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Airborne remote sensing offers unprecedented opportunities to efficiently monitor
vegetation, but methods to delineate and classify individual plant species using the
collected data are still actively being developed and improved. The Integrating Data
science with Trees and Remote Sensing (IDTReeS) plant identification competition openly
invited scientists to create and compare individual tree mapping methods. Participants
were tasked with training taxon identification algorithms based on two sites, to then
transfer their methods to a third unseen site, using field-based plant observations in
combination with airborne remote sensing image data products from the National
Ecological Observatory Network (NEON). These data were captured by a high resolution
digital camera sensitive to red, green, blue (RGB) light, hyperspectral imaging
spectrometer spanning the visible to shortwave infrared wavelengths, and lidar systems to
capture the spectral and structural properties of vegetation. As participants in the IDTReeS
competition, we developed a two-stage deep learning approach to integrate NEON remote
sensing data from all three sensors and classify individual plant species and genera. The
first stage was a convolutional neural network that generates taxon probabilities from RGB
images, and the second stage was a fusion neural network that "learns" how to combine
these probabilities with hyperspectral and lidar data. Our two-stage approach leverages
the ability of neural networks to flexibly and automatically extract descriptive features
from complex image data with high dimensionality. Our method achieved an overall
classification accuracy of 0.51 based on the training set, and 0.32 based on the test set
which contained data from an unseen site with unknown taxa classes. Although
transferability of classification algorithms to unseen sites with unknown species and genus
classes proved to be a challenging task, developing methods with openly available NEON
data that will be collected in a standardized format for 30 years allows for continual
improvements and major gains for members of the computational ecology community. We
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outline promising directions related to data preparation and processing techniques for
further investigation, and provide our code to contribute to open reproducible science
efforts.
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ABSTRACT14

Airborne remote sensing offers unprecedented opportunities to efficiently monitor vegetation, but methods

to delineate and classify individual plant species using the collected data are still actively being developed

and improved. The Integrating Data science with Trees and Remote Sensing (IDTReeS) plant identification

competition openly invited scientists to create and compare individual tree mapping methods. Participants

were tasked with training taxon identification algorithms based on two sites, to then transfer their methods

to a third unseen site, using field-based plant observations in combination with airborne remote sensing

image data products from the National Ecological Observatory Network (NEON). These data were

captured by a high resolution digital camera sensitive to red, green, blue (RGB) light, hyperspectral

imaging spectrometer spanning the visible to shortwave infrared wavelengths, and lidar systems to

capture the spectral and structural properties of vegetation. As participants in the IDTReeS competition,

we developed a two-stage deep learning approach to integrate NEON remote sensing data from all three

sensors and classify individual plant species and genera. The first stage was a convolutional neural

network that generates taxon probabilities from RGB images, and the second stage was a fusion neural

network that “learns” how to combine these probabilities with the hyperspectral and lidar data. Our two-

stage approach leverages the ability of neural networks to flexibly and automatically extract descriptive

features from complex image data with high dimensionality. Our method achieved an overall classification

accuracy of 0.51 based on the training set, and 0.32 based on the test set which contained data from an

unseen site with unknown taxa classes. Although transferability of classification algorithms to unseen

sites with unknown species and genus classes proved to be a challenging task, developing methods

with openly available NEON data that will be collected in a standardized format for 30 years allows for

continual improvements and major gains for members of the computational ecology community. We

outline promising directions related to data preparation and processing techniques for further investigation,

and provide our code to contribute to open reproducible science efforts.
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INTRODUCTION38

Understanding the species composition of individual trees within forests is essential for monitoring39

biodiversity (Nagendra, 2001; Wang et al., 2010), invasive species (Asner et al., 2008; He et al., 2011),40

terrestrial carbon (Schimel et al., 2015; Jucker et al., 2017), and disturbance regimes (Kulakowski et al.,41

2003; Senf et al., 2017). Remote sensing enables us to more efficiently map and monitor vegetation than42

using traditional field-based methods alone, using platforms ranging in scale from drones to satellites43

carrying a wide variety of sensors (Kerr and Ostrovsky, 2003; White et al., 2016; Lucash et al., 2018).44

Different types of passive and active imaging sensors provide unique information about ecosystems that45

may be most useful when combined (Anderson et al., 2008; Tusa et al., 2020). Multispectral cameras46
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are accessible, affordable and typically require minimal post-processing to be ready for analysis (Gini47

et al., 2018; Abdollahnejad and Panagiotidis, 2020). Hyperspectral data are valuable for their ability to48

capture spectral signatures beyond the visible wavelengths, which often contain descriptive reflectance49

characteristics across plant types and conditions (Dalponte et al., 2012; Ballanti et al., 2016). Active50

sensors such as Light Detection and Ranging (lidar) emit pulses of laser light and record the amount51

and intensity of reflected energy. Lidar data provide structural information about the height, shape, and52

variability of tree crowns (Heinzel and Koch, 2011; Koenig and Höfle, 2016).53

Any one data source could be used for plant species classification, but combining information from54

multiple sources is valuable, albeit difficult (Torabzadeh et al., 2014; Anderson et al., 2008; Asner et al.,55

2012). Deep neural networks automatically extract intricate patterns and identify trends from large56

volumes of data (LeCun et al., 2015), which makes them useful for classification and data fusion tasks57

(Zhu et al., 2017; Ma et al., 2019), including plant species classification (Brodrick et al., 2019; Fricker58

et al., 2019; Zhang et al., 2020; Onishi and Ise, 2021). At a high level, neural networks are flexible59

function approximators that learn a mapping from inputs (e.g., spectral or lidar data) to outputs (e.g.,60

species classes), by way of a sequence of matrix multiplications and nonlinearities. By providing different61

kinds of input to the same network (e.g., a multimodal network that ingests spectral and lidar data), neural62

networks learn how to fuse different data sources, in contrast to more manual approaches in which a63

human analyst decides how to combine disparate data ahead of time (Diaz et al., 2020).64

Here we describe the deep learning classification approach used by the Jeepers Treepers team for the65

Integrating Data science with Trees and Remote Sensing (IDTreeS) 2020 plant classification challenge66

(https://idtrees.org). IDTReeS uses publicly available data from the National Ecological Observatory67

Network (NEON), funded by the National Science Foundation (NSF) to measure long-term ecological68

change at 81 field sites in 20 ecoclimatic domains across the United States, Alaska, Hawaii and Puerto69

Rico (Keller et al., 2008). The NEON data provided for this competition include both field-based plant70

measurements and airborne remote sensing data products derived from high resolution red, green, blue71

(RGB) digital camera imagery, hyperspectral imagery across the visible to shortwave infrared wavelengths,72

and light detection and ranging (lidar) data (Johnson et al., 2010). By participating in an open competition,73

teams are encouraged to innovate and accelerate their computational methods development (Carpenter,74

2011). An earlier iteration of this competition used NEON data from a single forest to convert images75

into information on individual trees (Marconi et al., 2019), while this 2020 competition used data from76

three sites to compare how transferable teams’ methods were to unseen sites. Classifier transferability to77

out-of-sample spatial, temporal, and geographic regions is particularly important in cases where data are78

limited (Wu et al., 2006; Moon et al., 2017). In addition to emphasizing method generalization across79

sites, this competition tasked teams with designing classification models that can deal with species and80

genera from outside of the training set. We begin with a description of our data processing steps, then81

segue into a three stage classification pipeline, and finally report our results along with ideas for future82

investigation. All of the data and processing tools that we used are open source and publicly available to83

support and enable reproducible science.84

METHODS85

Study area86

The IDTReeS competition included data from 3 different NEON domains in the southeastern United87

States, each with distinct ecological and climatic characteristics (Fig. 1). Ordway-Swisher Biological88

Station (OSBS) in Florida in the Southeast NEON domain features a mixed forest of hardwood and89

conifers, mostly dominated by pines. Mountain Lake Biological Station (MLBS) in Virginia in the90

Appalachians and Cumberland Plateau NEON domain is mainly composed of hardwood trees. Talladega91

National Forest (TALL) in Alabama in the Ozarks complex NEON domain is dominated by mixed92

hardwoods and conifers (mostly pine), with a tree species composition that is largely a mixture of species93

found in OSBS and MLBS. Training data for the competition were provided at two of the three NEON94

sites, MLBS and OSBS, and then our classification method was evaluated at those two sites in addition to95

the TALL site (where our classifier has not seen data).96

Data processing97

We processed raw NEON data to generate a feature vector for each individual plant canopy, then passed98

these vectors to a multimodal neural network (Ngiam et al., 2011) that ultimately makes the taxon99
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Figure 1. Study Area. The data provided for the tree mapping competition belong to three National

Ecological Observatory Network (NEON) sites: Ordway-Swisher Biological Station (OSBS) in Florida,

Mountain Lake Biological Station (MLBS) in Virginia, and Talladega National Forest (TALL) in

Alabama. The sites span three separate NEON domains in the southeastern United States, each with

distinct ecological and climatic characteristics, although the TALL site has a species composition that is

largely a mixture of species found in OSBS and MLBS.

predictions (Fig. 2). The raw geospatial data that we used include high resolution orthorectified red, green,100

blue (RGB) digital camera imagery with 10cm spatial resolution (NEON.DP1.30010), hyperspectral101

reflectance data from the NEON Imaging Spectrometer with 1m resolution (NEON.DP3.30006), and102

discrete lidar point cloud data with a point density of ≈ 3.15 points per square meter (NEON.DP1.30003)103

provided by the IDTreeS competition at each of the NEON ground plots (Graves and Marconi, 2020;104

NEON, 2020).105

These data products are derived from both active and passive remote sensing systems onboard the106

NEON Airborne Observation Platform (AOP) to capture the structural and spectral characteristics of107

vegetation (Kampe et al., 2010a). The high resolution RGB images are collected by an Optech D8900108

digital color camera and capture fine spatial details of the tree crowns across the visible wavelengths109

(Gallery et al., 2015). The hyperspectral reflectance data have 426 spectral bands spanning the visible110

to infrared regions from 380-2510nm in increments of 5nm (Karpowicz and Kampe, 2015). The lidar111

data points representing the x, y, z location of surface features and the ground in three-domensional space112

were acquired by the Optech Incorporated Airborne Laser Terrain Mapper Gemini instrument with a near113

infrared laser that operates at 1064nm (Krause and Goulden, 2015). The NEON AOP flies at typical114

altitude of 1000m above ground level and is intended to collect airborne data at each NEON site’s peak115

phenological greenness. These geospatial data products were provided in 20m × 20m tiles representing116

the size of individual sampling plots.117

Woody plant vegetation structure field data (NEON.DP1.10098) in tabular form collected based on118

NEON’s Terrestial Observation System protocol (Thorpe et al., 2016) were provided as well, contributing119

information on individual tree identifiers, sampling locations, and taxonomic species or genera labels.120

Individual tree crown delineations were generated and provided by the IDTReeS competition research121

group for the classification task. Each canopy polygon was a rectangular bounding box that represents the122
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maximum crown extent for each individual tree. Each canopy polygon was associated with a record in the123

NEON field data. We extracted data independently for each mapped tree canopy. First we generated a124

rectangular RGB image subset for each individual plant by using the provided canopy polygons to crop125

the RGB image tiles. Then we extracted hyperspectral reflectance data from the spatial centroid pixel126

within each canopy polygon. Finally, we generated pseudo-waveforms from lidar data by computing the127

density of point cloud returns within the boundary of each canopy polygon using 39 vertical bins of height.128

We split the provided data randomly into a training (75%) and initial validation (25%) set so that each129

individual tree was associated with just one of the data partitions. Note that we used this initial validation130

set to help tune our RGB classification step in the first stage of our approach. For the final evaluation of131

our classification method, we were provided with an independent set of data without taxa labels.132
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Figure 2. The workflow. We processed raw remote sensing data products into formats that describe the

spectral and structural characteristics for each individual plant canopy. We used a pre-trained

Convolutional Neural Network (ConvNet) to estimate taxon probabilities using the red, green, blue (RGB)

cropped canopy images, and combined these taxon probabilities with hyperspectral reflectance spectra

and lidar-derived pseudo-waveforms into a concatenated feature vector. This feature vector was the input

to the so-called “fusion network”, a 2-layer multilayer perceptron (MLP) with two hidden layers (size 64

and 32) and trained using a custom “soft F1” loss function, to predict taxon class probabilities for each

individual plant. We then applied post-processing including a threshold to assign individuals to an “other”

class when the classification confidence was low. Finally, we produced predictions of taxon probabilities.

Feature extraction from RGB data133

We used the cropped rectangular RGB canopy images as input to fine-tune a convolutional neural network134

(CNN) pretrained on the ImageNet dataset (Deng et al., 2009). CNNs have been shown effective in135

classification of high resolution remote sensing images by learning textural and spatial relationships136

through many stages of convolutional filters and pooling layers (Zhu et al., 2017).137

We split the individual tree RGB canopy images randomly into training (80%) and validation (20%)138

subsets to tune the CNN. The RGB data consisted of 1052 individuals each belonging to one of 31 taxa139

(Table 1). There was notable class imbalance; approximately one-third of the trees were PIPA2 (Pinus140

palustris, longleaf pine) while many species or genera only had one or two samples represented in the141

data set.142

The size and dimensions of the rectangular canopy polygons were quite variable (Fig. 3). Since the143

pretrained CNN requires each image to have the same dimensions, we transformed each rectangular RGB144

canopy image (Fig. 4A) to be 224 x 224 pixels using a combination of cropping and resizing, and each145

image was normalized based on the mean and standard deviation of the ImageNet data set. We labeled146

each of the resized and normalized RGB canopy images with its respective taxon identification code (Fig.147

4B).148

ResNet evaluation149

We tested a series of ResNet CNNs (He et al., 2016) to generate a probability for each taxon class from150

the RGB image chips. We loaded pretrained weights generated from the ImageNet dataset, using ResNets151

that varied in depth including architectures with 18, 34, 50, 101, and 152 layer encoders. We compared152
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Figure 3. We used the individual tree crown rectangular polygons to clip remote sensing image layers,

such as the 10 cm high spatial resolution red, green, blue (RGB) data shown here at the (A)

Ordway-Swisher Biological Station (OSBS) and (B) Mountain Lake Biological Station (MLBS) sites.

A - Original B - Transformed

Figure 4. Nine corresponding pairs of RGB image chips, cropped using individual tree crown polygons,

with their original crown dimensions (A) and after being resized to 224 x 224 pixels (B) to yield

consistently shaped inputs for the ResNet classifier. Each image chip is labeled with the taxon

identification code that corresponds to each plant’s scientific name.

these different depth ResNets in terms of the macro F1 score, precision, and recall using our validation153

subset of the RGB data. The summary of these values is presented in Table 2.154

In a 2-class problem, precision is the proportion of positive predictions which are actually correct,155
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Table 1. Taxa included in the training data. Each row represents a unique class for the classifier.

Taxon code Scientific name Common name Count

PIPA2 Pinus palustris longleaf pine 237

QURU Quercus rubra northern red oak 138

ACRU Acer pensylvanicum striped maple 104

QUAL Quercus alba white oak 86

QULA2 Quercus laevis turkey oak 59

QUCO2 Quercus coccinea scarlet oak 39

AMLA Amelanchier laevis Allegheny serviceberry 38

NYSY Nyssa sylvatica blackgum 33

LITU Liriodendron tulipifera tuliptree 16

QUGE2 Quercus geminata sand live oak 15

MAGNO Magnolia sp. magnolia 12

QUMO4 Quercus montana chestnut oak 10

OXYDE Oxydendrum sp. sourwood 9

BETUL Betula sp. birch 6

PINUS Pinus sp. pine 6

PRSE2 Prunus serotina black cherry 6

ACPE Acer rubrum red maple 5

PIEL Pinus elliottii slash pine 4

CAGL8 Carya glabra pignut hickory 3

FAGR Fagus grandifolia American beech 3

PITA Pinus taeda loblolly pine 3

QUHE2 Quercus hemisphaerica Darlington oak 3

ROPS Robinia pseudoacacia black locust 2

TSCA Tsuga canadensis eastern hemlock 2

ACSA3 Acer saccharum sugar maple 1

CATO6 Carya tomentosa mockernut hickory 1

GOLA Gordonia lasianthus loblolly bay 1

LYLU3 Lyonia lucida fetterbush lyonia 1

NYBI Nyssa biflora swamp tupelo 1

QUERC Quercus sp. oak 1

QULA3 Quercus laurifolia laurel oak 1

whereas recall is identifies the proportion of actual positive predictions which are correct. F1 score is the156

harmonic mean of both precision and recall and was an evaluation metric in the competition. To compute157

the multi-class value of precision, recall, and F1-score, we computed the average across all classes. The158

Resnet-34 had the highest F1 score, and was used to generate RGB features for the fusion model.159

Pseudo-waveform generation from lidar point cloud160

The lidar point cloud contains information on the 3-dimensional structure of tree canopies (Dubayah and161

Drake, 2000; Kampe et al., 2010b). The laser penetrates the canopy and generates returns from the top of162

the canopy, the ground, and interacts with sub-canopy elements to produce multiple returns representing163

the spatial and vertical vegetation structure (Lefsky et al., 2002). The precise 3-dimensional location is164

determined by calculating the return time of the reflection from when it was transmitted. Anomalous165

points can exist, however, and may take the form of points recorded below the ground surface as a result166

of timing errors in the lidar system due to multiple reflections within the canopy and ground material, or167

points far above the canopy perhaps due to bird strikes. Often times these points are classified as “Noise”168

during post-processing, but are not always completely removed. Anomalous points were considered and169

removed if present by defining valid points as lying between the 1st and 99th percentile of all height170

values within the point cloud; anomalies were defined as lying outside of those ranges. A comparison171

showing the point cloud for a single lidar file before and after removing the height anomalies is shown in172

Figure 5.173

Valid lidar points within each tree crown geometry were used to create a pseudo-waveform for the tree174
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Table 2. Macro F1 score, precision, and recall values for different ResNet convolutional neural network

(CNN) architectures that we tested for the red, green, blue (RGB) image classifier.

Encoder layers F1 Precision Recall

18 0.4282 0.3408 0.1642

34 0.4698 0.1909 0.1392

50 0.3463 0.2098 0.1228

101 0.465 0.2916 0.1528

152 0.3867 0.2635 0.1571

crown which simulates the entire crown’s footprint. Muss et al. (2011) have shown this representation175

of the lidar point cloud to give an accurate representation of vegetation structure as a 1-dimensional176

signal. We define the pseudo-waveform by calculating the density of points within one-meter height177

bins ranging from zero meters above ground to the maximum height above ground for any given tree in178

the training data. This resulted in 39 one-meter height bins ranging from 0 to 40 meters above ground.179

If the maximum z-value for the set of points was less than the global maximum of all trees, then the180

bins corresponding to those heights were given a value of zero. This results in a table where each row181

represents a 1-d structural signal for each tree crown geometry, which are used as additional features in182

the fusion network for classification. See Figure 6 for example pseudo-waveforms and the corresponding183

point clouds used to generate them.184

Figure 5. Lidar point cloud showing height anomalies (A) and after height anomalies were removed (B).

The point cloud in (B) can be used to generate a pseudo-waveform feature.

The fusion network185

To learn how to combine information from the RGB, hyperspectral, and lidar data, we concatenated the186

probability vectors from the RGB CNN step, hyperspectral reflectance spectra at the centroid of each tree187

crown polygon, and lidar pseudo-waveforms into a feature vector that was passed as input to a neural188

network (also known as a multilayer perceptron), the so-called “fusion network” (Goodfellow et al., 2016).189

The fusion network was relatively shallow with two hidden layers (size 64 and 32). The input to the fusion190

network was a feature vector with 440 elements: 31 class probabilities from the RGB ConvNet (one per191

taxon code), 369 reflectance values from the hyperspectral data (one per wavelength after “bad bands”192

with high noise due to water absorption were removed), and 40 features from the lidar data (proportions193

for 39 bins, and the total number of points across all bins). The output of the fusion network was a194

concatenated vector of taxon probabilities.195

In early versions of our model we noticed a tendency to overpredict the most abundant taxa, a problem196

which we thought might be related to the default cross-entropy loss. We trained the fusion network by197

minimizing a custom “soft F1” loss function rather than cross-entropy to try to generate predictions that198
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Figure 6. Two examples of different pseudo-waveforms from individual tree crown geometries. Original

lidar point clouds (A, C) and corresponding pseudo-waveforms (B, D) showing point density at each

height bin. Labels are taken from the “indvdID” field from the training data. Note the difference in height

values between the two examples.

were robust to class imbalance in the training data. Given a classification task with K classes, a length K199

vector of probabilities θ and a one-hot-encoded vector y of length K, the soft F1 loss can be computed as:200

L(θ) = K−1
K

∑
k=1

1−
2θkyk

2θkyk +θk(1− yk)+(1−θk)yk + ε
,

where ε is a fixed small number (e.g., 1e-7) to prevent division by zero. We used stochastic minibatch201

gradient descent to minimize the expected soft F1 loss in the training data, using a batch size of 64202

examples, averaging loss among examples within each minibatch. The fusion network was trained for203

20 epochs using a 1cycle policy, with a maximum learning rate of 1e-2. The number of epochs and the204

maximum learning rate were chosen based on our 20% partition of the training data that were set aside as205

an initial validation set (Smith, 2018).206

Post-processing of fusion network output207

To deal with out-of-distribution classes (taxa in the test sites that were not in the training data), we decided208

to place some probability mass on an “other” class when the model predictions were not confident. If209

the maximum class probability from the fusion network was less than 0.5, we assigned a probability of210

0.5 to the “other” class and renormalized the remaining probabilities so that the entire probability vector211
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summed to one. The decision to use 0.5 was mostly arbitrary, although we did make the decision while212

looking at the distribution of maximum probabilities from the fusion network.213

Implementation214

We processed the RGB and hyperspectral data using GDAL (GDAL/OGR contributors, 2020) and R (R215

Core Team, 2020). Specifically, we used the neonhs (Joseph and Wasser, 2020) R package to extract216

hyperspectral reflectance data at the center of each tree crown polygon. We processed the lidar data in217

Python (Van Rossum and Drake, 2009). As we split the data generation and processing tasks across218

members of our team, we worked collaboratively and uploaded files to a shared a Google Drive that was219

readable from Google Colab (Bisong, 2019). We implemented the CNN and fusion network with fastai in220

Google Colab (Howard and Gugger, 2020).221

RESULTS222

While initially developing and assessing our methods, we withheld 20% the training data as an initial223

validation set, which contained 206 samples spanning all 31 taxon classes. We created a confusion matrix224

to assess classification accuracy (Fig. 7).225
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Tabular model confusion matrix: predicted vs. true label for validation set

Figure 7. This confusion matrix compares the true and predicted taxon class labels using our tabular

classification model. The data used here consist of the 20% validation subset from the training data.

Counts along the diagonal indicate correct predictions.

Our initial validation set classification accuracy was 0.51. The taxa with the most accurate predictions226

in descending order were PIPA2, ACRU, QUAL, QURU, QULA2, QUCO2, NYSY, and PIEL, many of227
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which were among the most abundant in the training data set (Table 1).228

For the final competition evaluation, we applied our classifier to a test data set without knowing the true229

taxon labels. We submitted a file with our predicted probabilities that each individual plant in the test set230

belonged to each taxon class, including an unknown class, “other”. The IDTReeS competition organizers231

compared our submitted predictions to the true taxon class labels for each tree crown and provided us with232

a reduced confusion matrix and a corresponding score report based on true class accuracy. The reduced233

confusion matrix compares the true and predicted labels for each tree, grouping all out-of-sample taxa234

into a single class called “other” (Fig. 8). This was done to see the direct match between our predictions235

of the “other” class with the correct label of “other”.236
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Figure 8. This confusion matrix compares the true and predicted taxon class labels using our tabular

classification model. The data used here consist of the test set for the final competition evaluation. Counts

along the diagonal indicate correct predictions.

The score report provided based on our predicted taxon labels includes the following metrics calculated237

using the scikit-learn Python library (Pedregosa et al., 2011): macro average F1 score, weighted average238

F1 score, and accuracy score from scikit-learn’s “classification report”. The Macro Average F1 score239

considers all predictions from all classes when calculating the F1, whereas the weighted average F1 score240

considers the relative number of samples per class while computing the F1 score. The accuracy score241

calculates the global fraction of correct predictions. Our scores for each of these evaluation metrics are242

summarized in Table 3, with the full set of scores for each species shown in Table 4. The data and code243

from our methods are openly available on Github (https://github.com/earthlab/idtrees earthlab) to be244

freely used and improved upon by the ecological community.245
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Table 3. Taxon prediction results summarized by competition evaluation metrics.

Evaluation Metric Score

Macro Average F1 0.07

Weighted Average F1 0.31

Accuracy 0.32

Categorical Cross-Entropy 11.62

DISCUSSION246

Here we presented our plant taxon classification approach that combines a convolutional neural network247

(CNN) for RGB images with a downstream fusion network that integrates RGB, hyperspectral, and lidar248

data. Tree species classification accuracy values vary wildly throughout the literature, based on factors249

such as the number of species being classified and the types of remote sensing systems that captured the250

data. For instance, a recent review of 101 studies found reported accuracies ranging from less than 60% to251

nearly 100% to classify anywhere from a couple to 30 species using combined sensor systems (Fassnacht252

et al., 2016).253

Our classification workflow combined data from all three National Ecological Observatory Network254

(NEON) airborne remote sensing systems and yielded an overall accuracy of 0.51 for a subset of the255

training set and 0.32 for the competition test set. The accuracy values that our method achieved are on256

the low end of the range reported by Fassnacht et al. (2016), although it is worth noting that our method257

was tasked with classifying 31 species or genera in addition to identifying a series of unknown species258

in the final competition evaluation. For the five participating teams in this IDTReeS competition, the259

overall classification accuracy values ranged between 0.32 and 0.47, macro average F1 scores ranged260

between 0.07 and 0.28, weighted average F1 scores ranged between 0.31 and 0.45, and cross entropy261

scores ranged between 2.5 and 11.62. While our model did well for common classes, poor performance262

on rare and out-of-distribution classes was a major limitation. The large difference between the macro263

average F1 score and the weighted average F1 score for the classifier is indicative of the class imbalance264

and poor classifier performance for rare classes. Table 4 shows the class imbalance present in the test265

dataset which is reflected in the test dataset confusion matrix, Figure 8. Based on the confusion matrices266

from the training set (Fig. 7) and test set (Fig. 8), our model struggled to perform as well at the unseen267

site and unknown taxon classes. We obtained an overall accuracy of 0.51 when predicting the taxon labels268

in our 20% withheld from training, which was higher than the overall accuracy of 0.32 reported for the269

test set, which might be indicative of overfitting on the validation data.270

Aside from overfitting, poor performance on out-of-distribution data could be due to dataset shift271

at the third NEON site. For instance, image artifacts such as distortion or the presence of shadows due272

to illumination conditions which are visible in Figure 3. Lots of distortion was visible in images from273

the OSBS site, likely an effect of wind during the data collection flight. These artifacts in addition to274

the highly variable individual tree crown polygons, which we transformed to be squares of uniform size,275

likely challenged the RGB portion of our classification approach. We discussed the possibility of filtering276

small or oddly shaped crowns (i.e. one pixel wide by six pixels tall) since these shapes may be due to277

occlusion by neighboring crowns on a per-case basis, and may not necessarily be representative of that278

taxon’s typical crown dimensions. However, without doing more in-depth analysis about which shapes or279

dimensions to filter, we kept all individual tree crown shapes in the data set for our analysis.280

Poor performance for out-of-distribution data could also be attributed to uncertainty calibration for the281

“other” class. Our approach to deal with these unknowns was to use a 0.5 certainty threshold to label an282

individual as “other”. We correctly identified 21 of 113 trees with true labels of “other”, which amounts283

to 22% of them. As described in our methods section, our decision to use this 0.5 threshold was mostly284

arbitrary. Further tuning of this threshold may lead to better identification of unknown taxon classes in the285

future.286

We spent some time brainstorming different approaches to handle out of distribution classes (taxa287

present in the test set that were absent in the training data). Our final solution to this (ad hoc “other” class288

predictions) was a much simpler version compared to some of the ideas that we had. Most elaborate289

among these abandoned ideas was to use K-fold cross-validation to iteratively generate K train/validation290

splits of the training data, some of which would result in some taxa being only represented in the validation291
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Table 4. Full report of competition classification evaluation metrics. These test set results include the

classifier total accuracy, Macro F1 score, and weighted average F1 score in bold.

precision recall f1-score support

ACRU 0.15625 0.147059 0.151515 34

ACSA3 0 0 0 3

AMLA 0 0 0 0

CAGL8 0 0 0 19

CATO6 0 0 0 0

FAGR 0 0 0 3

LITU 0 0 0 14

NYBI 0 0 0 0

NYSY 0 0 0 12

OXYDE 0 0 0 0

Other 0.259259 0.185841 0.216495 113

PIEL 0 0 0 0

PINUS 0 0 0 5

PIPA2 0.65 0.80791 0.720403 177

PITA 0 0 0 30

PRSE2 0 0 0 0

QUAL 0.076923 0.043478 0.055556 23

QUCO2 0 0 0 0

QUERC 0 0 0 23

QUGE2 0.153846 0.1 0.121212 20

QUHE2 0 0 0 3

QULA2 0.40625 0.371429 0.38806 35

QUMO4 0 0 0 15

QUNI 0 0 0 22

QURU 0.384615 0.208333 0.27027 24

ROPS 0 0 0 5

TSCA 0 0 0 5

accuracy 0.324786 0.324786 0.324786 0.324786

macro avg 0.077302 0.069039 0.071241 585

weighted avg 0.304196 0.324786 0.309226 585

data. Our thought was to try to build a model that was well-calibrated based on this cross-validation, i.e.,292

a model that was able to predict “other” when presented with a taxon that was not represented in the293

training data.294

Related to predictive features to train the classifier, we investigated texture measures from the RGB295

data as a potential set of features to use as inputs for classification. Preliminary analysis on Haralick296

texture features (Haralick et al., 1973), calculated from each tree’s gray-level co-occurrence matrix,297

did not prove separable at the taxon level when considering the training data. A principal components298

transform (Rodarmel and Shan, 2002) was applied to the texture feature space, but the transformed axes299

did not prove separable, either. We also explored dimensionality reduction methods directly with the300

hyperspectral data, which are commonly used to summarize data from hundreds of highly correlated301

hyperspectral bands into fewer bands (Fassnacht et al., 2016; Maschler et al., 2018). Another approach302

to perform dimensionality reduction would be to use an auto-encoder (Wang et al., 2016). Including303

additional descriptive features as a result of dimensionality reduction methods like principal component304

analysis may improve future classifier efforts. Additional ideas for improving classifier performance in305

the data preprocessing steps include identifying and removing (or utilizing) non-vegetation and shadow306

pixels (Mostafa, 2017), which are especially visible in the high spatial resolution RGB images (Fig. 3).307

We made use of the lidar point cloud data by resampling the points into pseudo-waveforms, which308

allowed us to incorporate information about point density at different heights within the canopy. Future309

classification methods may benefit from incorporating additional point cloud-derived metrics, such as310
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modeling the shape of the crown, distances between first and last returns, as well as intensity information,311

although this may require data with a higher point density (Korpela et al., 2010). The only competition312

dataset that we did not incorporate into our classifier was the rasterized lidar-derived canopy height model313

(CHM) (Goulden and Scholl, 2019). The CHM data was at 1 meter per pixel resolution and we felt314

that it did not provide enough information relative to the other datasets, particularly its cohort of the315

feature-rich 1 meter hyperspectral imagery. Thus, we made an executive decision to not include the data316

as the boundaries of the tree crowns as observed in the RGB data (Fig. 3) were much too coarse to justify317

using the CHM as a means by which to crop any of the other data. However, with higher resolution CHM318

data or larger crown geometries, we foresee being able to directly use the CHM information about crown319

geometry to generate better data subsets and extractions for individual trees (Scholl et al., 2020).320

Early on in the competition, we discussed the merits of a one- versus two-stage approach for data321

integration. While we settled on a two-stage approach (CNN to fusion network), a one-stage approach322

might have been a viable option. In a one-stage approach, we would embed the CNN within the fusion323

network, and instead of passing the output to a downstream model, we would concatenate the feature324

vector generated from the convnet with the vector valued features in the fusion network to obtain a model325

that is end-to-end differentiable. It was not clear that this would result in a better model, but it was clear it326

would require considerably more effort.327

CONCLUSIONS328

The IDTreeS 2020 plant classification challenge openly invited teams to create and compare their methods329

using open-source NEON data. In this paper, we presented the methods and results of the team called330

Jeepers Treepers. We used a two-stage deep learning fusion network approach to combine features from331

RGB, hyperspectral, and lidar point cloud data to classify taxa at an unseen site featuring unknown species.332

Creating classification methods that are transferable and generalizeable is no easy task, which made it333

an interesting topic for this data competition. Overall, we believe that further processing and filtering334

the RGB images (such as calculating texture metrics and manually removing images containing notable335

image artifacts or non-vegetation pixels), refining the logic for identifying unknown taxa (when assigning336

individuals to the “other” class), further addressing the taxon imbalance in the training data set, and337

incorporating greater data volume and features (such as additional lidar point cloud metrics based on point338

height and intensity) would improve our classifier’s performance. We see value in the open data-driven339

competition format to accelerate methods development in the computational ecology field, and encourage340

others to participate in the future.341
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