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ABSTRACT
Airborne remote sensing offers unprecedented opportunities to efficiently monitor
vegetation, but methods to delineate and classify individual plant species using the
collected data are still actively being developed and improved. The Integrating
Data science with Trees and Remote Sensing (IDTReeS) plant identification
competition openly invited scientists to create and compare individual tree mapping
methods. Participants were tasked with training taxon identification algorithms
based on two sites, to then transfer their methods to a third unseen site, using
field-based plant observations in combination with airborne remote sensing image
data products from the National Ecological Observatory Network (NEON). These
data were captured by a high resolution digital camera sensitive to red, green, blue
(RGB) light, hyperspectral imaging spectrometer spanning the visible to shortwave
infrared wavelengths, and lidar systems to capture the spectral and structural
properties of vegetation. As participants in the IDTReeS competition, we developed a
two-stage deep learning approach to integrate NEON remote sensing data from all
three sensors and classify individual plant species and genera. The first stage was a
convolutional neural network that generates taxon probabilities from RGB images,
and the second stage was a fusion neural network that “learns” how to combine these
probabilities with hyperspectral and lidar data. Our two-stage approach leverages the
ability of neural networks to flexibly and automatically extract descriptive features
from complex image data with high dimensionality. Our method achieved an overall
classification accuracy of 0.51 based on the training set, and 0.32 based on the test set
which contained data from an unseen site with unknown taxa classes. Although
transferability of classification algorithms to unseen sites with unknown species and
genus classes proved to be a challenging task, developing methods with openly
available NEON data that will be collected in a standardized format for 30 years
allows for continual improvements and major gains for members of the
computational ecology community. We outline promising directions related to data
preparation and processing techniques for further investigation, and provide our
code to contribute to open reproducible science efforts.
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INTRODUCTION
Understanding the species composition of individual trees within forests is essential for
monitoring biodiversity (Nagendra, 2001;Wang et al., 2010), invasive species (Asner et al.,
2008; He et al., 2011), terrestrial carbon (Schimel et al., 2015; Jucker et al., 2017), and
disturbance regimes (Kulakowski, Veblen & Bebi, 2003; Senf, Seidl & Hostert, 2017).
Remote sensing enables us to more efficiently map and monitor vegetation than using
traditional field-based methods alone, using platforms ranging in scale from drones to
satellites carrying a wide variety of sensors (Kerr & Ostrovsky, 2003; White et al., 2016;
Lucash et al., 2018). Different types of passive and active imaging sensors provide unique
information about ecosystems that may be most useful when combined (Anderson et al.,
2008; Tusa et al., 2020). Multispectral cameras are accessible, affordable and typically
require minimal post-processing to be ready for analysis (Gini et al., 2018; Abdollahnejad
& Panagiotidis, 2020). Hyperspectral data are valuable for their ability to capture spectral
signatures beyond the visible wavelengths, which often contain descriptive reflectance
characteristics across plant types and conditions (Dalponte et al., 2012; Ballanti et al.,
2016). Active sensors such as Light Detection and Ranging (lidar) emit pulses of laser light
and record the amount and intensity of reflected energy. Lidar data provide structural
information about the height, shape, and variability of tree crowns (Heinzel & Koch, 2011;
Koenig & Höfle, 2016).

Any one data source could be used for plant species classification, but combining
information from multiple sources is valuable, albeit difficult (Torabzadeh, Morsdorf &
Schaepman, 2014; Anderson et al., 2008; Asner et al., 2012). Deep neural networks
automatically extract intricate patterns and identify trends from large volumes of data
(LeCun, Bengio & Hinton, 2015), which makes them useful for classification and data
fusion tasks (Zhu et al., 2017; Ma et al., 2019), including plant species classification
(Brodrick, Davies & Asner, 2019; Fricker et al., 2019; Zhang et al., 2020; Onishi & Ise, 2021).
At a high level, neural networks are flexible function approximators that learn a mapping
from inputs (e.g., spectral or lidar data) to outputs (e.g., species classes), by way of a
sequence of matrix multiplications and nonlinearities. By providing different kinds of
input to the same network (e.g., a multimodal network that ingests spectral and lidar data),
neural networks learn how to fuse different data sources, in contrast to more manual
approaches in which a human analyst decides how to combine disparate data ahead of time
(Diaz et al., 2020).

Here we describe the deep learning classification approach used by the Jeepers Treepers
team for the Integrating Data science with Trees and Remote Sensing (IDTreeS) 2020
plant classification challenge (https://idtrees.org). IDTReeS uses publicly available data
from the National Ecological Observatory Network (NEON), funded by the National
Science Foundation (NSF) to measure long-term ecological change at 81 field sites in
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20 ecoclimatic domains across the United States, Alaska, Hawaii and Puerto Rico
(Keller et al., 2008). The NEON data provided for this competition include both field-based
plant measurements and airborne remote sensing data products derived from high
resolution red, green, blue (RGB) digital camera imagery, hyperspectral imagery across the
visible to shortwave infrared wavelengths, and light detection and ranging (lidar) data
(Johnson et al., 2010). By participating in an open competition, teams are encouraged to
innovate and accelerate their computational methods development (Carpenter, 2011).
An earlier iteration of this competition used NEON data from a single forest to convert
images into information on individual trees (Marconi et al., 2019), while this 2020
competition used data from three sites to compare how transferable teams’ methods
were to unseen sites. Classifier transferability to out-of-sample spatial, temporal, and
geographic regions is particularly important in cases where data are limited (Wu et al.,
2006; Moon et al., 2017). In addition to emphasizing method generalization across sites,
this competition tasked teams with designing classification models that can deal with
species and genera from outside of the training set. We begin with a description of our data
processing steps, then segue into a three stage classification pipeline, and finally report
our results along with ideas for future investigation. All of the data and processing tools
that we used are open source and publicly available to support and enable reproducible
science.

METHODS
Study area
The IDTReeS competition included data from three different NEON domains in the
southeastern United States, each with distinct ecological and climatic characteristics
(Fig. 1). Ordway-Swisher Biological Station (OSBS) in Florida in the Southeast NEON
domain features a mixed forest of hardwood and conifers, mostly dominated by pines.
Mountain Lake Biological Station (MLBS) in Virginia in the Appalachians and
Cumberland Plateau NEON domain is mainly composed of hardwood trees. Talladega
National Forest (TALL) in Alabama in the Ozarks complex NEON domain is dominated
by mixed hardwoods and conifers (mostly pine), with a tree species composition
that is largely a mixture of species found in OSBS and MLBS. Training data for the
competition were provided at two of the three NEON sites, MLBS and OSBS, and then our
classification method was evaluated at those two sites in addition to the TALL site (where
our classifier has not seen data).

Data processing
The IDTReeS research team provided publicly available geospatial and tabular data for
use in this competition (Graves & Marconi, 2020). We processed raw NEON data to
generate a feature vector for each individual plant canopy, then passed these vectors
to a multimodal neural network (Ngiam et al., 2011) that ultimately makes the taxon
predictions (Fig. 2). The raw geospatial data that we used include high resolution
orthorectified red, green, blue (RGB) digital camera imagery with 10 cm spatial resolution
(NEON.DP1.30010), hyperspectral reflectance data from the NEON Imaging
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Figure 1 Study Area. The data provided for the tree mapping competition belong to three National
Ecological Observatory Network (NEON) sites: Ordway-Swisher Biological Station (OSBS) in
Florida, Mountain Lake Biological Station (MLBS) in Virginia, and Talladega National Forest
(TALL) in Alabama. The sites span three separate NEON domains in the southeastern United States,
each with distinct ecological and climatic characteristics, although the TALL site has a species compo-
sition that is largely a mixture of species found in OSBS and MLBS.

Full-size DOI: 10.7717/peerj.11790/fig-1
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Figure 2 The workflow. We processed raw remote sensing data products into formats that describe
the spectral and structural characteristics for each individual plant canopy. We used a pre-trained
Convolutional Neural Network (ConvNet) to estimate taxon probabilities using the red, green, blue
(RGB) cropped canopy images, and combined these taxon probabilities with hyperspectral reflectance
spectra and lidar-derived pseudo-waveforms into a concatenated feature vector. This feature vector was
the input to the so-called “fusion network”, a 2-layer multilayer perceptron (MLP) with two hidden layers
(size 64 and 32) and trained using a custom “soft F1” loss function, to predict taxon class probabilities for
each individual plant. We then applied post-processing including a threshold to assign individuals to an
“other” class when the classification confidence was low. Finally, we produced predictions of taxon
probabilities. Full-size DOI: 10.7717/peerj.11790/fig-2
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Spectrometer with 1 m resolution (NEON.DP3.30006), and discrete lidar point cloud
data with a point density of ≈3.15 points per square meter (NEON.DP1.30003) provided
by the IDTreeS competition at each of the NEON ground plots (Graves & Marconi, 2020;
NEON, 2020).

These data products are derived from both active and passive remote sensing systems
onboard the NEON Airborne Observation Platform (AOP) to capture the structural and
spectral characteristics of vegetation (Kampe et al., 2010a). The high resolution RGB
images are collected by an Optech D8900 digital color camera and capture fine spatial
details of the tree crowns across the visible wavelengths (Gallery et al., 2015).
The hyperspectral reflectance data have 426 spectral bands spanning the visible to infrared
regions from 380–2,510 nm in increments of 5 nm (Karpowicz & Kampe, 2015). The lidar
data points representing the x, y, z location of surface features and the ground in
three-domensional space were acquired by the Optech Incorporated Airborne Laser
Terrain Mapper Gemini instrument with a near infrared laser that operates at 1,064 nm
(Krause & Goulden, 2015). The NEON AOP flies at typical altitude of 1,000 m above
ground level and is intended to collect airborne data at each NEON site’s peak
phenological greenness. These geospatial data products were provided in 20 m × 20 m tiles
representing the size of individual sampling plots.

Woody plant vegetation structure field data (NEON.DP1.10098) in tabular form
collected based on NEON’s Terrestial Observation System protocol (Thorpe et al., 2016)
were provided as well, contributing information on individual tree identifiers, sampling
locations, and taxonomic species or genera labels. Individual tree crown delineations
were generated and provided by the IDTReeS competition research group for the
classification task. Each canopy polygon was a rectangular bounding box that represents
the maximum crown extent for each individual tree. Each canopy polygon was associated
with a record in the NEON field data. We extracted data independently for each
mapped tree canopy. First we generated a rectangular RGB image subset for each
individual plant by using the provided canopy polygons to crop the RGB image tiles.
Then we extracted hyperspectral reflectance data from the spatial centroid pixel within
each canopy polygon. Finally, we generated pseudo-waveforms from lidar data by
computing the density of point cloud returns within the boundary of each canopy polygon
using 39 vertical bins of height. We split the provided data randomly into a training (75%)
and initial validation (25%) set so that each individual tree was associated with just one
of the data partitions. Note that we used this initial validation set to help tune our RGB
classification step in the first stage of our approach. For the final evaluation of our
classification method, we were provided with an independent set of data without taxa
labels.

Feature extraction from RGB data
We used the cropped rectangular RGB canopy images as input to fine-tune a convolutional
neural network (CNN) pretrained on the ImageNet dataset (Deng et al., 2009). CNNs
have been shown effective in classification of high resolution remote sensing images by
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learning textural and spatial relationships through many stages of convolutional filters and
pooling layers (Zhu et al., 2017).

We split the individual tree RGB canopy images randomly into training (80%) and
validation (20%) subsets to tune the CNN. The RGB data consisted of 1,052 individuals
each belonging to one of 31 taxa (Table 1). There was notable class imbalance;
approximately one-third of the trees were PIPA2 (Pinus palustris, longleaf pine) while
many species or genera only had one or two samples represented in the data set.

The size and dimensions of the rectangular canopy polygons were quite variable (Fig. 3).
Since the pretrained CNN requires each image to have the same dimensions, we
transformed each rectangular RGB canopy cropped image to be 224 × 224 pixels using a

Table 1 Taxa included in the training data. Each row represents a unique class for the classifier.

Taxon code Scientific name Common name Count

PIPA2 Pinus palustris longleaf pine 237

QURU Quercus rubra northern red oak 138

ACRU Acer pensylvanicum striped maple 104

QUAL Quercus alba white oak 86

QULA2 Quercus laevis turkey oak 59

QUCO2 Quercus coccinea scarlet oak 39

AMLA Amelanchier laevis Allegheny serviceberry 38

NYSY Nyssa sylvatica blackgum 33

LITU Liriodendron tulipifera tuliptree 16

QUGE2 Quercus geminata sand live oak 15

MAGNO Magnolia sp. magnolia 12

QUMO4 Quercus montana chestnut oak 10

OXYDE Oxydendrum sp. sourwood 9

BETUL Betula sp. birch 6

PINUS Pinus sp. pine 6

PRSE2 Prunus serotina black cherry 6

ACPE Acer rubrum red maple 5

PIEL Pinus elliottii slash pine 4

CAGL8 Carya glabra pignut hickory 3

FAGR Fagus grandifolia American beech 3

PITA Pinus taeda loblolly pine 3

QUHE2 Quercus hemisphaerica Darlington oak 3

ROPS Robinia pseudoacacia black locust 2

TSCA Tsuga canadensis eastern hemlock 2

ACSA3 Acer saccharum sugar maple 1

CATO6 Carya tomentosa mockernut hickory 1

GOLA Gordonia lasianthus loblolly bay 1

LYLU3 Lyonia lucida fetterbush lyonia 1

NYBI Nyssa biflora swamp tupelo 1

QUERC Quercus sp. oak 1

QULA3 Quercus laurifolia laurel oak 1
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combination of cropping and resizing, and each image was normalized based on the mean
and standard deviation of the ImageNet data set. We labeled each of the resized and
normalized RGB canopy images with its respective taxon identification code (Fig. 4).

ResNet evaluation
We tested a series of ResNet CNNs (He et al., 2016) to generate a probability for each taxon
class from the RGB image chips. We loaded pretrained weights generated from the
ImageNet dataset, using ResNets that varied in depth including architectures with 18, 34,
50, 101, and 152 layer encoders. We compared these different depth ResNets in terms of
the macro F1 score, precision, and recall using our validation subset of the RGB data.
The summary of these values is presented in Table 2.

Figure 3 We used the individual tree crown rectangular polygons to clip remote sensing image
layers, such as the 10 cm high spatial resolution red, green, blue (RGB) data shown here at the
(A) Ordway-Swisher Biological Station (OSBS) and (B) Mountain Lake Biological Station (MLBS)
sites. Full-size DOI: 10.7717/peerj.11790/fig-3
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In a 2-class problem, precision is the proportion of positive predictions which are
actually correct, whereas recall is identifies the proportion of actual positive predictions
which are correct. F1 score is the harmonic mean of both precision and recall and was
an evaluation metric in the competition. To compute the multi-class value of precision,
recall, and F1-score, we computed the average across all classes. The Resnet-34 had the
highest F1 score, and was used to generate RGB features for the fusion model.

Pseudo-waveform generation from lidar point cloud
The lidar point cloud contains information on the 3-dimensional structure of tree canopies
(Dubayah & Drake, 2000; Kampe et al., 2010b). As the laser travels through the canopy
during lidar data collection, energy within the beam’s footprint is reflected by the top of the

Table 2 Macro F1 score, precision, and recall values for different ResNet convolutional neural
network (CNN) architectures that we tested for the red, green, blue (RGB) image classifier.

Encoder layers F1 Precision Recall

18 0.4282 0.3408 0.1642

34 0.4698 0.1909 0.1392

50 0.3463 0.2098 0.1228

101 0.465 0.2916 0.1528

152 0.3867 0.2635 0.1571

Figure 4 Nine corresponding pairs of RGB image chips, cropped using individual tree crown
polygons, with their original crown dimensions (A) and after being resized to 224 × 224 pixels
(B) to yield consistently shaped inputs for the ResNet classifier. Each image chip is labeled with
the taxon identification code that corresponds to each individual plant’s scientific name.

Full-size DOI: 10.7717/peerj.11790/fig-4
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canopy, interactions with sub-canopy elements, and potentially the underlying terrain
surface. The returned energy waveform is sampled to produce multiple “returns’’, points
describing the spatial and vertical vegetation structure (Lefsky et al., 2002). The precise
3-dimensional point location is determined by calculating the return time of the reflection
from when it was transmitted. Anomalous points can exist, however, and may take the
form of points recorded below the ground surface as a result of timing errors in the lidar
system due to multiple reflections within the canopy and ground material, or points far
above the canopy perhaps due to bird strikes. Often times these points are classified as
“Noise” during post-processing, but are not always completely removed. Anomalous
points were considered and removed if present by defining valid points as lying between
the 1st and 99th percentile of all height values within the point cloud; anomalies were
defined as lying outside of those ranges. A comparison showing the point cloud for a single
lidar file before and after removing the height anomalies is shown in Fig. 5.

Valid lidar points within each tree crown geometry were used to create a
pseudo-waveform for the tree crown which simulates the entire crown’s footprint. Muss,
Mladenoff & Townsend, 2011 have shown this representation of the lidar point cloud to
give an accurate representation of vegetation structure as a 1-dimensional signal.
We define the pseudo-waveform by calculating the density of points within one-meter
height bins ranging from zero meters above ground to the maximum height above ground
for any given tree in the training data. This resulted in 39 one-meter height bins ranging
from 0 to 40 m above ground. Bins with no points were given a point density value of
zero. This results in a table where each row represents a 1-d structural signal for each tree
crown geometry, which are used as additional features in the fusion network for
classification. See Fig. 6 for example pseudo-waveforms and the corresponding point
clouds used to generate them.

Figure 5 Lidar point cloud showing height anomalies (A) and after height anomalies were removed
(B). The point cloud in (B) can be used to generate a pseudo-waveform feature.

Full-size DOI: 10.7717/peerj.11790/fig-5
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The fusion network
To learn how to combine information from the RGB, hyperspectral, and lidar data, we
concatenated the probability vectors from the RGB CNN step, hyperspectral reflectance
spectra at the centroid of each tree crown polygon, and lidar pseudo-waveforms into a
feature vector that was passed as input to a neural network (also known as a multilayer
perceptron), the so-called “fusion network” (Goodfellow et al., 2016). The fusion network
was relatively shallow with two hidden layers (size 64 and 32). The input to the fusion
network was a feature vector with 440 elements: 31 class probabilities from the RGB
ConvNet (one per taxon code), 369 reflectance values from the hyperspectral data (one per
wavelength after “bad bands” with high noise due to water absorption were removed),

Figure 6 Two examples of different pseudo-waveforms from individual tree crown geometries.
Original lidar point clouds (A and C) and corresponding pseudo-waveforms (B and D) showing point
density at each height bin. Labels are taken from the “indvdID” field from the training data. Note the
difference in height values between the two examples. Full-size DOI: 10.7717/peerj.11790/fig-6
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and 40 features from the lidar data (proportions for 39 bins, and the total number of points
across all bins). The output of the fusion network was a concatenated vector of taxon
probabilities.

In early versions of our model we noticed a tendency to overpredict the most abundant
taxa, a problem which we thought might be related to the default cross-entropy loss.
We trained the fusion network by minimizing a custom “soft F1” loss function rather than
cross-entropy to try to generate predictions that were robust to class imbalance in the
training data. Given a classification task with K classes, a length K vector of probabilities θ
and a one-hot-encoded vector y of length K, the soft F1 loss can be computed as:

LðhÞ ¼ K�1
XK

k¼1

1� 2hkyk
2hkyk þ hkð1� ykÞ þ ð1� hkÞyk þ e

;

where ε is a fixed small number (e.g., 1e−7) to prevent division by zero. We used stochastic
minibatch gradient descent to minimize the expected soft F1 loss in the training data, using
a batch size of 64 examples, averaging loss among examples within each minibatch.
The fusion network was trained for 20 epochs using a 1 cycle policy, with a maximum
learning rate of 1e−2. The number of epochs and the maximum learning rate were chosen
based on our 20% partition of the training data that were set aside as an initial validation
set (Smith, 2018).

Post-processing of fusion network output
To deal with out-of-distribution classes (taxa in the test sites that were not in the training
data), we decided to place some probability mass on an “other” class when the model
predictions were not confident. If the maximum class probability from the fusion network
was less than 0.5, we assigned a probability of 0.5 to the “other” class and renormalized
the remaining probabilities so that the entire probability vector summed to one. We chose
to use a probability threshold of 0.5 based on qualitative visual inspection of the
classification probability histograms.

Implementation
We processed the RGB and hyperspectral data using GDAL (GDAL/OGR contributors,
2020) and R (R Core Team, 2020). Specifically, we used the neonhs (Joseph &Wasser, 2020)
R package to extract hyperspectral reflectance data at the center of each tree crown
polygon. We processed the lidar data in Python (Van Rossum & Drake, 2009). As we split
the data generation and processing tasks across members of our team, we worked
collaboratively and uploaded files to a shared a Google Drive that was readable from
Google Colab (Bisong, 2019). We implemented the CNN and fusion network with fastai
in Google Colab (Howard & Gugger, 2020). The code that we developed for our methods
is openly available on GitHub (https://github.com/earthlab/idtrees_earthlab) to be freely
used and improved upon by the ecological community.
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RESULTS
While initially developing and assessing our methods, we withheld 20% the training data as
an initial validation set, which contained 206 samples spanning all 31 taxon classes.
We created a confusion matrix to assess classification accuracy (Fig. 7).

Our initial validation set classification accuracy was 0.51. The taxa with the most
accurate predictions in descending order were PIPA2, ACRU, QUAL, QURU, QULA2,
QUCO2, NYSY, and PIEL, many of which were among the most abundant in the training
data set (Table 1).

For the final competition evaluation, we applied our classifier to a test data set without
knowing the true taxon labels. We submitted a file with our predicted probabilities
that each individual plant in the test set belonged to each taxon class, including an
unknown class, “other”. The IDTReeS competition organizers compared our submitted
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Figure 7 This confusion matrix compares the true and predicted taxon class labels using our tabular
classification model. The data used here consist of the 20% validation subset from the training data.
Counts along the diagonal indicate correct predictions. Full-size DOI: 10.7717/peerj.11790/fig-7

Scholl et al. (2021), PeerJ, DOI 10.7717/peerj.11790 12/22

http://dx.doi.org/10.7717/peerj.11790/fig-7
http://dx.doi.org/10.7717/peerj.11790
https://peerj.com/


predictions to the true taxon class labels for each tree crown and provided us with a
reduced confusion matrix and a corresponding score report based on true class accuracy.
The reduced confusion matrix compares the true and predicted labels for each tree,
grouping all out-of-sample taxa into a single class called “other” (Fig. 8). This was done to
see the direct match between our predictions of the “other” class with the correct label of
“other”.

The score report provided based on our predicted taxon labels includes the following
metrics calculated using the scikit-learn Python library (Pedregosa et al., 2011): macro
average F1 score, weighted average F1 score, and accuracy score from scikit-learn’s
“classification_report”. The Macro Average F1 score considers all predictions from all
classes when calculating the F1, whereas the weighted average F1 score considers the
relative number of samples per class while computing the F1 score. The accuracy score
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Figure 8 This confusion matrix compares the true and predicted taxon class labels using our tabular
classification model. The data used here consist of the test set for the final competition evaluation.
Counts along the diagonal indicate correct predictions. Full-size DOI: 10.7717/peerj.11790/fig-8
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calculates the global fraction of correct predictions. Our scores for each of these evaluation
metrics are summarized in Table 3, with the full set of scores for each species shown in
Table 4.

Table 3 Taxon prediction results summarized by competition evaluation metrics.

Evaluation metric Score

Macro Average F1 0.07

Weighted Average F1 0.31

Accuracy 0.32

Categorical Cross-Entropy 11.62

Table 4 Full report of competition classification evaluation metrics. These test set results include the
classifier total accuracy, Macro F1 score, and weighted average F1 score in bold.

Precision Recall F1-score Support

ACRU 0.15625 0.147059 0.151515 34

ACSA3 0 0 0 3

AMLA 0 0 0 0

CAGL8 0 0 0 19

CATO6 0 0 0 0

FAGR 0 0 0 3

LITU 0 0 0 14

NYBI 0 0 0 0

NYSY 0 0 0 12

OXYDE 0 0 0 0

Other 0.259259 0.185841 0.216495 113

PIEL 0 0 0 0

PINUS 0 0 0 5

PIPA2 0.65 0.80791 0.720403 177

PITA 0 0 0 30

PRSE2 0 0 0 0

QUAL 0.076923 0.043478 0.055556 23

QUCO2 0 0 0 0

QUERC 0 0 0 23

QUGE2 0.153846 0.1 0.121212 20

QUHE2 0 0 0 3

QULA2 0.40625 0.371429 0.38806 35

QUMO4 0 0 0 15

QUNI 0 0 0 22

QURU 0.384615 0.208333 0.27027 24

ROPS 0 0 0 5

TSCA 0 0 0 5

accuracy 0.324786 0.324786 0.324786 0.324786

macro avg 0.077302 0.069039 0.071241 585

weighted avg 0.304196 0.324786 0.309226 585
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DISCUSSION
Here we presented our plant taxon classification approach that combines a convolutional
neural network (CNN) for RGB images with a downstream fusion network that integrates
RGB, hyperspectral, and lidar data. Tree species classification accuracy values vary
wildly throughout the literature, based on factors such as the number of species being
classified and the types of remote sensing systems that captured the data. For instance, a
recent review of 101 studies found reported accuracies ranging from less than 60% to
nearly 100% to classify anywhere from a couple to nearly 30 species using combined sensor
systems (Fassnacht et al., 2016).

Our classification workflow combined data from all three National Ecological
Observatory Network (NEON) airborne remote sensing systems and yielded an overall
accuracy of 0.51 for a subset of the training set and 0.32 for the competition test set.
The accuracy values that our method achieved are on the low end of the range reported by
Fassnacht et al. (2016), although it is worth noting that our method was tasked with
classifying 31 species or genera in addition to identifying a series of unknown species in the
final competition evaluation, which exceeds the high end of the number of species that the
studies classified in the recent review (from a couple to less than 30). For the five
participating teams in this IDTReeS competition, the overall classification accuracy
values ranged between 0.32 and 0.47, macro average F1 scores ranged between 0.07 and
0.28, weighted average F1 scores ranged between 0.31 and 0.45, and cross entropy scores
ranged between 2.5 and 11.62. While our model did well for common classes, poor
performance on rare and out-of-distribution classes was a major limitation. The large
difference between the macro average F1 score and the weighted average F1 score for the
classifier is indicative of the class imbalance and poor classifier performance for rare
classes. Table 4 shows the class imbalance present in the test dataset which is reflected
in the test dataset confusion matrix, Fig. 8. Based on the confusion matrices from the
training set (Fig. 7) and test set (Fig. 8), our model struggled to perform as well at the
unseen site and unknown taxon classes. We obtained an overall accuracy of 0.51 when
predicting the taxon labels in our 20% withheld from training, which was higher than the
overall accuracy of 0.32 reported for the test set, which might be indicative of overfitting on
the validation data.

Aside from overfitting, poor performance on out-of-distribution data could be due
to dataset shifts or differences at the third NEON site. For instance, we found image
artifacts such as distortion or the presence of shadows due to illumination conditions are
variable across plots and NEON sites, which are visible in Fig. 3. Lots of distortion was
visible in images from the OSBS site, likely an effect of wind during the data collection
flight. Note that the presence and appearance of this distortion is not consistent across
the images. These artifacts in addition to the highly variable individual tree crown
polygons, which we transformed to be squares of uniform size, likely challenged the RGB
portion of our classification approach. We discussed the possibility of filtering small or
oddly shaped crowns (i.e. one pixel wide by six pixels tall) since these shapes may be due to
occlusion by neighboring crowns on a per-case basis, and may not necessarily be
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representative of that taxon’s typical crown dimensions. However, without doing more
in-depth analysis about which shapes or dimensions to filter, we kept all individual tree
crown shapes in the data set for our analysis.

Poor performance for out-of-distribution data could also be attributed to uncertainty
calibration for the “other” class. Our approach to deal with these unknowns was to use a
0.5 certainty threshold to label an individual as “other”. We correctly identified 21 of
113 trees with true labels of “other”, which amounts to 22% of them. As described in our
methods section, our decision to use this 0.5 threshold was based on the distribution of
probabilities observed during training. Further tuning or increasing this threshold may
lead to better identification of unknown taxon classes in the future.

We spent some time brainstorming different approaches to handle out of distribution
classes (taxa present in the test set that were absent in the training data). Our final solution
to this (ad hoc “other” class predictions) was a much simpler version compared to
some of the ideas that we had. Most elaborate among these abandoned ideas was to use
K-fold cross-validation to iteratively generate K train/validation splits of the training data,
some of which would result in some taxa being only represented in the validation data.
Our thought was to try to build a model that was well-calibrated based on this cross-
validation, i.e., a model that was able to predict “other” when presented with a taxon that
was not represented in the training data.

Related to predictive features to train the classifier, we investigated texture measures
from the RGB data as a potential set of features to use as inputs for classification.
Preliminary analysis on Haralick, Shanmugam & Dinstein, 1973), calculated from each
tree’s gray-level co-occurrence matrix, did not prove separable at the taxon level when
considering the training data. A principal components transform (Rodarmel & Shan,
2002) was applied to the texture feature space, but the transformed axes did not prove
separable, either. We also explored dimensionality reduction methods directly with the
hyperspectral data, which are commonly used to summarize data from hundreds of highly
correlated hyperspectral bands into fewer bands (Fassnacht et al., 2016; Maschler,
Atzberger & Immitzer, 2018). Another approach to perform dimensionality reduction
would be to use an auto-encoder (Wang, Yao & Zhao, 2016). Including additional
descriptive features as a result of dimensionality reduction methods like principal
component analysis, spectral indices, or targeted feature selection such as specific spectral
bands may improve future classifier efforts. Additional ideas for improving classifier
performance in the data preprocessing steps include identifying and removing (or
utilizing) non-vegetation and shadow pixels (Mostafa, 2017), which are especially visible in
the high spatial resolution RGB images (Fig. 3).

We made use of the lidar point cloud data by resampling the points into pseudo-
waveforms, which allowed us to incorporate information about point density at
different heights within the canopy. Future classification methods may benefit from
incorporating additional point cloud-derived metrics, such as modeling the shape of the
crown, distances between first and last returns, as well as intensity information, although
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this may require data with a higher point density (Korpela et al., 2010). The only
competition dataset that we did not incorporate into our classifier was the rasterized
lidar-derived canopy height model (CHM) (Goulden & Scholl, 2019). The CHM data was
at 1 meter per pixel resolution and we felt that it did not provide enough information
relative to the other datasets, particularly its cohort of the feature-rich 1 meter
hyperspectral imagery. Thus, we made an executive decision to not include the data as
the boundaries of the tree crowns as observed in the RGB data (Fig. 3) were much too
coarse to justify using the CHM as a means by which to crop any of the other data.
However, with higher resolution CHM data or larger crown geometries, we foresee being
able to directly use the CHM information about crown geometry to generate better data
subsets and extractions for individual trees (Scholl et al., 2020).

Early on in the competition, we discussed the merits of a one- vs two-stage approach
for data integration. While we settled on a two-stage approach (CNN to fusion network),
a one-stage approach might have been a viable option. In a one-stage approach, we
would embed the CNN within the fusion network, and instead of passing the output to
a downstream model, we would concatenate the feature vector generated from the convnet
with the vector valued features in the fusion network to obtain a model that is end-to-end
differentiable. It was not clear that this would result in a better model, but it was clear
it would require considerably more effort.

CONCLUSIONS
The IDTreeS 2020 plant classification challenge openly invited teams to create and
compare their methods using open-source NEON data. In this paper, we presented the
methods and results of the team called Jeepers Treepers. We used a two-stage deep learning
fusion network approach to combine features from RGB, hyperspectral, and lidar point
cloud data to classify taxa at an unseen site featuring unknown species. Creating
classification methods that are transferable and generalizeable is no easy task, which
made it an interesting topic for this data competition. Overall, we believe that further
processing and filtering the RGB images (such as calculating texture metrics and manually
removing images containing notable image artifacts or non-vegetation pixels), refining the
logic for identifying unknown taxa (when assigning individuals to the “other” class),
further addressing the taxon imbalance in the training data set, and incorporating greater
data volume and features (such as additional lidar point cloud metrics based on point
height and intensity) would improve our classifier’s performance. We see value in the open
data-driven competition format to accelerate methods development in the computational
ecology field, and encourage others to participate in the future.
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