profile 14 and 18 were considered highly associated with cotton fiber initiation and
elongation, of which genes expressed differently were analyzed by gene ontology analysis
while genes expressed in common were enriched by KEGG. KEGG analysis revealed that
the DEGs were involved in the pathways of ribosome, AGE-RAGE signaling pathway,
biosynthesis of unsaturated fatty acids and fatty acid metabolism of profile 14. Genes in
profile 18 were enriched into the pathways of metabolic pathways, phagosome, biosynthesis
of secondary metabolites, starch and sucrose metabolism and oxidative phosphorylation.
Co-expression network analysis by using WGCNA identified 29 hub genes in four fiber
developmental time points. Ghir_A03G022700 was annotated as a ubiquitin family protein
that could interact with and responds to the degradation of GhPDF1, which was considered
being critically important and required in fiber initiation. Ghir_A12G024510 annotated
as GhACS was identified as the key enzyme involved in ethylene biosynthesis and was
considered critically important for cotton fiber elongation. These findings would provide
insights into the molecular mechanism of the fiber development, which would be the
genetic basis to improve the yield and fiber quality simultaneously of upland cotton
breeding.
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