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UNSAM-CONICET, Buenos Aires, Argentina

ABSTRACT
In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding func-
tionally interrelated proteins together with the trans-acting factors that coordinately
modulate their expression is termed a post-transcriptional regulon, due to their
partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by
sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements
in the noncoding regions of genes, and mediates the synchronized control of their
fate. These recognition motifs are often characterized by conserved sequences and/or
RNA structures, and it is likely that various classes of cis-elements remain undis-
covered. Current evidence suggests that RNA regulons govern gene expression in
trypanosomes, unicellular parasites which mainly use post-transcriptional mech-
anisms to control protein synthesis. In this study, we used motif discovery tools to
test whether groups of functionally related trypanosomatid genes contain a common
cis-regulatory element. We obtained conserved structured RNA motifs statistically
enriched in the noncoding region of 38 out of 53 groups of metabolically related
transcripts in comparison with a random control. These motifs have a hairpin loop
structure, a preferred sense orientation and are located in close proximity to the open
reading frames. We found that 15 out of these 38 groups represent unique motifs
in which most 3′-UTR signature elements were group-specific. Two extensively
studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with
a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation
with clusters of developmentally co-expressed genes and six RNA elements were en-
riched in gene clusters affected after hyperosmotic stress. Here we report a systematic
genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and
describe an organized network of several coordinately regulated cohorts of mRNAs
in T. cruzi. Moreover, we found that structured RNA elements are also conserved
in other human pathogens. These results support a model of regulation of gene
expression by multiple post-transcriptional regulons in trypanosomes.
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INTRODUCTION
The kinetoplastid protozoa comprise a group of unicellular parasites that belong to a

distinctive evolutionary lineage of eukaryotes. Members of this taxonomic group include

etiological agents of several neglected zoonoses such as Chagas disease (Trypanosoma

cruzi), sleeping sickness (Trypanosoma brucei) and Leishmaniasis (Leishmania spp.).

These three species are digenetic unicellular microorganisms that suffer continuous

morphological changes throughout their complex life-cycles (Barrett et al., 2003).

Transcription in these cells is polycistronic. RNA synthesis by RNA polymerase II starts

at a few genomic locations within chromosomes and thus nearly all the protein-coding

genes are arrayed in long multi-gene transcription units (Fernandez-Moya & Estevez, 2010;

Kramer, 2011). In contrast to operons in bacteria, trypanosomal polycistronic units require

processing before translation. Consequently individual mature messenger ribonucleic

acids (mRNAs) are generated by 5′ trans-splicing and 3′ polyadenylation of precursor

RNAs (Hendriks & Matthews, 2007). Given these unique genetic features, trypanosomes

essentially make use of post-transcriptional processes to control gene expression [reviewed

in (De Gaudenzi et al., 2011)].

A common polypyrimidine tract located between two neighboring open reading frames

is the signal sequence recognized by both trans-splicing and polyadenylation machineries

and governs the co-transcriptional RNA processing (Matthews, Tschudi & Ullu, 1994). A

39-nt capped spliced-leader sequence is added only a few nucleotides upstream of the ATG

translational start codon thus generating short 5′-UTRs. Because this region is usually

under rigid structural constraints to accommodate the translational machinery (Conne,

Stutz & Vassalli, 2000), the 3′-UTR is usually the key region involved in transcript stability

and translation efficiency.

Bioinformatic tools allowed the identification of all trypanosomal RBPs and numerous

sequence elements mainly involved in RNA-processing and genome structure (Benz et al.,

2005; Campos et al., 2008; Duhagon, Dallagiovanna & Garat, 2001; Duhagon et al., 2013;

Smith, Blanchette & Papadopoulou, 2008). Several studies demonstrated the presence of

U-rich elements in trypanosomal mRNA 3′-UTRs [reviewed in Araujo & Teixeira, 2011;

Haile & Papadopoulou, 2007; Hendriks & Matthews, 2007]. Strikingly, the functional role

of CA repeated tracts in T. cruzi 3′-UTRs was recently established as a signal for gene

expression modulation through the parasite’s life-cycle (Pastro et al., 2013).

Cis-acting motifs are recognized by different trans-acting factors, including members of

the kinetoplastid superfamily of RNA-recognition motif (RRM)-containing RNA-binding

proteins (RBPs) (Kramer & Carrington, 2011). The first two RRM proteins of this family

were previously characterized by our group and termed T. cruzi U-rich RBP 1 (TcUBP1)

and TcUBP2. A third member of this group was named TcRBP3 and displayed different

RNA-binding properties than the previously mentioned RBPs (De Gaudenzi, D’Orso &

Frasch, 2003). A comparative ribonomic analysis of TcUBP1 and TcRBP3 showed that both

proteins can share target transcripts, although they preferentially bind different sets of

mRNAs. These trypanosomal target transcripts were classified within functional groups

and contain conserved structural elements involved in RNA-binding in their 3′-UTRs
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(Noe, De Gaudenzi & Frasch, 2008). Furthermore, these two RRM-containing RBPs can

associate with more than one RNA element within the same transcript, supporting the idea

that the combination of motifs is the main factor that defines RNA-protein interaction

networks (Mittal et al., 2009; Morris, Mukherjee & Keene, 2010).

A group of functionally linked mRNAs together with the sequence-specific RBPs that

coordinately modulate their expression is termed an RNA regulon, due to their partial

analogy to the bacterial operon. The messenger ribonucleoprotein (mRNP) complex-

driven organization of transcripts allows eukaryotic cells to control protein synthesis from

genes that are dispersed throughout the genome but encode for products involved in

common or related functions. This higher-order cytoplasmic organization of transcripts

implies a complex but flexible level of gene regulation that entails a rapid adaptation of the

cellular transcriptome in response to alterations in the environment (Mansfield & Keene,

2009). Post-transcriptional regulons have been described in mammalian cells, fruit flies,

and yeast, and can control several associated processes such as RNA processing, export,

stabilization, localization and translation. Moreover, regulons are important in different

cellular pathways such as oxidative metabolism, stress response and circadian rhythms

(Keene, 2007).

We and other authors demonstrated that Keene’s model of RNA regulons precisely fits

the observed trypanosome gene expression regulation (Noe, De Gaudenzi & Frasch, 2008;

Ouellette & Papadopoulou, 2009; Queiroz et al., 2009). Genomes analysis of TriTryps pro-

vided a large collection of putative RBPs and mRNA metabolism factors, but an extensive

characterization of RNA-protein interactions still remains elusive (Kramer, Kimblin &

Carrington, 2010). This is due, at least in part, because the cis-elements that orchestrate

these interactions are poorly defined. In particular, more efforts are necessary to complete

the global identification of conserved sequences that govern large cohorts of trypanosome

stage-regulated mRNAs. Post-transcriptional gene regulation does not seem to be

exclusively governed by linear motifs, thus models of RNA-protein interactions should

include both primary sequence and secondary structures features (Goodarzi et al., 2012).

An exhaustive genome-wide computational search for regulatory RNA elements has

been reported in T. brucei (Mao, Najafabadi & Salavati, 2009) and conserved intercoding

sequences and putative regulons were also identified in Leishmania (Vasconcelos et al.,

2012). The observation that RRM-type RBPs recognize conserved structural motifs located

in the 3′-UTR from functionally related targets, prompted us to search the T. cruzi genome

in order to systematically describe the elements defining RNA regulons. We found that

distinct groups of metabolically clustered transcripts contain cis-regulatory signals. These

cis-elements have stem-loop secondary structures, and were preferentially located in

the 3′-UTR of transcripts (but not in the 5′-UTR), with a particular sense orientation

at the vicinity of the coding sequence. Here we describe, for the first time, a systematic

identification of candidate RNA regulons in kinetoplastids grouped by similar metabolic

pathways, and harboring signature structured RNA motifs. The identification of shared

elements in cohorts of transcripts will pave the way for the detection of the trans-acting
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factors that organize each group of mRNAs and govern their final behaviour. All these

observations are consistent with the RNA regulon model.

RESULTS
Conserved structural RNA elements in 3′-UTRs of mRNAs encod-
ing metabolically interrelated proteins of T. cruzi
Using a bioinformatic approach, we focused our work on the detection of potential

structural cis-elements located in noncoding regions of functionally related transcripts.

Towards this goal, we carried out a global analysis using T. cruzi genomic data (El-Sayed et

al., 2005). Since there is no information available for T. cruzi RNA-seq reads, noncoding

sequences have been inferred from average lengths of 5′- and 3′-UTRs of T. cruzi

published transcripts (Brandao & Jiang, 2009; Campos et al., 2008) and extracted from

TriTrypDB (http://tritrypdb.org/tritrypdb/) (Methods). These sequences were classified

into functional categories in accordance to the KEGG pathway database (Kanehisa & Goto,

2000) (http://www.genome.jp/kegg/pathway.html). We next generated lists of putative

3′ noncoding regions for each KEGG class containing genomic sequences resembling

3′-UTRs. Allelic copies identified in the hybrid TcVI CL Brener genome having similar

3′-UTRs, 80% identity or higher, were filtered to reduce redundancy (see File S1 and

Methods for details). As a result, we categorized the T. cruzi proteins within 80 groups

including 1814 genes, but only those classes having at least 10 sequences were used in

this paper. Thus, we limited our search to 53 categories termed tcr00010 to tcr04650 (see

Table 1 for descriptions) which enclose 1617 total genes.

Linear motifs are reportedly difficult to define, especially in repeat-rich and atypical

TriTryp genomes which contain pyrimidine-rich elements in the intergenic regions

(El-Sayed et al., 2005; Hendriks & Matthews, 2007). Thus, we used the CMfinder

software (Yao, Weinberg & Ruzzo, 2006) (http://bio.cs.washington.edu/yzizhen/CMfinder/)

for structural RNA motif prediction in the putative 3′-UTR sequences of each group.

Covariance models are RNA motif models that represent both the sequence and structure

binding preferences of RBPs. We chose the best top ranked motif provided by the program.

Therefore, 53 new RNA structural elements were identified and termed according to the

number of the KEGG pathway from which the motifs were obtained: e.g., m00010 is

the motif derived from the tcr00010 dataset (Glycolysis/Gluconeogenesis), m00020 from

tcr00020 (Citrate cycle), etc. Figure 1 illustrates the motif discovery pipeline used (Fig. 1A)

and a pie chart distribution of the metabolic groups having at least 10 genes used as the

input data (Fig. 1B).

Figure 2 shows the RNA structures for the predicted motifs. Structured elements had

a length ranging from 28 nts (tcr00240, Pyrimidine metabolism) to 87 nts (tcr03010,

Ribosome). Nearly all the consensus motifs fold as a predicted stem-loop structure, with an

average hairpin length of 15 bp and a loop ranging from 3 to 18 nts, giving rise to loops of

a median length of 4 nts. Based on the logo representation, some motifs were classified ac-

cording to their nucleotide composition. File S2 shows the consensus sequence, secondary

structure in bracket notation and sequence logo of all the candidate RNA elements.
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Table 1 Metabolic gene clusters used for motif elucidation. List of the 53 T. cruzi metabolic groups
obtained from KEGG pathway database composed by at least 10 sequences that were used for motif
search. Overall, 43 out of 53 categories have at least 50% of the BLAST sequences containing the complete
motif within the EST hit, reinforcing the idea that our datasets could be used to identify putative
regulatory RNA elements.

KEGG group Description N %

tcr00010 Glycolysis/Gluconeogenesis 61 36.4

tcr00020 Citrate cycle (TCA cycle) 37 44.4

tcr00030 Pentose phosphate pathway 33 75.0

tcr00051 Fructose and mannose metabolism 20 60.0

tcr00071 Fatty acid metabolism 32 80.0

tcr00100 Steroid biosynthesis 13 75.0

tcr00130 Ubiquinone and other terpenoid-quinone biosynthesis 11 100.0

tcr00190 Oxidative phosphorylation 63 80.0

tcr00230 Purine metabolism 88 66.7

tcr00240 Pyrimidine metabolism 69 60.0

tcr00250 Alanine, aspartate and glutamate metabolism 26 88.9

tcr00260 Glycine, serine and threonine metabolism 22 100.0

tcr00270 Cysteine and methionine metabolism 26 50.0

tcr00280 Valine, leucine and isoleucine degradation 37 33.3

tcr00310 Lysine degradation 26 80.0

tcr00330 Arginine and proline metabolism 26 25.0

tcr00350 Tyrosine metabolism 13 100.0

tcr00380 Tryptophan metabolism 24 0.0

tcr00410 beta-Alanine metabolism 16 75.0

tcr00450 Selenocompound metabolism 13 66.7

tcr00480 Glutathione metabolism 33 70.0

tcr00500 Starch and sucrose metabolism 12 85.7

tcr00510 N-Glycan biosynthesis 17 0.0

tcr00520 Amino sugar and nucleotide sugar metabolism 39 75.0

tcr00561 Glycerolipid metabolism 12 71.4

tcr00562 Inositol phosphate metabolism 19 100.0

tcr00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 10 100.0

tcr00564 Glycerophospholipid metabolism 15 100.0

tcr00620 Pyruvate metabolism 39 63.6

tcr00630 Glyoxylate and dicarboxylate metabolism 16 100.0

tcr00640 Propanoate metabolism 20 100.0

tcr00650 Butanoate metabolism 23 100.0

tcr00670 One carbon pool by folate 10 100.0

tcr00785 Lipoic acid metabolism 10 100.0

tcr00900 Terpenoid backbone biosynthesis 12 80.0

tcr00910 Nitrogen metabolism 14 0.0

tcr00970 Aminoacyl-tRNA biosynthesis 36 50.0

tcr03010 Ribosome 201 61.2

tcr03018 RNA degradation 31 100.0

(continued on next page)
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Table 1 (continued)
KEGG group Description N %

tcr03020 RNA polymerase 23 83.3

tcr03030 DNA replication 43 100.0

tcr03040 Spliceosome 44 37.5

tcr03050 Proteasome 50 0.0

tcr03410 Base excision repair 31 100.0

tcr03420 Nucleotide excision repair 41 100.0

tcr03430 Mismatch repair 27 80.0

tcr03440 Homologous recombination 19 100.0

tcr03450 Non-homologous end-joining 12 100.0

tcr04070 Phosphatidylinositol signaling system 26 14.3

tcr04120 Ubiquitin mediated proteolysis 35 100.0

tcr04130 SNARE interactions in vesicular transport 46 100.0

tcr04144 Endocytosis 37 50.0

tcr04650 Natural killer cell mediated cytotoxicity 12 100.0

Notes.
N, number of sequences in each group. %, percentage of sequences harboring RNA motifs within the annotated EST hit
in each metabolic group.

Evaluating the significance of the motif enrichment by randomiza-
tion tests
Next, we further analyzed the specific-enrichment of the RNA elements in the KEGG

groups. Consequently the motif representation was calculated as the percentage of

element-containing sequences over the total number of sequences in each category

(detailed under Methods). Overall, 79% of the groups have specific RNA elements.

Accordingly, 42 out of 53 KEGG categories encompassed conserved structural motifs

statistically enriched in their 3′-UTRs in comparison with control groups using random

3′-UTR datasets (Z-test, FDR 10%) (Fig. 3 and Table S1). For example, the RNA motif

m00030 that was originally discovered in the 3′-UTRs of genes from the Pentose phosphate

pathway (tcr00030) was detected in 69.7% of the sequences (23 of 33 mRNAs) but only in

26%± 6% against 50 random searches.

These results reveal that ≈80% of the metabolic pathways analyzed contain specific

signature elements in their noncoding regions different to what could be expected by

chance in a group of random sequences. To see if these RNA motifs are specifically located

at 3′-UTRs, we repeated our searches using the elements identified in the 3′-UTRs as

queries against a 5′-end dataset. This dataset is composed of 350-nt fragments of the 5′-end

of T. cruzi transcripts, grouped according to KEGG pathways (Methods). We next calculate

the relative frequencies of elements (number of hits found in each group divided by its

sequence length). Virtually all the motifs were noticeably over-represented in the 3′-UTRs

compared with the 5′-end subset (Fig. S1), indicating a preferred 3′-UTR localization. See

File S3 for a complete list of element-containing genes.
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Figure 1 Computational workflow and dataset. (A) Motif discovery pipeline used in this work. (B) Pie chart distribution of the 53 KEGG metabolic
groups having at least 10 3′-UTR sequences used as input for RNA motif elucidation.

Constraints in motif orientation and position
RNA-binding elements need to be oriented in a particular direction relative to the coding

sequence in order to carry out their regulatory function (Elemento, Slonim & Tavazoie,

2007). Thus, motif sequences are biologically significant when located on one strand,

but not on the other. To evaluate sequence orientation preference, we compared the

motif occurrences on the transcribed strand (genuine transcript) against the information

acquired by its occurrences on the non transcribed strand (anti-sense transcript). The

coverage test showed that most of the motifs previously described (38 out of 42) have

an orientation bias, with a particular sense orientation (χ2 test, FDR 5%) (Table S2 and

Fig. S2). This property is consistent with RNA regulatory motifs located in a precise

orientation with respect to the coding sequence. A definitive list containing the motif ’s

representation of the 38 significant RNA elements and their P-values are shown in Table 2.

Because there is no data available for the full T. cruzi transcriptome, we searched a

trypanosomal transcript database for the presence of Expressed Sequence Tag records
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Figure 2 Conserved structural elements in predicted T. cruzi 3′-UTRs. Secondary structures of the 53
conserved RNA elements were predicted using RNAfold program (Hofacker, 2003). Sequence composi-
tion of hairpin-loops having a singular nucleotide enrichment are shown below the panels. Sixteen loops
of T. cruzi 3′-UTR motifs have an exclusive AU composition, six encompass the pattern UAUA, seven
AUAU, and the others contain the AAU, AUUU or UUUUAU topology.

that could match the predicted 3′-UTR used in this work. About 10% of the total

motif-containing KEGG sequences (107 out of 1090 non-redundant genes) gave a positive

blast hit in the database considering an alignment of more than 150 nts with >95% of

identity. Remarkably, 78.5% (84 out of 107) of these sequences contain the candidate

element fully aligned against the EST transcript sequence. Table S3 shows a chart with the

BLAST output of the KEGG genes indicating the motif position in the predicted 3′-UTR.

Next, we sought to determine the percentage of sequence-containing motifs within the EST
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Figure 3 Motif density in predicted T. cruzi 3′-UTRs. Conserved structural motifs statistically enriched
in several KEGG categories in comparison with 50 control random groups. The chart shows the percent-
age of motif-containing sequence in each group. Elements marked with a black circle have no statistical
significance after considering the coverage test (χ2 test, FDR 5%) (see text).

for each of the 53 KEGG metabolic group. As shown in Table 1 and Fig. S3, most of the

KEGG groups analyzed here (43 out of 53) contain more than 50% of the sequences having

the entire RNA candidate element aligned within the ESTdb hit; thus reinforcing the idea

that the motifs are located within UTRs.

In this regard, we found that the majority of the motifs that were identified in 3′-UTRs

have a position bias. If we split the 350-nt sequence into two segments, almost 60% of the

elements were preferentially located proximal to the CDS. The proportion of RNA motifs

located in the vicinity of the ORF increase to 75% when we restricted the study to those

elements having the most significant e-values (E < 10−9) (Table S4). This observation

has also been reported for some regulatory elements (Elemento, Slonim & Tavazoie, 2007;

Mao, Najafabadi & Salavati, 2009). In Fig. 4A we show the distribution of RNA element

localizations within the 3′-UTRs. However, this distribution is dependent on how we

bin data. Contrarily, the probability density plot in Fig. 4B, which produces a smoother

representation of the histogram, is independent of bin size. Both Figs. 4A and 4B show a

declining trend for the localization of the identified RNA motifs as we move away from

the stop codon. We are aware that this declining trend (observed at both ends in Fig. 4B)

may reflect an artifactual boundary effect. However, because this effect is noticeably more

pronounced in the distal part of the molecule (300–350 nts) we interpret this to suggest

that the optimal localization of these motifs could be proximal to the coding region.
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Table 2 List of structural RNA elements found in this work. List of the 38 elements statistically enriched
in the 3′-UTR of metabolically related transcripts, KEGG groups, motif coverages and P-values with FDR
5%.

RNA element KEGG group Cov. (%) P-value

m00020 Citrate cycle (TCA cycle) 64.9 1.4E−03

m00030 Pentose phosphate pathway 69.7 8.3E−06

m00071 Fatty acid metabolism 84.4 4.7E−05

m00240 Pyrimidine metabolism 39.1 3.1E−02

m00250 Alanine, aspartate and glutamate metabolism 65.4 1.4E−03

m00260 Glycine, serine and threonine metabolism 63.6 2.3E−08

m00270 Cysteine and methionine metabolism 65.4 7.7E−02

m00280 Valine, leucine and isoleucine degradation 78.4 2.1E−03

m00310 Lysine degradation 80.8 7.7E−10

m00330 Arginine and proline metabolism 65.4 3.4E−04

m00380 Tryptophan metabolism 75.0 2.9E−03

m00410 beta-Alanine metabolism 68.8 1.2E−02

m00480 Glutathione metabolism 33.3 0.0E+00

m00500 Starch and sucrose metabolism 91.7 3.3E−02

m00510 N-Glycan biosynthesis 82.4 1.3E−08

m00520 Amino sugar and nucleotide sugar metabolism 76.9 1.4E−12

m00561 Glycerolipid metabolism 100.0 5.1E−06

m00562 Inositol phosphate metabolism 73.7 7.8E−10

m00564 Glycerophospholipid metabolism 73.3 2.0E−05

m00620 Pyruvate metabolism 87.2 2.3E−08

m00630 Glyoxylate and dicarboxylate metabolism 87.5 7.4E−05

m00640 Propanoate metabolism 90.0 9.7E−04

m00670 One carbon pool by folate 80.0 4.9E−05

m00785 Lipoic acid metabolism 100.0 0.0E+00

m00900 Terpenoid backbone biosynthesis 83.3 1.3E−10

m00910 Nitrogen metabolism 42.9 5.3E−06

m00970 Aminoacyl-tRNA biosynthesis 66.7 2.0E−06

m03010 Ribosome 92.5 0.0E+00

m03020 RNA polymerase 78.3 1.0E−01

m03030 DNA replication 48.8 6.4E−03

m03050 Proteasome 52.0 4.5E−03

m03420 Nucleotide excision repair 51.2 3.5E−02

m03430 Mismatch repair 66.7 3.1E−03

m03440 Homologous recombination 78.9 0.0E+00

m04070 Phosphatidylinositol signaling system 46.2 2.3E−10

m04120 Ubiquitin mediated proteolysis 51.4 4.0E−08

m04130 SNARE interactions in vesicular transport 80.4 1.5E−12

m04144 Endocytosis 64.9 4.1E−08
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Figure 4 RNA motifs are located in the vicinity of the translational stop codon. (A) Histogram of motif
localization within the 3′-UTR. The distribution of the RNA elements (center position) in the 1335 genes
from the KEGG categories were plotted with a bin width of 20 nts. (B) Probability density function of
the 3′-UTR motif localization (Kernel density estimation, using Gaussian approximation for bandwidth
selection).

Altogether, these results suggest that most of the sequences selected for this study could

be considered as 3′ noncoding regions, with the RNA motifs most probably making part

of the 3′-UTR and located at a particular distance from the stop codon, increasing the

probability that the reported motifs have biological functions.

Motif representation in other metabolic pathways indicates that
most of the RNA elements belong to a specific group
We next performed an all-against-all comparison of the presence of each motif in the

3′-UTRs of all KEGG categories, to evaluate the distribution of the previously identified

elements in different metabolic groups. In this strategy, each RNA element is used to search

into all individual KEGG T. cruzi datasets (e.g. the m00010 element is separately searched

against dataset tcr00010 to tcr04650) (see Table S5). However this examination is not

valid if KEGG groups share a high number of genes. Under this scenario, a significant
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Figure 5 All-against-all comparison. (A) Box plot representation of RNA motif density among the 19 non-overlapped datasets. Open circles
indicate outliers groups where the identified motif was more abundant in the corresponding dataset compared with the remaining groups (a red
circle indicates motif coverage in the original KEGG category). Black bar, second quartile (Q2, median); Box, interquartile range (IQR, Q3-Q1);
Whisker, +/− 1.5 IQR. (B) Heatmap of the previous chart showing three main clusters of RNA elements (I, II and III). A white/yellow color
indicates high correlation, red color indicates low correlation.

motif density in two different groups can simply be the result of the presence of a high

number of shared genes, and not of the conservation of RNA structure in the absence of

sequence similarity. To avoid this situation, we first clustered the initial KEGG dataset

into 23 disjoint (non-overlapped) sets (see Fig. S4 and Methods). From this set, we

selected 19 non-overlapping groups that have significantly enriched RNA elements.

Figure 5A shows a box plot chart containing the 3′-UTR motifs in the x-axis and the

percentage of motif-containing mRNAs from each KEGG dataset in the y-axis. It is

noteworthy that 15 out of 19 elements (78.9% of total cases) were statistically more

abundant in mRNAs of the KEGG dataset from which the motif was initially identified. For

example, the m00330 has a motif representation of≈65% in the KEGG tcr00330 dataset,

but less than 40% in all the remaining groups. Arrows above each motif represent the 15

significant motifs that are specifically enriched in their classes (group-specific motifs).

Only in four cases the motif ranked at the second position: m00280, m0970, m03050 and

m03010 (see below).

Additionally, data were also visualized by a heatmap analysis using R package (Fig. 5B).

The heatmap plot shows that [1] as anticipated, most of 3′ motifs were specifically

enriched in the group from which they were derived (a white/yellow color indicates
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high correlation, red color indicates low correlation); [2] some elements displayed lower

abundances: m00480 and m04120; and [3] other elements are widely enriched and have

a high abundance in 3′-UTR mRNAs of metabolically unconnected groups: m00030,

m00280, m04130 and m03010, being this last motif the one having the most widespread

distribution. This evidence indicates that structured 3′-UTR elements can constitute a

signal network, being mostly present in groups of mRNAs that belong to a given metabolic

pathway (group-specific elements) or being part of a wide-ranging distribution. The

dendogram depicted in Fig. 5B separates motifs into three main clusters. Cluster I contains

11 motifs involved in specific cellular processes. In addition, four elements from Cluster

II are specifically enriched in the group from which they were discovered. However, it

is noteworthy that these RNA elements (m00030, m00620, mm03020 and m04130)

also present an important enrichment in the 3′-UTR of other groups. In this context,

we speculate that certain cis-acting signals may be shared among different but related

metabolic categories, i.e. m00030 (Penthose phosphate pathway) and m00620 (Pyruvate

metabolism) thus organizing a combinatorial network of RNA-RBP interactions. Finally,

Cluster III contains the global element m03010. The Top 2 RNA motifs extensively

distributed, m00280 and m03010, also presented the highest abundances in our validation

strategy using randomized datasets. This produces a high representation of these motifs

among unconnected metabolic groups, which hampers the analysis of their biological

relevance. Altogether, the estimation of motif density among groups that did not share any

transcripts (19 non-overlapped datasets) showed that at least 15 group-specific elements

were more abundant in their corresponding category compared with all remaining groups.

Nevertheless, a few elements such as m00030 and m04130 were also enriched in other

datasets. A similar analysis was performed using 27 metabolic groups sharing less than

25% of the genes and comparable results were obtained [85% of the RNA elements were

group-specific (data not shown)].

Validating predicted motifs using independent genomic and gene
ontology data sets
In previous sections we found that a number of RNA motifs are specifically enriched in

groups of functionally interrelated coding genes. To obtain an independent validation

of the representation of these motifs in functional categories, we performed a reverse

validation in which we searched the complete T. cruzi genome with each of these 53 motifs,

using the cmsearch algorithm. We next analyzed the positive hits for each motif to see if

there was a significant enrichment in annotated functional categories in each group. To

do this we fetched the results of these searches into the DAVID server (NIAID, National

Institutes of Health) (Huang et al., 2007) to evaluate functional enrichment in each of the

53 lists of genome motif-containing targets. The results show that 73.6% of the putative

elements (39 out of 53) were successfully used to predict related gene targets with the same

biological function of the category from which the motif was originated (results available

in Table S6).

To cross-validate the motifs, we used a dataset grouped according to the Gene Ontology

project (http://www.geneontology.org/). We analyzed 93 groups of 3′ downstream
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sequences having at least 10 sequences each (see File S4). We found that 35 out of 38

motifs (92%) were over-represented in at least one GO category compared with random

searches. As expected, 11 out of 35 elements (31%) were enriched in groups of closely

related function: m00270, m00310, m00480, m00562, m03010, m03050, m03420, m03430,

m03440, m04120 and m04130 (Table S7). These results show that ≈74% of the motifs

analyzed here were successfully validated against a full search in the T. cruzi genome and

a third part of the elements could also be confirmed using a different dataset grouped by

ontology characters.

Co-occurrence of specific RBP recognition sites and regulon’s
signals
When we inspected the list of mRNAs co-immunoprecipitated in TcDHH1-containing

granules (Holetz et al., 2010) (cellular structures that appear to be more related to a RNA

degradative rather than stabilizing process), we could not detect over-representation of any

elements, with the exception of m00250 (Ala, Asp and Glu metabolism) (data not shown).

This observation suggests that aggregation of transcripts in TcDDH1 granules may not

be guided by specific cis-acting signals but for a general recruitment’s mechanism, still

unknown.

We next searched for co-occurrence of experimental RNA-binding elements (previously

described in our laboratory) and structured motifs identified in this study. To this end, we

examined the targets of UBP1 and RBP3 -containing the recognition motifs UBP1m and

RBP3m (Noe, De Gaudenzi & Frasch, 2008)- and counted the number of targets containing

(or not) any of the candidate elements. The data obtained revealed that the RBP3 binding

motif was enriched in the Ribosome KEGG group (tcr03010 dataset) (P < 0.05,χ2 test)

(see Table 3). When UBP1 mRNA target hits were analyzed, we found that the UBP1

binding motif was enriched in six KEGG groups (m00230, m03420, m00020, m00010,

m00785, m03450) compared with the entire T. cruzi genome representation (χ2 test,

Bonferroni correction). Therefore, for seven categories a significant number of genes have

a co-occurrence of both sequences (one specific RBP binding site and one predicted KEGG

element) in their 3′-UTRs, suggesting that these particular groups could be coordinately

regulated by specific trans-acting factors and thus defining a post-transcriptional regulon.

RNA motifs are differentially expressed during parasite develop-
ment and stress response
We used T. cruzi microarray data provided by the Tarleton laboratory (Minning et al., 2009)

to investigate the motif representation among clusters of developmentally co-expressed

genes. Firstly, we used the coXpress v1.3 program (http://coxpress.sf.net) to obtain

74 clusters of co-expressed genes. For each sequence in a cluster, we obtained 350 nts

downstream of the stop codon of the CDS as annotated in TriTrypDB to obtain sequences

resembling 3′-UTR (see Methods). Secondly, predicted 3′-UTRs of transcripts included in

these groups were utilized to analyze the motif density for each putative RNA element. To

analyze the statistical significance of the enrichment of these elements, we compared the

experimental data against random distributions (P < 0.001, Z-test). Interestingly, 18 out
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Table 3 Co-occurrence of specific RBP sites and regulon’s elements. Co-occurence of structural KEGG RNA motifs and experimental RNA-binding
sites of T. cruzi RBPs.

Motif KEGG Description N % Co-occ P-value B-H Bonf.

UBP1

tcr00230 Purine metabolism 31 9.7 3 8.3E−09 8.3E−09 4.4E−07

tcr03420 Nucleotide excision repair 21 9.5 2 3.0E−06 3.0E−06 1.6E−04

tcr00020 Citrate cycle (TCA cycle) 24 8.3 2 1.6E−05 1.6E−05 8.3E−04

tcr00010 Glycolysis/Gluconeogenesis 28 7.1 2 8.4E−05 8.9E−05 4.4E−03

tcr00785 Lipoic acid metabolism 10 10.0 1 6.5E−04 7.1E−04 3.5E−02

tcr03450 Non-homologous end-joining 10 10.0 1 6.5E−04 7.2E−04 3.5E−02

tcr04650 Natural killer cell mediated cytotoxicity 11 9.1 1 1.3E−03 1.4E−03 6.7E−02

tcr00650 Butanoate metabolism 13 7.7 1 3.5E−03 4.1E−03 1.9E−01

tcr00630 Glyoxylate and dicarboxylate metabolism 14 7.1 1 5.3E−03 6.2E−03 2.8E−01

tcr03018 RNA degradation 14 7.1 1 5.3E−03 6.4E−03 2.8E−01

tcr03410 Base excision repair 14 7.1 1 5.3E−03 6.5E−03 2.8E−01

tcr03440 Homologous recombination 15 6.7 1 7.5E−03 9.5E−03 4.0E−01

tcr03430 Mismatch repair 18 5.6 1 1.7E−02 2.2E−02 9.2E−01

tcr00310 Lysine degradation 21 4.8 1 3.2E−02 4.2E−02 1.7E+00

tcr00030 Pentose phosphate pathway 23 4.3 1 4.4E−02 6.0E−02 2.3E+00

RBP3

tcr03010 Ribosome 186 3.2 6 3.0E−02 — —

of the 53 RNA motifs were statistically enriched in 20 groups of developmentally regulated

(co-expressed) genes (see Fig. 6 and File S5). From these 18 elements, 13 (72%) belong

to the 38 statistically significant candidates listed in Table 2: m00310, m00380, m00410,

m00480, m00500, m00562, m00670, m00900, m00970, m03430, m03440, m04070 and

m04120 (see Table 4 for a detailed list of developmentally regulated motifs).

Using a similar strategy we next investigated the transcriptional response of T. cruzi

epimastigotes submitted to hyperosmotic stress. Using the data from Li et al. (2011), we

analyzed the expression profiles of co-expressed genes and identified 33 sets of similarly

regulated genes (File S6). As before, we analyzed the statistical significance of these

element’s enrichments comparing the experimental data against random distributions

(P < 0.001, Z-test). When epimastigote cells were subjected to hyperosmotic stress during

a time-course experiment, nine RNA motifs were statistically over-represented in 10

co-regulated gene clusters (CI, CII, CIII, CVIII, CIX, CX, CXI, CXII, CXXII and CXXIII)

compared to random searches (P < 0.001, Z-test). From these nine elements, six (m00310,

m00510, m00562, m00670, m00785 and m03440) belong to the 38 statistically significant

motifs (Table 5).

There are four RNA motifs that are over-represented in four clusters of genes

differentially up-regulated by stress. These elements are: m00310 (in CII and CXI),

m00562 (in CII, CIII and CVIII), m00670 (in CII) and m00785 (in CVIII). On the

other hand, two structured motifs were enriched in two clusters of down-regulated

genes: m00510 (in CXII) and m03440 (in CXII and CXXIII). These results suggest that
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Figure 6 Developmentally regulated cis-elements. Profile expression of several developmentally regu-
lated clusters having over-represented RNA elements (depicted at the right of the panels). A, amastigote,
T, trypomastigote, E, epimastigote, M, metacyclic.

a number of candidate RNA elements identified in this work may be involved in the

post-transcriptional regulation of a variety of genes whose expression changes significantly

during the parasite’s life-cycle or upon stress.

DISCUSSION
The life-cycle of an RNA in trypanosomatids mostly depends on post-transcriptional

mechanisms due to the absence of a tight control at the transcriptional level. Given the
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Table 4 Developmentally regulated motifs. List of RNA motifs over-represented in clusters of develop-
mentally regulated genes in T. cruzi.

Cluster N Functional enrichment RNA motifs

C1 166 nucleotide binding m00100, m00130, m00310*,
m00350, m00563, m00670*, m04120*

C3 96 WD40 repeat m00500*

C4 28 nucleoside binding m03430*

C5 56 Trypanosome sialidase m00051, m00562*, m03440*

C6 256 translation m00480*

C10 194 ribonucleotide binding m00562*, m00563, m00670*

C15 21 Trypanosome sialidase m04070*

C16 175 electron carrier transport m00051, m00380*, m00410*,
m00500*, m00563

C17 96 Chaperonin Cpn60/TCP-1 m00130, m03440*

C22 194 flagellar motility m00563, m00670*

C23 155 proteolysis m00051, m00310*, m00670*, m00970*

C24 22 — m00900*, m04070*

C26 16 sugar/inositol transporter m00670*

C28 34 — m00562*

C31 57 metal-binding m00480*

C32 28 Trypanosome sialidase m00562*

C40 11 — m03440*

C44 241 RNA polymerase act. m00563

C49 9 Trypanosome sialidase m00562*

C51 9 — m00970*

Notes.
N, number of sequences in each cluster.

* Statistically significant RNA motifs from Table 2.

large diversity of cellular transcripts, the separation of a transcriptome into modules of

co-regulated genes is likely to be an advantageous strategy. Particularly in the case of

trypanosomes, RNA regulons may represent an ideal system to achieve an adequate control

of gene expression. In the past few years several reports provided evidence indicating that

trypanosomal transcripts are organized as post-transcriptional regulons (Archer et al.,

2009; Das et al., 2012; Estevez, 2008; Guerra-Slompo et al., 2012; Mayho et al., 2006; Noe,

De Gaudenzi & Frasch, 2008). Furthermore, several RBPs have also been shown to interact

with a subset of stage-specific mRNAs, suggesting the presence of developmental regulons

(Dallagiovanna et al., 2008; Li et al., 2012; Mörking et al., 2012; Walrad et al., 2012).

Nowadays, the three-dimensional structure prediction tools of RNA based on its

sequence constitutes a major challenge (Cruz et al., 2012). However, several methods

for determining predictive models of RNA secondary structures have been described in the

last decade (Seetin & Mathews, 2012) and, some of them, were used here to elucidate RNA

regulons in≈70% of the trypanosomal 3′-UTRs analyzed. Probably, the lack of advanced

methods to facilitate the estimation of higher-order RNA structures is a partial explanation

for why we failed to identify RNA motifs in≈30% of the KEGG groups. Identification of
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Table 5 RNA motifs over-represented in transcripts affected by stress. List of structured RNA motifs
over-represented in gene clusters affected under hyperosmotic stress conditions. CXXII contains non-
regulated genes; CI, CII, CIII, CVIII, CIX, CXI contain up-regulated genes; and CXII, CXXIII contain
down-regulated genes.

Cluster N Over-represented RNA motifs

CI 95 m00480

CII 64 m00310*, m00562*, m00670*

CIII 61 m00562*

CVIII 52 m00450, m00562*, m00785*

CIX 42 m00510*, m00562*

CX 34 m003440*

CXI 60 m00310*

CXII 63 m00510*, m03440*

CXXII 53 m04144

CXXIII 54 m03440*

Notes.
N, number of sequences in each cluster.

* Statistically significant RNA motifs from Table 2.

conserved elements constitutes the primary step in the characterization of RNA regulons

and to our knowledge, this is the first systematic genome-wide in silico screen to search

for novel structural cis-acting elements in T. cruzi. The major findings of this investigation

can be summarized as follow: [1] 38 KEGG groups have conserved structured elements

mostly located in the 3′-UTR (Fig. 3); [2] these motifs have a preferred sense orientation

and are positioned in the vicinity of the translational stop codon (Fig. 4); [3] structured

RNA motifs found in the 3′-UTR are highly represented in its corresponding metabolic

categories compared with random/remaining KEGG groups (Fig. 5), as previously

reported in other RNA regulon heatmaps (Hogan et al., 2008). Through the binding

of cognate RBPs, the RNA motifs present in a given metabolic pathway may guide the

construction of regulatory networks, also called RNA regulons (see model in Fig. 7).

The element m03010 is greatly over-represented in the dataset, being found in

≈90% of the 3′-UTRs of the ribosomal protein genes. It was previously reported that

ribosome biogenesis is controlled by post-transcriptional mechanisms (Grigull et al.,

2004; Thorrez et al., 2008) and that sequence elements are shared by the transcripts

encoding its components. For instance, a conserved sequence motif UUGUU is present

in many ribosomal protein 3′-UTRs in nematodes (Hajarnavis & Durbin, 2006), probably

involved in translation regulation. The data obtained revealed that the motif UUGUU is

over-represented in the mRNAs of trypanosomal ribosomal proteins (92.7%, 280 of 302),

compared to the remaining KEGG groups (75.5%, 780 of 1033) (P < 0.0001, χ2 test). This

short motif is also present in the consensus sequence of the structural m03010 element.

A number of studies in trypanosomes show that genes encoding interrelated proteins

have similar mRNA levels (Minning et al., 2009). For diverse groups of genes, this similarity

in mRNA levels can be extended to concerted changes during differentiation or in

perturbation experiments, suggesting that the transcriptome of these parasites is organized
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Figure 7 Model of conserved structural elements in T. cruzi. Scheme showing the spatial organization of RNA motifs in 3′-UTRs of several
transcripts. Only a single element is shown in each mRNA to simplify the figure, but a combinatorial organization (co-occurrence of different motifs)
is required to ultimately describe the dynamics and connectivity of the post-transcriptional network. Numbers 1–15 represent genes belonging to
different metabolic groups. RBP1-3, RBPs that specifically recognize RNA motifs (from group 1 to 3) and orchestrate three post-transcriptional
regulons. In some circumstances, these interactions can occur in a developmentally regulated manner.

in clusters of transcripts exhibiting similar transcript abundance profiles (Ouellette &

Papadopoulou, 2009; Rochette et al., 2008; Veitch et al., 2010). Also the abundance of certain

ncRNAs varies between distinct forms of T. brucei (Michaeli et al., 2012). Here, we reported

that functional groups in T. cruzi share common motifs (as depicted in Fig. 6), offering

a starting point to screen for trans-acting factors in each set of mRNAs, or regulons, that

probably modulate their abundance, turnover and/or access to the translation machinery.

Our results demonstrate that members of different clusters display similar RNA

abundances in distinct stages of the T. cruzi life-cycle (Fig. 6 and Table 4) and in specific

cellular conditions (Table 5). Analysis of developmentally regulated clusters with the

DAVID Functional Annotation Chart tool revealed that clusters C1, C5, C23, C32 and

C49 contain metabolically connected transcripts with profile expressions that might be

coordinated by the over-represented elements (Table 4). For instance, the m00562 motif,

present in the majority of genes of the inositol phosphate pathway follows in part the

same profile expression pattern of Trypomastigote-like Trans-sialidase genes [notice that

Trans-sialidase enzyme is GPI-anchored in the infective trypomastigote forms of the

parasite (Chaves, Briones & Schenkman, 1993)]. This outcome could probably be the result
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of the same pattern of regulation exerted over a cohort of transcripts. These observations,

together with the existence of common sequence signals involved in protein recognition

within each group of mRNAs, make it possible to describe the components that make up

numerous potential post-transcriptional regulons.

mRNP complexes are highly dynamic structures that can be rapidly remodeled in

response to alterations in environmental conditions or during differentiation (Keene,

2007; Mansfield & Keene, 2009). Protein composition of these mRNP complexes modulates

RNA biology in different environmental conditions or developmental stages. To assess

whether post-transcriptional regulons are remodeled under stress conditions, we evaluated

the abundance of structured RNA motifs in genes clustered by their expression profile

after hyperosmotic stress during a time course study. Several clusters of stress regulated

transcripts were observed (as depicted in Table 5), denoting that potential RNA regulons

can still coordinate gene expression under osmotic stress conditions. In this context, it was

also shown that TbDRBD3 remains bound to its specific target transcripts after starvation

or arsenite treatment (Fernandez-Moya et al., 2012).

The four RNA elements that fulfill all the criteria examined in this work are m00310

(Lysine degradation), m00562 (Inositol phosphate metabolism), m00670 (One carbon

pool by folate) and m03440 (Homologous recombination). These potential RNA-binding

sites have a specific motif enrichment, a particular sense orientation, and are differentially

expressed during parasite development and stress response. Although future experimental

approaches are necessary to explore their biological functions, it is worth noticing that a

complete in silico analysis was able to reveal hidden regulatory connections between these

genes.

Regulatory cis-elements tend to be conserved among closely related organisms. To

evaluate whether orthologous structural RNA elements could be acting in 3′-UTRs of

other kinetoplastid parasites, we searched a variety of T. cruzi elements in T. brucei and

L. major 3′-UTR datasets (unpublished data). As expected, several 3′ structured motifs

identified in T. cruzi were also recognized in T. brucei [a species that diverged from the

American parasite circa 100 million years ago (Stevens et al., 1999)], and to a lesser extent

in L. major [speciation of Trypanosoma and Leishmania genus occurred 200–500 million

years before present (Overath et al., 2001)]. These preliminary results suggest that there

may also be a conserved phylogenetic signal in these structured RNA elements.

CONCLUSIONS
The regulon model states that RBPs coordinately regulate multiple mRNAs coding

for interrelated proteins by interacting with transcripts containing shared elements.

These post-transcriptional regulons could describe how gene expression is coordinately

achieved in organisms where transcriptional regulation (at the initiation level) does not

seem to play a major role. In this work, we reported the bioinformatic characterization

of conserved structural cis-regulatory RNA elements in the 3′-UTRs of metabolically

clustered T. cruzi transcripts. Using a computational approach, we have previously

identified a collection of hundreds of RBPs encoded in the TriTryp genomes potentially
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involved in post-transcriptional mechanisms (De Gaudenzi, Frasch & Clayton, 2005).

That genome-wide screen for RRM-type RBPs, is now followed in this work by the

identification of novel putative RNA-binding sites shared by diverse mRNAs. Taken

together, these two computational studies lay out the foundation required for further

functional characterization of these post-transcriptional regulons in trypanosomatids.

METHODS
Databases
The T. cruzi database (T. cruzi CL Brener genomic sequence Release 5.1) utilized in this

work was obtained from TriTrypDB Database Resource (www.tritrypdb.org) (Agüero et

al., 2006). 5′ upstream genomic sequences and 3′ downstream genomic sequences were

obtained using the TriTrypDB sequence retrieval tool. A length of 80 nts upstream to the

CDS was used to obtain sequences resembling the 5′-UTR, while 350 nts downstream to

CDS were used for 3′-UTR, in agreement to previously reported data from trypanosomes

(Campos et al., 2008). The 5′-end of transcripts was estimated as a 350-nt sequence

encoding the predicted 5′-UTR followed by the first 270 nts of the coding region (in order

to cover the same total length of the 3′-UTRs).

Trypanosomatid genes were grouped by the KEGG pathway database (Kanehisa & Goto,

2000). EST databases (T. cruzi filtered) were downloaded from NCBI and BLASTn searches

were performed with the following parameters “−F F −W 7 −E 1e−5 −S 1 −b 1 −v 1

−m 8”. DAVID Functional Annotation Chart tool (Huang et al., 2007) (http://david.abcc.

ncifcrf.gov/) was used to categorize and compare the different gene lists against a T. cruzi

background (using Fisher’s exact test and Benjamini-Hochberg correction).

RNA motif elucidation
All computational analyses were performed using free software, available in the public

domain and compiled for a LINUX environment (Ubuntu 9.10 distribution). Using

CMfinder stand-alone software version 0.2 (Yao, Weinberg & Ruzzo, 2006) (http://bio.

cs.washington.edu/yzizhen/CMfinder/), common elements were identified in 53 different

datasets containing at least 10 sequences, using the following parameters “−s1 −f 0.6

−c10”. As a control, motifs were also obtained using random sets. The 53 candidate motifs

obtained were used to build stochastic context-free grammar (SCFG) model with the

Infernal program (Nawrocki, Kolbe & Eddy, 2009). These models are representations of

the RNA secondary structure and were used as queries in more refined searches (cmsearch

algorithm). To validate the usage of models, a full test comparison between cmsearch and

CMfinder’s output was performed to determine the parameters of true and false positive

rates. Thus, each model was used to assess the element coverage within the 3′ sequences

in the KEGG dataset (m00010 vs. tcr00010, m00020 vs. tcr00020, etc). We found that

cmsearch tool gave a very good performance, being able to find most of the originally

predicted CMfinder elements (mean “sensitivity” 0.91), giving very few false positives

(mean “1-specificity” of 0.13) with a mean accuracy of 0.90.
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Randomization test
Random datasets were constructed using a custom Perl script (version 5.8). Fifty different

groups containing 3′-UTRs were obtained by randomly shuffling the original dataset

of 1814 sequences from the KEGG repertoire and used in searches with CMfinder and

Infernal programs. Each KEGG motif was used to search with Infernal program (Nawrocki,

Kolbe & Eddy, 2009) against 50 random groups containing a similar number of sequences.

Statistical analysis
All statistical tests were corrected for multiple-testing, using the Benjamini-Hochberg False

Discovery Rate (FDR) procedure. To test statistical significance of detected motifs, we

first evaluated the specific enrichment of a given element. We defined specific enrichment

as the mean difference of sequences having the motif in the original set, compared to

sets of non-related sequences. For this, we generated a distribution of specific-motif

enrichment by searching a given motif into 50 groups of non-related 3′-UTRs (randomly

generated groups). The motif coverage (i.e., the number of sequences having a motif

divided the total number of sequences in the group) was normally distributed, allowing

us to calculate a Z-score for each putative motif [(specific-motif coverage — mean

coverage in random groups)/standard deviation]. As the expected motif coverage was

sensitive to the size of the group, we actually generated distributions for different group

sizes (N = 5 to N = 200) and evaluated each motif significance with the corresponding

distribution (according to its size). To determine if the specific-enrichments are significant,

we generated a null distribution of motif-specificity, from sets of non-related sets of

UTRs. A second Z-score was calculated and used to determine whether a particular

specific-enrichment is expected by chance or not. Because this test was more restrictive,

and to avoid losing too much sensitivity, we set an FDR threshold of 0.1 (i.e., 10% of false

positives are expected). Motif candidates were further filtered based on a motif coverage

test. The motif coverage was calculated for each KEGG group using Infernal algorithm

[using parameter “−toponly−E 1” (Nawrocki, Kolbe & Eddy, 2009)]. Then, we tested if

the motif coverage in a given set of UTRs is significantly higher compared to the set of

complementary strands (i.e., non-transcribed strands where no motifs are expected). For

motif detection in non-transcribed regions, the parameter “−bottomonly” was applied.

Statistical significance of the coverage difference between UTRs and non-transcribed

sequences (sense vs. anti-sense) was assessed by a χ2 test (FDR 5%).

Sequence logos and secondary structures
The motif logo was constructed using WebLogo (http://weblogo.berkeley.edu). RNAfold

tool (http://rna.tbi.univie.ac.at/) (Hofacker, 2003) was used to plot the secondary structure

of the 53 predicted RNA motifs.

Gene filtering
Many T. cruzi genes are present in many copies. To avoid such sequence bias in motif

detection procedures, we filtered out paralogous genes whose UTRs have >80% of

sequence identity (BLAST alignment with at least 280 of the 350 nucleotide matches). In
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addition, truncated UTRs (<350 nts) and UTRs having a stretch of 5 or more ambiguous

nucleotides (NNNNN) were discarded. A total of 106 genes were eliminated after applying

these filters using custom Perl scripts.

Generation of disjoint (non-overlapping) KEGG groups
In order to unbiasedly test if some motifs are present in more than one KEGG group, we

first defined non-overlapped KEGG groups (i.e., groups that have no genes in common).

A measure of overlap between a pair of KEGG groups was calculated as the number of

shared genes divided by the number of total distinct genes considering both groups (set

intersection/set union). Figure S4 shows a dendogram of KEGG groups after a complete-

linkage clustering. All branches starting at a height of 1 are disjoint (non-overlapped),

while groups joining at lower heights have increasing degrees of overlap. To make a dataset

of non-overlapped groups, we simply selected one KEGG group of each branch.

Clustering
Hierarchical clustering was carried out using CoXpress 1.3 software (http://coxpress.sf.

net). Briefly, 5268 genes obtained from T. cruzi microarray data previously published by

the Tarleton lab (Minning et al., 2009) were clustered into 74 profiles using the following

parameters: h = 0.05,r = 0.95. Stress data was extracted from Table S2 of Li et al. (2011)

collected by the Docampo lab. Concisely, 1468 genes affected after hyperosmotic stress

were clustered into 33 profiles using the following parameters: h = 0.01,r = 0.95. RNA

motifs were used to search against clustered and 50 random groups using cmsearch

algorithm and statistical significance was calculated by Z-test.

Abbreviation List

ARE AU-rich element

mRNP messenger ribonucleoprotein

RBP RNA-binding protein

RRM RNA-recognition motif

UTR untranslated region
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Pastro L, Smircich P, Pérez-Dı́az L, Duhagon MA, Garat B. 2013. Implication of CA repeated
tracts on post-transcriptional regulation in Trypanosoma cruzi. Experimental Parasitology
134:511–518 DOI 10.1016/j.exppara.2013.04.004.

Queiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C. 2009. Transcriptome analysis of
differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons.
BMC Genomics 10:495 DOI 10.1186/1471-2164-10-495.

Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J,
Ouellette M, Papadopoulou B. 2008. Genome-wide gene expression profiling analysis
of Leishmania major and Leishmania infantum developmental stages reveals substantial
differences between the two species. BMC Genomics 9:255 DOI 10.1186/1471-2164-9-255.

Seetin MG, Mathews DH. 2012. RNA structure prediction: an overview of methods. Methods
Molecular Biology 905:99–122 DOI 10.1007/978-1-61779-949-5 8.

Smith M, Blanchette M, Papadopoulou B. 2008. Improving the prediction of mRNA
extremities in the parasitic protozoan Leishmania. BMC Bioinformatics 9:158
DOI 10.1186/1471-2105-9-158.

Stevens JR, Noyes HA, Dover GA, Gibson WC. 1999. The ancient and divergent origins of the
human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118(Pt
1):107–116 DOI 10.1017/S0031182098003473.

Thorrez L, Shansky J, Wang L, Fast L, VandenDriessche T, Chuah M, Mooney D,
Vandenburgh H. 2008. Growth, differentiation, transplantation and survival of
human skeletal myofibers on biodegradable scaffolds. Biomaterials 29:75–84
DOI 10.1016/j.biomaterials.2007.09.014.

Vasconcelos EJ, Terrao MC, Ruiz JC, Vencio RZ, Cruz AK. 2012. In silico identification
of conserved intercoding sequences in Leishmania genomes: unraveling putative
cis-regulatory elements. Molecular and Biochemical Parasitology 183:140–150
DOI 10.1016/j.molbiopara.2012.02.009.

Veitch NJ, Johnson PC, Trivedi U, Terry S, Wildridge D, MacLeod A. 2010. Digital gene
expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei
gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics 11:124
DOI 10.1186/1471-2164-11-124.

Walrad PB, Capewell P, Fenn K, Matthews KR. 2012. The post-transcriptional trans-acting
regulator, TbZFP3, co-ordinates transmission-stage enriched mRNAs in Trypanosoma brucei.
Nucleic Acids Research 40:2869–2883 DOI 10.1093/nar/gkr1106.

Yao Z, Weinberg Z, Ruzzo WL. 2006. CMfinder–a covariance model based RNA motif finding
algorithm. Bioinformatics 22:445–452 DOI 10.1093/bioinformatics/btk008.

De Gaudenzi et al. (2013), PeerJ, DOI 10.7717/peerj.118 28/28

https://peerj.com
http://dx.doi.org/10.1093/bioinformatics/btp157
http://dx.doi.org/10.1186/1471-2199-9-107
http://dx.doi.org/10.1186/jbiol203
http://dx.doi.org/10.1016/S0020-7519(01)00152-7
http://dx.doi.org/10.1016/j.exppara.2013.04.004
http://dx.doi.org/10.1186/1471-2164-10-495
http://dx.doi.org/10.1186/1471-2164-9-255
http://dx.doi.org/10.1007/978-1-61779-949-5_8
http://dx.doi.org/10.1186/1471-2105-9-158
http://dx.doi.org/10.1017/S0031182098003473
http://dx.doi.org/10.1016/j.biomaterials.2007.09.014
http://dx.doi.org/10.1016/j.molbiopara.2012.02.009
http://dx.doi.org/10.1186/1471-2164-11-124
http://dx.doi.org/10.1093/nar/gkr1106
http://dx.doi.org/10.1093/bioinformatics/btk008
http://dx.doi.org/10.7717/peerj.118

	Genome-wide analysis of 3'-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes
	Introduction
	Results
	Conserved structural RNA elements in 3'-UTRs of mRNAs encoding metabolically interrelated proteins of T. cruzi
	Evaluating the significance of the motif enrichment by randomization tests
	Constraints in motif orientation and position
	Motif representation in other metabolic pathways indicates that most of the RNA elements belong to a specific group
	Validating predicted motifs using independent genomic and gene ontology data sets
	Co-occurrence of specific RBP recognition sites and regulon's signals
	RNA motifs are differentially expressed during parasite development and stress response

	Discussion
	Conclusions
	Methods
	Databases
	RNA motif elucidation
	Randomization test
	Statistical analysis
	Sequence logos and secondary structures
	Gene filtering
	Generation of disjoint (non-overlapping) KEGG groups
	Clustering

	Acknowledgements
	References


