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ABSTRACT
Background. The YABBY gene family is a family of small zinc finger transcription
factors associated with plant morphogenesis, growth, and development. In particular,
it is closely related to the development of polarity in the lateral organs of plants. Despite
being studied extensively in many plant species, there is little information on genome-
wide characterization of this gene family in Moso bamboo.
Methods. In the present study, we identified 16 PeYABBY genes, which were unequally
distributed on 11 chromosomes, through genome-wide analysis of high-quality genome
sequences of M oso bamboo by bioinformatics tools and biotechnological tools. Gene
expression under hormone stress conditions was verified by quantitative real-time PCR
(qRT-PCR) experiments.
Results. Based on peptide sequences and similarity of exon-intron structures, we
classified the PeYABBY genes into four subfamilies. Analysis of putative cis-acting
elements in promoters of these genes revealed that PeYABBYs contained a large number
of hormone-responsive and stress-responsive elements. Expression analysis showed
that they were expressed at a high level inMoso bamboo panicles, rhizomes, and leaves.
Expression patterns of putative PeYABBY genes in different organs and hormone-
treated were analyzed using RNA-seq data, results showed that some PeYABBY genes
were responsive to gibberellin (GA) and abscisic acid (ABA), indicating that they may
play an important role in plant hormone responses. Gene Ontology (GO) analyses of
YABBY proteins indicated that they may be involved inmany developmental processes,
particularly high level of enrichment seen in plant leaf development. In summary,
our results provide a comprehensive genome-wide study of the YABBY gene family
in bamboos, which could be useful for further detailed studies of the function and
evolution of the YABBY genes, and to provide a fundamental basis for the study of
YABBY in Gramineae for resistance to stress and hormonal stress.

Subjects Bioinformatics, Genomics, Plant Science
Keywords Genome-wide analysis, Expression analysis, Phyllostachys edulis, Gene family,
Phylogenetic analysis

INTRODUCTION
YABBY genes are zinc finger transcription factors found throughout the plant kingdom,
which include a C2–C2 zinc finger structure at the N terminus and a YABBY structure
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(helix-loop-helix) at the C terminus (Bowman & Eshed, 2000; Kanaya, Nakajima & Okada,
2002), which is similar to the first two helix sequences of high-mobility group box (HMG-
box), a specific juxtaposition of structural domains not found in other eukaryotes (Siegfried
et al., 1999; Golz et al., 2004; Sieber et al., 2004; Boter et al., 2015). These two structural
domains have been shown to be implicated in the specific binding of DNA (Golz et al.,
2004). The YABBY protein physically interacts with STYLOSA (STY) in Antirrhinum majus
and with LEUNIG (LUG) and LEUNIG_HOMOLOG (LUH) in Arabidopsis (Navarro et
al., 2004; Stahle et al., 2009). The YABBY protein of Arabidopsis also physically interacts
with SEUSS (SEU), which is a modulator of synergy with LUG (Stahle et al., 2009). These
findings suggest that YABBY proteins are involved in the synthesis of the deterrent complex
along with LUG/STY and SEU. According to their biochemical properties, LUG/LUH, STY
or SEU mutations enhance the phenotypes caused by functional loss mutations of the
YABBY genes in A. majus and Arabidopsis (Navarro et al., 2004; Stahle et al., 2009).

A study of the YABBY gene family Arabidopsis thaliana revealed that several members
play key roles in the establishment of dorsoventral polarity, as well as lateral organ growth,
development, and morphogenesis. Additionally, this family has also been implicated in
both biotic and abiotic stress response (Yamada et al., 2011; Eckardt, 2010). During the
establishment of the dorsoventral axis of plant lateral organs, this family of genes mainly
determines the fate of distal terminal cells and influences the development of plant lateral
organs (Finet et al., 2016; Bowman, 2000). Furthermore, the YABBY genes are associated
with the laminar growth, as well as suppression of shoot apical meristem (SAM) pattern
genes (Sarojam et al., 2010). YABBY is a type of transcription factors that is specifically
found in seed plants (Kayani et al., 2019). The YABBY gene family is relatively small
and has independent origins in the seed plant genealogy (Floyd & Bowman, 2007; Liu
et al., 2007). According to phylogenetic analysis, five members of YABBY gene family
represented by INO (INNER NO OUTER), CRC (CRABS CLAW), YABBY2, YABBY3/FIL
(FILAMENTOUS FLOWER), and YABBY5, have been found in angiosperms (Lee et al.,
2005; Toriba et al., 2007; Yamada, Ito & Kato, 2004; Liu et al., 2007). In dicotyledons, the
Arabidopsis YABBY family of genes contains six closely related transcripts: CRC, FIL, YAB2
(YABBY2), YAB3 (YABBY3), INO/YABBY4, and YAB5 (YABBY5) (Bowman, 2000; Nahar
et al., 2012). Four of these (FIL, YAB2, YAB3, and YAB5) have high expression in vegetative
tissues, while FIL, YAB2, and YAB3 genes are specifically expressed at the apical end of
above-ground tissues.YAB3 plays a key role in regulating abaxial conformation, growth
of lateral organs and inflorescence phyllotaxy (Hou, Lin & Hou, 2020). FIL is involved in
flower and leaf development and is functionally redundant with the YAB3 gene (Stahle et
al., 2009). In contrast, CRC and INO are expressed only in floral organs, with the former
involved in the development of nectaries and the apical end of the carpel, and the latter
regulating the development of the external end of the ovule (Eckardt, 2010; Ha, Jun &
Fletcher, 2010; Zhang et al., 2013; Shamimuzzaman & Vodkin, 2013).

Thus far, eight YABBY family genes have been found in rice (Toriba et al., 2007;
Yamaguchi et al., 2004; Navarro et al., 2004). Sequence analysis revealed the rice DL
(DROOPING LEAF) gene is a homolog of the Arabidopsis CRC, which regulates the
formation of flowers and leaf veins by promoting cell proliferation in the central region
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of rice leaves (Yamaguchi et al., 2004; Toriba et al., 2007). OsDL genes are not expressed
polarized in the carpels and leaf primordia, whereas CRC is expressed in the distal end of
the nectaries and carpels. CRC genes are mainly involved in regulating the development of
Arabidopsis carpels and nectaries (Bowman & Smyth, 1999).

OsYABBY5 (TONGARI-BOUSHI1, TOB1) regulates lateral organogenesis and
differentiation ofmeristematic tissues in rice spikelets (Tanaka et al., 2012). Overexpression
of OsYABBY1 has been shown to result in a semi-dwarf phenotype that can be recovered
by the exogenous application of gibberellin (GA) (Dai et al., 2007b) . Rice OsYAB3 is
involved in leaf development but does not affect polarity establishment, and the leaves
of plants expressing RNAi targeting this gene exhibit twisted, multinodular, and missing
ligule auricles (Lin et al., 2012). OsYAB4 is mainly expressed in the vascular tissues of rice
and may be involved in the regulation of vascular tissue development and leaf polarity
establishment (Dai et al., 2007a; Liu et al., 2007).

To date, the function of the YABBY gene family has been studied in a variety of plants,
for example, gene members of the YABBY family were identified in tomato (Solanum
lycopersicum L.) (Huang et al., 2013; Han et al., 2015); YABBY family genes also have been
identified in grapes (Vitis pseudoreticulata) (Xiang et al., 2013; Zhang et al., 2019), pak-choi
(Brassica rapa ssp. chinensis) (Hou et al., 2019), Bienertia sinuspersici (Soundararajan et al.,
2019), cotton (Gossypium arboreum) (Yang et al., 2018), maize (Zea mays L.) (Juarez, Twigg
& Timmermans, 2004; Strable & Vollbrecht, 2019), berberidaceae (Epimedium sagittatum)
(Sun et al., 2013), lily (Lilium longiflorum) (Wang et al., 2009), Chinese cabbage (Brassica
campestris L. ssp. pekinensis (Lour.) Olsson) (Zhang et al., 2013), Pisum sativum (Fourquin
et al., 2014), rapeseed (Brassica campestris L. ssp chinensis var. Parachinensis) (Zhang &
Zhang, 2014), spearmint (Mentha spicata) (Wang et al., 2016) andwheat (Triticum aestivum
L.) (Zhao et al., 2006). There is increasing evidence that YABBY has similar functions in
nutrient storage organs in both dicots and monocots (Golz et al., 2004; Juarez, Twigg &
Timmermans, 2004). For example, petunia PhCRC1/2 expression is similar to Arabidopsis
CRC expression in developing nectaries and carpels (Li et al., 2018; Morel et al., 2018; Lee
et al., 2005).

Moso bamboo (Phyllostachys edulis) belongs to the genus Phyllostachys of Bambusoideae
in Gramineae (Zhang et al., 2018), and is the most versatile and largest economic bamboo
species (Ramakrishnan et al., 2020). Because of its rapid growth and development and high
economic production value, it is the most widely distributed and cultivated bamboo species
in China. Due to its multiple uses of bamboo shoots and timber, it has high comprehensive
incomes (Peng et al., 2013a). At the same time, moso bamboo forests also have ecological
values of water conservation, fertilization, soil improvement, air purification and climate
regulation. Moso bamboo is an excellent model plant due to its rapid growth rate during
culm development (Tao et al., 2020; Zhao et al., 2018a). A better understanding of Moso
bamboo’s genome and transcriptome has the potential to yield new genetic resources for
the improvement of other crop species (Peng et al., 2013b; Pan et al., 2017; Liu et al., 2019).

Despite the sequencing of the Moso bamboo genome several years ago, few YABBY
genes have been reported in this species (Zhao et al., 2018b). The recognition and
functional characterization of the YABBY family in Moso bamboo will help to elucidate
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the regulatory mechanisms. Here, we identified 16 PeYABBY genes that contained the
YABBY conserved domain and investigated their amplification patterns, tertiary structures,
protein interactions and GO enrichment analysis. Additionally, we analyzed the expression
characteristics of the PeYABBY genes in different tissues and in response to hormonal
stress. These results may provide a basis for studying the tissue specificity of PeYABBY
genes.

MATERIALS & METHODS
Identification of YABBY gene family members in P. edulis
The complete P. edulis genome files was downloaded from GigaDB (Wang et al. 2021; Zhao
et al., 2018b) (http://gigadb.org/dataset/100498) while additional sequences of YABBYwere
obtained from the Pseudomolecule Download Site webpage in the RGAP 7 database (Rice
Genome Annotation Project, http://rice.plantbiology.msu.edu/) and The Arabidopsis
Information Resource, version 10 (TAIR 10) (https://www.arabidopsis.org/). BLAST
analysis of YABBY proteins using Hidden Markov Models (HMMs) against the protein
database. In combination with the pfam database (PF04690), rigorous criterion (E-values
had a cutoff of 10-5) was used to ensure the reliability of the amino acid sequences. In
addition to conserved sequences, the demonstration of conserved YABBY domains was the
deterministic criterion for inclusion of candidate genes into the YABBY family (Punta et al.,
2012). If therewere several alternative splice variants for a candidate gene, the longest variant
was used to represent the candidate genes. By sorting the results and removing redundancy,
the complete nucleotide and common conserved domain sequences of 16 YABBY family
members were identified in the Moso bamboo database. The online analysis tools
ProtParam, ProtScale, and SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/)
were used to determine the physical and chemical properties of each protein, such as
amino acid sequence length, molecular weight (MW), and isoelectric point (pI), as well as
its signal peptides.

Phylogenetic analysis
Arabidopsis YABBY protein sequences were downloaded from TAIR 10, while the RGAP 7
database was used to obtain rice YABBY protein sequences. The YABBY protein sequences
of A. thaliana, Oryza sativa, and P. edulis were used to construct a phylogenetic tree using
the neighbor- joining method after multiple sequence alignment by ClustalW (Khachane,
Timmis & dosSantos, 2005). For statistical reliability, the branch lengths were calculated
using pair-wise estimates of the genetic distances in a bootstrap analysis of 1,000 replicates.

Gene structure, motifs and conserved domains-sequences analysis
We analyzed the structure of the YABBY family with the gene structure view based on
the GFF annotation file. To better characterize the secondary structure of the YABBY
proteins, the software MEME (Multiple Expectation Maximization for Motif Elicitation,
https://meme-suite.org/meme/) was used to identify conserved motifs (Nakano et al.,
2006). The following optimization parameters were used: any number of repeats, the
maximum number of patterns was set to 5, and the length of each search was from
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6 to 50 amino acid. The icons for the motifs were created using an online website
(http://weblogo.berkeley.edu/logo.cgi).

For conserved domain-sequence analysis, the corresponding sequences of YABBY
proteins were extracted and analyzed by multi-sequence alignment using Geneious
software version 11.1.4 (Liao et al., 2015), and combined with an online website
for conserved domains (such as NCBI Conserved Domain Database (CDD), https:
//www.ncbi.nlm.nih.gov/cdd/ and EMBL-Pfam, https://pfam.xfam.org/) to analyze
conserved domains of the Moso bamboo YABBY sequence.

Determination of chromosomal localization and synteny analysis
To determine the physical locations of PeYABBY genes, all genes of bamboo on each
chromosome were obtained from the P. edulis genomic database, followed by mapping of
the physical location information obtained from the database by using TBtools.

Collinearity analysis was performed using the Basic Local Alignment Search Tool
(BLAST) (Lugli et al., 2020) to compare the entire Moso bamboo YABBY protein sequence,
with a cutoff of truncated E-value of 1×10−20. This truncated E-value was also used in
the collinearity analysis of P. edulis and rice, as well as P. edulis and A. thaliana. BLASTP
results were analyzed using MCScanX software to generate collinearity blocks for the entire
genome (Wang et al., 2012). CIRCOS software was used to extract colinear gene pairs from
the YABBY protein family and plot the resulting collinearity (Krzywinski et al., 2009). To
estimate divergence times, synonymous (Ks) and nonsynonymous (Ka) substitution rates
and their corresponding cDNA sequences for the PeYABBY gene pairs in Moso bamboo
species were calculated using the Ka/Ks feature of the TBtools software (Chen et al., 2020).
The divergence time of the gene pairs was estimated using the synonymous mutation rate
of λ substitutions per year per synonymous site, with the following formula: T = Ks/2 λ
(λ= 6.5 ×10-9) (Peng et al., 2013a)

Cis -acting elements in the promoter regions of the PeYABBY genes
For cis-acting regulatory elements analysis in the promoter regions of the YABBY genes,
the upstream sequence (1.5 Kb) of each PeYABBY transcription initiation sequence was
downloaded from the genome database. These sequences were then submitted to the
PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) for
identifying cis-acting elements and functional categorization, followed by visualization in
TBtools (Lescot et al., 2002; Chen et al., 2020).

Expression patterns of transcriptome analysis
Transcriptomics data were obtained from the NCBI SRA database (Accession: ERX082501,
ERX082502, ERX082503, ERX082504, ERX082506, ERX082507, ERX082508 and
ERX082509, registration numbers ERR105067, ERR105068, ERR105069, ERR105070,
ERR105072, ERR105073, ERR105074, and ERR105075) and utilized to calculate the
expression level of the YABBY genes at different developmental stages, both roots, panicles,
rhizomes, and leaves were also included. TopHat2 (Kim et al., 2013) was used tomap paired
reads to the respective reference genomes. After mapping, gene transcripts were assembled
byCufflinks (Ghosh & Chan, 2016;Kulahoglu & Brautigam, 2014). Gene expression profiles
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were calculated as transcripts per million reads (TPM) (Lama et al., 2020) (Table S3). For
convenience, transcript expression of each gene was based on logarithm base 2 per million
transcripts (log2 TPM), and the Amazing Heatmap module in TBtools was used to draw
the gene expression heatmap (Chen et al., 2020).

Plant growth conditions and hormone treatments
Seeds of Moso bamboo were collected from Kunming, Yunnan Province, China. The
seedlings were cultivated in an experimental greenhouse with a constant photoperiod (16 h
of light/8 h of darkness) and an average temperature of 22 ◦C for 30 days. And then four
tissue samples were obtained, which consisted of roots, stems, young leaves and mature
leaves, with three replicates of each sample. Abscisic acid (ABA) hormone treatment was
conducted on young leaves by spraying them with a 100 µM ABA solution. After spraying,
the leaves were sampled at 0 h, 3 h, 6 h, 12 h, 24 h, and 48 h. Unprocessed samples were
taken at 0 h and used as the control group (CK). GA hormone treatment was conducted
on young leaves by spraying with a 50 µM GA solution. Leaves were then sampled and
operated like ABA treatment. All samples were immediately frozen in liquid nitrogen and
then stored at −80 ◦C prior to RNA isolation.

qRT-PCR analysis of PeYABBY genes
For quantitative real-time PCR (qRT-PCR), RNA was extracted from Moso bamboo
samples with a FastPure Plant Total RNA Isolation Kit (Vazyme company, China). First-
strand cDNA was generated via a HiScript@ lll 1st Strand cDNA Synthesis Kit (+gDNA
wiper), following the manufacturer’s instructions. Gene-specific qRT-PCR primers were
designed according to the coding sequence (CDS) of each gene by Primer Premier 5
(See Table S4 for primer sequences). qRT-PCR was performed on a CFX96 real-time
system (BioRad, USA) for gene expression analysis with Hieff R© qPCR SYBR Green Master
Mix (Yeasen company, China) buffer, and three independent replicate experiments were
performed (Dong et al., 2017). PCR conditions were as follows: 94 ◦C for 30 s; followed by
39 amplification cycles of 94 ◦C for 5 s, 60 ◦C for 30 s, and 72 ◦C for 10 s.

The relative expression level of each gene was calculated and normalized through the
2−11Ct method relative to NTB, which was an internal control for normalization. The
statistical analysis data were analyzed using SPSS software (SPSS Software, Chicago, IL,
USA). The data was subjected to a one-way analysis of variance (ANOVA), and then a
Tukey test was performed. Under appropriate circumstances, the non-parametric Student’s
t -test was employed for pairwise comparisons of data from individual samples. Values of
P ≤ 0.05 were considered significantly different.

Protein interaction network prediction and GO enrichment
Protein-protein interaction (PPI) networks are important for studying protein interactions
and functions. To further analyze the YABBY protein interactions and their interaction
networks, the online software STRING (https://string-db.org/) was used to construct the
relationship networks and the results were visualized using Cytoscape (Paul et al., 2003).
Additionally, to better understand the biological pathways that the 16 PeYABBY genes were
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involved in, Gene Ontology (GO) enrichment analysis and visualization were performed
using Gene Ontology Enrichment Analysis software (Thomson et al., 2019).

Homology modeling
Homology modeling techniques are widely used in protein models. To determine the
tertiary structure of YABBY protein, we used the fully automated protein structure
homology modeling server Phyre2 database (http://www.sbg.bio.ic.ac.uk/phyre2) (Hüttner
et al., 2019) for homologymodeling, using similar protein structures as homology templates
and visualizing them with Discovery Studio, version 2016 (BIOVIA) software.

RESULTS
Identification of PeYABBY genes in P. edulis
After two rounds of genome retrieval of P. edulis, resulting in the identification of 16 YABBY
family proteins through HMMER and the Pfam database (Accession no. PF04690), and the
conservative YABBY domain was analyzed by NCBI CDD. Based on their genome location
of P. edulis, each PeYABBY gene was assigned a unique name (PeYABBY01-PeYABBY16)
(Table 1). The amino acid residue sequence, pI, MW and GRAVY of YABBY proteins
were listed in Table 1. The predicted length of protein products varied, PeYABBY02 had
the smallest protein sequence, with 85 amino acids (aa), while PeYABBY04 had the largest
sequence (297 aa). TheMWof proteins were predicted, and there were significant variations
in MWs, PeYABBY02 had a MW of 9.46 KDa and PeYABBY04 was 31.06 KDa, and the
pIs ranged from 5.55 and 9.85. Analysis of the grand average of hydropathicity (GRAVY)
results indicated that the majority of the YABBY members revealed hydrophilicity, with
the index <0. Only one protein (PeYABBY02) showing hydrophobic properties (GRAVY
>0). All proteins discussed in this section were predicted to not contain signal peptides.
The predicted analysis of the secondary structure of the protein sequences revealed that the
largest proportion of each protein sequence was random coils, followed by alpha helices
(Table S1).

Phylogenetic analysis and classification
In order to gain a better understanding of the evolutionary relationships among the YABBY
proteins, the full-length protein sequences of A. thaliana, O. sativa and P. edulis were used
for multi-sequence alignment and rootless phylogenetic tree analysis with bootstrap values
1000. 30 protein sequences (Table S2) were divided into five classes based on previous
studies, including the CRC class, INO class, YAB2 class, YAB5 class, and YAB3 class (Fig. 1).
Based on the phylogenetic tree, the YAB2 class could be divided into two subgroups. The
YAB3 class had the largest number of members (11), including sixMoso bamboomembers.
Only one member AtYABBY05 was present in the YAB5 class. Within the CRC class, there
were two P. edulis, one O. sativa and two A. thaliana YABBY proteins. In the YAB2 class,
there was only one Arabidopsis YABBY protein sequence in the YAB2-II subgroup, and the
YAB2-I subgroup contained six Moso bamboo protein sequences.
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Table 1 Physicochemical properties of PeYABBY genes in P. edulis.

Id New name Number of
amino acids (aa)

Molecular
weight (KDa)

Theoretical pI Aliphatic
index

Grand average of
hydropathicity
(GRAVY)

Signal
peptide

PH02Gene42615.t2 PeYABBY01 260 28.16 9.32 82.27 −0.23 no
PH02Gene08310.t1 PeYABBY03 170 18.78 9.10 57.94 −0.59 no
PH02Gene41238.t1 PeYABBY02 85 9.46 9.55 104.24 0.63 no
PH02Gene30423.t1 PeYABBY04 297 31.06 9.03 75.76 −0.23 no
PH02Gene17872.t1 PeYABBY05 101 10.61 5.55 80.99 −0.13 no
PH02Gene42853.t1 PeYABBY06 122 13.85 9.85 54.34 −0.87 no
PH02Gene18063.t1 PeYABBY07 193 21.55 9.32 68.24 −0.55 no
PH02Gene21516.t2 PeYABBY08 197 21.70 8.78 68.38 −0.49 no
PH02Gene35716.t2 PeYABBY09 291 30.78 9.58 80.93 −0.18 no
PH02Gene11723.t1 PeYABBY11 193 21.66 8.71 56.06 −0.66 no
PH02Gene30480.t1 PeYABBY10 188 21.22 8.84 72.13 −0.41 no
PH02Gene29867.t1 PeYABBY13 191 21.36 8.98 57.64 −0.61 no
PH02Gene30849.t1 PeYABBY12 188 21.21 8.61 71.6 −0.50 no
PH02Gene09731.t1 PeYABBY14 252 26.86 7.06 71.47 −0.20 no
PH02Gene02055.t1 PeYABBY16 258 27.31 7.62 73.99 −0.17 no
PH02Gene16897.t1 PeYABBY15 255 27.07 6.78 74.43 −0.19 no

Chromosome localization and collinearity analysis of PeYABBY genes
Chromosome localization and gene duplication allow analysis of the evolutionary history
of the YABBY gene family. Among YABBY family members, 16 PeYABBY genes were
randomly distributed on 11 chromosome scaffolds based on the whole-genome GFF
annotation file of the P. edulis and the location information of the PeYABBY genes. All
chromosome scaffolds had at least one YABBY gene, but the overall distribution was
uneven. One PeYABBY gene was present on scaffolds 3, 5, 11, 12, 13 and 23, and two
PeYABBYs were present on scaffolds 4, 10, 15, 21, and 24.

Intra-specific collinearity analysis was performed to examine YABBY homologous
loci relationships and putative gene duplication events. This analysis revealed
that many PeYABBY genes appeared to have arisen from gene duplications,
including PeYABBY01/PeYABBY14, PeYABBY04/PeYABBY09, PeYABBY07 /PeYABBY08,
PeYABBY07 /PeYABBY12, PeYABBY08/PeYABBY10, PeYABBY08/PeYABBY12, and
PeYABBY14/PeYABBY16. In theMoso bamboo gene database, seven homologous PeYABBY
gene pairs were found on scaffold3, scaffold5, scaffold11, scaffold12, scaffold13, scaffold15,
scaffold21, scaffold23, and scaffold24. These results indicated that duplications were
responsible for the diversity of the YABBY genes in P. edulis (Fig. 2).

A collinearity analysis was performed in order to determine the gene duplication
relationships in Moso bamboo compared to orthologous genes found in other species. This
analysis identified several gene duplications in Moso bamboo relative to rice, but there was
no collinearity relationship between Moso bamboo and A. thaliana. This gene duplication
phenomenon suggested that the Moso bamboo YABBY complement was more closely
related to monocotyledons (Figs. 3 and 4).
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To further explore the relationship between purifying selection and YABBY family gene
duplication and differentiation, the nonsynonymous (Ka), synonymous (Ks), and Ka/Ks
substitution ratios were calculated for the duplicated gene pairs in order to estimate the
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age of the duplication events (Table 2). The Ks values for fragment replication ranged from
0.13 to 0.40. Thus, the inferred discrete time range was from 9.17 million years ago (Mya)
to 77.84Mya. The Ka/Ks values of fragment replications were less than 1, indicating that
they underwent purifying selection.

Gene structure, motifs and conserved domains-sequences of YABBY
in P. edulis
Sixteen genes were identified, which were divided into four subfamilies, including INO
(INNER NO OUTER), CRC (CRABS CLAW), YAB3, and YAB2-I. The evolutionary
aspects and structural diversity of the PeYABBY genes in bamboo were investigated by
studying the exon-intron organization. All the PeYABBYs contained several introns, and
the number of introns varied from 2 to 7 (Fig. S1). Additionally, two genes of the INO
subfamily had no untranslated regions (UTR), while the CRC subfamily, which contained
two genes (PeYABBY11 and PeYABBY13), contained a UTR at only one end. It was worth
noting that the PeYABBY06 gene of the YAB3 subfamily lacked a UTR. The INO subfamily
genes contained the shortest intronic regions and the YAB2-I subfamily genes included the
longest intronic regions.

Motif analysis revealed that the INO subfamily genes only contained onemotif. Although
each member of the PeYABBY gene family contained a variable numbers of motifs, motif
2 was highly conserved (Fig. 5, Fig. S2). PeBBX06 of the YAB2-I subfamily had only two
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Table 2 Ka, Ks, and Ka/Ks calculation and divergent time of the duplicated PeYABBY gene pairs.

Duplicated gene pairs Ka Ks Ka/Ks Purify
selection

Time
(Mya)

PeYABBY10/PeYABBY08 0.13 0.99 0.13 Yes 76.01
PeYABBY12/PeYABBY07 0.14 1.01 0.14 Yes 77.84
PeYABBY12/PeYABBY08 0.16 0.90 0.17 Yes 69.07
PeYABBY14/PeYABBY01 0.25 0.69 0.36 Yes 53.29
PeYABBY14/PeYABBY16 0.03 0.12 0.27 Yes 9.17
PeYABBY04/PeYABBY09 0.12 0.31 0.40 Yes 23.48
PeYABBY07/PeYABBY08 0.05 0.15 0.30 Yes 11.63

Notes.
Ks, synonymous substitution rate; Ka, nonsynonymous substitution rate; Mya, million years ago.

motifs, which may have resulted from deletion during evolution. The sequence logos of
eachmotif were shown in Fig. 6. Among them, motif 2 andmotif 3 containedmore cysteine
amino acids.

In order to analyze the homologous structural domain sequences in the C2-C2 zinc
finger and YABBY domains and the degree of conservation of each amino acid residue,
multiple sequence alignment analyses were performed. The results was shown in Fig. 7,
which revealed a highly conserved C2-C2 zinc finger domain located at the N-terminal
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Figure 6 Motif sequence logos. The name of the motifs are shown above the picture.
Full-size DOI: 10.7717/peerj.11780/fig-6

end of the protein sequences. In this region, the spatial configuration of the cysteine (C)
and histidine (H) residues directly bound to Zn was conserved (C-X2-C-X20-CXL-HC).
A 70-aa long YABBY domain was located near the carboxyl terminus, which was similar to
the structure of other species’ YABBY proteins. However, the structures of the C2-C2 zinc
finger domains for PeYABBY05, PeYABBY06, and PeYABBY09 were incomplete.

Promoter analysis of PeYABBY genes
Investigation of promoter region cis-acting regulatory elements (CRE) contributes to
comprehend the regulation of gene transcription levels. In this study, the number of
cis-acting elements associated with hormone (including MeJA, ABA, GA, salicylic acid
(SA), auxin, and others), light, adversity, and developmental regulation was analyzed by
searching the PlantCARE database to identify potential cis-acting elements in the 1500
bp upstream promoter region of the PeYABBY genes. The results were shown in the
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Figure 7 Conserved domains- sequence s analysis of the YABBY proteins. Conservative YABBY struc-
ture domain by NCBI CDD software (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) compare
Pfam database for identification. The main domains are labeled, with the names of the domain displayed
at the top of the sequences. On the left side, the name of the YABBY protein is displayed.

Full-size DOI: 10.7717/peerj.11780/fig-7

Fig. 8. Various hormone-responsive elements and light-responsive elements were found
to exist in almost all promoters of PeYABBY genes. GA-responsive elements (GAREs),
including a GARE-motif, P-box and TATC-box, were predicted to exist in the promoters
of PeYABBY14, PeYABBY11, PeYABBY13, PeYABBY04, PeYABBY10, PeYABBY12,
PeYABBY05, PeYABBY09, PeYABBY02, PeYABBY01, and PeYABBY06. GARE-motifs
were predicted to be present in the promoters of PeYABBY14, PeYABBY11, PeYABBY13,
PeYABBY02, and PeYABBY06. The TATC-box was predicted to exist in the promoters
of PeYABBY04, PeYABBY10, and PeYABBY12. TCA-element, the SA responsiveness
element, could be found in the promoter regions of PeYABBY16, PeYABBY03, PeYABBY11,
PeYABBY15, PeYABBY05 and PeYABBY01. The abiotic stress-responsive TC-rich element
was present in PeYABBY16 gene only, and the seed-regulated growth RY-element was
present in the promoters of PeYABBY12 and PeYABBY06. At the same time, anaerobic
response elements (ARE), drought-resistant elements (MBS) and low temperature response
elements (LTR) were identified as cis-acting regulatory elements associated with abiotic
stress.

Expression patterns of the PeYABBY genes in different tissues and
organs
To obtain the expression pattern of the YABBY genes in different tissues of Moso bamboo,
we used the relevant transcriptome data available from the Genome Database website to
examine the expression patterns of the Moso bamboo YABBY genes. In order to explore
the potential function of PeYABBY genes in P. edulis, the expression levels of PeYABBYs
in different tissues were examined, including root, rhizome, panicle, and leaf. Expression
heatmaps were drawn using TBtools software with log2 TPM algorithm. The PeYABBY
genes were shown to have clear tissue specificity (Fig. 9A, Table S3). Most PeYABBY
genes had low root expression. PeYABBY06, PeYABBY08, PeYABBY03, PeYABBY10, and
PeYABBY12 were highly expressed in leaves, panicles, and rhizomes despite having very
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Figure 8 The cis.-acting regulatory elements analysis of PeYABBY genes. The online analysis program
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used to investigate the
1,500 bp sequences upstream of the ATGs. Different cis-acting elements of Pe YABBY genes are displayed,
with the different colored markers indicating different predicted cis-acting elements.

Full-size DOI: 10.7717/peerj.11780/fig-8

low expression in roots. PeYABBY09 was significantly expressed in roots, leaves, panicles,
and rhizomes, while PeYABBY02 was not expressed in roots, leaves, panicles, or rhizomes.
PeYABBY11 and PeYABBY13 were significantly expressed in panicles.

Next, the expression patterns of 16 members of the YABBY gene family in different
tissues were then investigated using qRT-PCR. The results showed that PeYABBY16 were
all expressed significantly in stems, but not in leaves, or young leaves. PeYABBY07 showed
low expression in stems but significant expression in other tissues and the expression
of PeYABBY08 was significant in four tissues. The expression patterns of PeYABBY06,
PeYABBY10, PeYABBY12 and PeYABBY13 were similar in the four tissues, and it was
obvious that the expression was most significant in the stem, followed by the young leaves,
and then the tissues of leaves and roots (Fig. 9B). These results indicated that the genes of
this family had obvious tissue specificity.

Responses of PeYABBY members under various phytohormonal treat-
ments
The presence of predicted cis-acting regulatory elements in PeYABBY gene promoters
indicated that they were likely involved in hormone responses. To test this hypothesis,
we applied ABA and GA treatments to Moso bamboo seedlings. qRT-PCR was used to
evaluate the relative expression levels of the PeYABBYs under phytohormonal treatments.
Two genes (PeYABBY07 and PeYABBY08) were significantly up-regulated at 12 h after
ABA treatment, while PeYABBY11 was up-regulated at 3 h after ABA treatment. Some
PeYABBY genes were significantly down-regulated at each time point following ABA
treatment, including PeYABBY02, PeYABBY03, PeYABBY06, PeYABBY10, and PeYABBY12
(Fig. 10A). As shown in Fig. 10B, PeYABBY06 was significantly up-regulated at each time
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Figure 9 Expression profile cluster analysis of PeYABBY genes with differential tissue expression. (A)
Heatmap showing relative expression levels of PeYABBYs in roots, leaves, panicles, and rhizomes. The val-
ues are expressed with log2 TPM. (B) Expression of PeYABBY s in different tissues. Expression levels were
calculated using the 21Ct method, this figure shows the eight PeYABBY genes with expression levels more
than 0.5.

Full-size DOI: 10.7717/peerj.11780/fig-9

point following GA treatment. The expression of PeYABBY13 was down-regulated by GA
only at 12 h, 24 h, and 48 h after treatment. In addition, PeYABBY04 was down-regulated
at all time points after GA treatment. Furthermore, PeYABBY03 was up-regulated at 12
h after GA treatment only but was down-regulated at all other time points following GA
treatment. Taken together, these results indicate that YABBY family genes were highly
responsive to different hormone treatments.

Protein interaction network and GO Enrichment
The STRING database was used to construct a network of protein relationships in order
to better understand the potential functions, signaling, and metabolic interactions of the
YABBY proteins (The corresponding gene IDs can be found in Table S5). FIL/YABBY2 and
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Figure 10 QRT-PCR analyses of PeYABBY. genes under phytohormone treatments. (A) The expres-
sion patterns of PeYABBY s under ABA treatment. (B) The expression patterns of PeYABBY s under GA
treatment. The concentration of ABA and GA was 100 µM and 50 µM, respectively. A single asterisk
shows that the level of gene expression in the treatment group was substantially different from the control
group (t -test, p< 0 .05). There was a much more significant difference (t -test, p< 0.01) when double as-
terisks were used. The 2−11Ct method was used to look at the relative expression levels of the target genes.
The standard deviations of the means of independent replicates are expressed by error bars.

Full-size DOI: 10.7717/peerj.11780/fig-10

AS2/YABBY5 were predicted to regulate the initiation of embryonic shoot apical meristem
(SAM) development. CRC/KAN and KAN2 were predicted to coordinate the regulation
of carpel development. In addition, CRC was predicted to interact with other unspecified
proteins to regulate leaf polarity and the formation of floral organs (Fig. 11).

Transcription factors play a critical role in the growth and development of plants. In
order to better understand what processes PeYABBY genes were involved in, we performed
GO enrichment analysis (Fig. 12, Table S6). In total, 8 of the PeYABBY genes were
involved in abaxial cell fate specification (GO: 0010158), 10 PeYABBY genes regulated
anatomical structure development (GO: 0048856), and 14 PeYABBY genes were involved
in multicellular biological processes (GO: 0032502). At the CC level, it could be seen that
the PeYABBY family genes of Moso bamboo were mainly involved in forming the nucleus

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11780 16/30

https://peerj.com
https://doi.org/10.7717/peerj.11780/fig-10
http://dx.doi.org/10.7717/peerj.11780#supp-4
http://dx.doi.org/10.7717/peerj.11780


KAN2

FIL

ETT AS2

AS1

YABBY2

CRC

YABBY5

KAN

Figure 11 Analysis of protein interaction networks.Using the STRING online database, YABBY genes
were selected and used to construct a PPI network. Nodes represent proteins, while black lines indicate in-
teractions between nodes.
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(GO: 0005634), and their molecular functions were mainly focused on binding metal and
cations (GO: 0046872 and GO: 0043169).

Homologous modeling of protein structures of PeYABBY genes
The secondary structure of the YABBY family of proteins in Moso bamboo consists mainly
of irregular coiling, while α-helix, extended chain (Ee), and β-turn angle are scattered
throughout the protein. Tertiary structure analysis revealed that the subfamily members
were similar in structure, with two α-helices and one loop (See the S3.Fig). There were also
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Figure 13 Tertiary structure analysis of YABBY proteins. The diagram shows the tertiary structure of
four YABBY proteins from four subfamilies. The protein of PeYABBY01 belongs to the YAB3 subfamily,
while the protein of PeYABBY05 belongs to the INO subfamily, PeYABBY06 belongs to the YAB2-I sub-
family, and PeYABBY11 belongs to the CRC subfamily.

Full-size DOI: 10.7717/peerj.11780/fig-13

differences in the structure of different subfamily genes. For example, PeYABBY05 had a
β-fold structure, while the structure of PeYABBY11 consisted mainly of three α-helices.
(Fig. 13).

DISCUSSION
The YABBY family of genes, with typical zinc finger and YABBY conserved domains, is a
plant-specific transcription factor involved in the growth and development of flowers, seeds,
leaves, and buds (Shamimuzzaman & Vodkin, 2013; Bartholmes, Hidalgo & Gleissberg,
2012; Cong, Barrero & Tanksley, 2008; Alvarez & Smyth, 1999). In addition, it was shown
that YABBY was bifunctional transcription factor as a repressor or activator (Stahle et
al., 2009). MSYABBY5 negatively regulates triticale biosynthetic processes and activates
MSWRKY75 in spearmint (Wang et al., 2016). The number of YABBY genes varies among
species, with six members present in A. thaliana (Finet et al., 2016; Villanueva et al., 1999),
eight YABBY genes identified in rice (Eckardt, 2010; Toriba et al., 2007), seven in grapes,
seventeen in soybeans (Glycine max) and nine in pineapple (Ananas comosus L.) (Zhang
et al., 2019; Zhao et al., 2017b; Li et al., 2019). Despite their importance in growth and
development, there has been no report examining the YABBY gene family in P. edulis. In
this study, we conducted a comprehensive analysis of the YABBY genes of P. edulis, leading
to a deeper understanding of their functional characteristics.

Identification and classification of YABBY gene families in P. edulis
We identified 16 YABBY genes in Moso bamboo, which encoded proteins ranging from 80
to 300 aa. In order to determine the phylogenetic relationship between YABBY proteins and
other species, a phylogenetic tree was constructed, which revealed that no YABBY proteins
were found belonging to the YAB5 subfamily, but PeYABBY genes belonging to four
subfamilies were found, including YAB3, YAB2, CRC, and INO. The monocotyledonous
plant species pineapple has also been reported to not contain YAB5-like genes (Li et al.,
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2019). These genes were all similar in structural composition, indicating that the genetic
structure of the YABBY subfamily was highly conserved. The different subfamilies of
YABBY have been proposed to play different roles in plant growth and development. FIL,
YAB2, and YAB3 are all expressed in aboveground lateral organ primordia and specifically
determine the fate of stem cells at the distal end of lateral organs. FIL, YAB3, and YAB5 show
functional redundancy during Arabidopsis leaf development and are mainly expressed in
nutrient storage tissues (Stahle et al., 2009; Sarojam et al., 2010; Eckardt, 2010), while CRC
and INO are specifically expressed in floral organs (Eckardt, 2010). CRC genes mainly
regulate the development of carpels and nectaries in Arabidopsis (Bowman et al., 1999;
Fourquin et al., 2007), and INO genes play an important function during outer integument
development in Arabidopsis (Yang et al., 2018).

The YABBY gene family expanded and evolved
In plant growth processes, gene duplication plays an important role, YABBY genesmay have
undergone functional divergence after duplication, and some may have lost their original
function, acquired new function, or retained the original functional delineation (Wang
et al., 2014; Xu et al., 2012; Zhao et al., 2017a). In the PeYABBY gene family, there were
no tandem gene duplications, but seven gene pairs generated via segmental duplications
were found. Gene duplication is thought to be a significant contributor to the evolutionary
process, and these duplications may have allowed for an expansion of YABBY gene
function in plants (Huang et al., 2013). Additionally, multiple homologous pairs of genes
were identified betweenMoso bamboo andO. sativa, suggesting that YABBY genes in these
two species originated from the same ancestral genes that had differentiated prior to species
divergence. However, no gene duplication was found in Moso bamboo and Arabidopsis,
likely because of the relatively large evolutionary distance between monocotyledons and
dicotyledons. The evolutionary tree showed that the YABBY genes of Moso bamboo and
the YABBY genes of O. sativa were clustered in one branch, again indicating that these
species shared a common ancestor which had a similar complement of YABBY genes (Wu
et al., 2014).

Ka/Ks ratios can be used to assess whether protein-coding genes have undergone positive
selection (Ka/Ks ratio >1), neutral selection (ratio = 1), or purifying selection (ratio <1)
(Hurst, 2002). Our analysis showed that the Ka/Ks ratios of the YABBY homologous pairs
were less than 1, indicating that purifying selection was primarily impetus for YABBY family
during evolution (Yang et al., 2018). The dates of segmental duplication events (9.17–77.84
Mya) indicated that segmental duplication of the PeYABBY genes has occurred after the
differentiation of monocot-dicot split, and which were observed at 170–235 Mya (Inal et
al., 2017; Gupta et al., 2015).

Functional analysis of the YABBY gene family
Under both biotic and abiotic stresses, cis-acting regulatory elements act as molecular
switches that are closely related to the regulation of gene expression (Tian et al., 2019). In
the YABBY gene family, we found a large variety of cis-acting elements, many of which
were associated with responses to GA and ABA hormones. Each gene contained hormone-
responsive elements, in which PeYABBY02, PeYABBY05, and PeYABBY06 contained more

Ma et al. (2021), PeerJ, DOI 10.7717/peerj.11780 19/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.11780


GA hormone-responsive elements. The PeYABBY genes showed significant differences
in gene expression patterns when treated with ABA or GA hormone. Furthermore, the
PeYABBY genes (PeYABBY07, PeYABBY08, PeYABBY10, PeYABBY12, PeYABBY03 and
PeYABBY06) that was responsive to GA was found to be a close homolog of OsYABBY1,
which has previously been implicated in the feedback regulation of GA metabolism in O.
sativa (Toriba et al., 2007; Dai et al., 2007b). In total, ten PeYABBY genes responded to
GA/ABA hormone treatment, suggesting that this gene family plays an important role in
hormone regulation.

YABBY genes have previously been proven to play an essential role in plant growth and
organ development, with a particular enrichment for roles in the development of trophic
organs (Kumaran, Bowman & Sundaresan, 2002; Ha, Jun & Fletcher, 2010; Soundararajan
et al., 2019; Zhao et al., 2020). Heatmap expression analysis revealed that the PeYABBY
genes were expressed at a lower level in the roots, PeYABBY06, PeYABBY10 and PeYABBY12
genes were expressed at high levels in leaves, rhizomes and panicles, which suggesting that
these genes might be involved in different developmental processes, which was consistent
with the study by Dai et al. (2007a).

The YABBY genes have tissue expression specificity, it was shown that two genome
members, CRABSCLAWand INNERNOOUTER, were expressed only in the floral organs.
In contrast, members of the FILAMENTOUS FLOWER, YABBY2, and YABBY5 genomes
were also expressed in the leaves (Eckardt, 2010; Bartholmes, Hidalgo & Gleissberg, 2012).
The rice OsYAB1 protein is highly homologous to YAB2 and YAB5 in Arabidopsis. These
genes have flower-specific expression, and OsYAB1 has been shown to play an important
role in the development of rice meristematic tissues, as well as the developmental processes
of stamens and carpels (Jang et al., 2004). ATOB1 gene encoding the YABBY protein, which
is closely related to Arabidopsis FIL in rice, is expressed in the lateral organ progenitor but
is not detectable in meristematic tissues. Wang et al. (2009) also found that LiYAB1 was
more strongly expressed in lily carpels and weakly expressed in leaves. The qRT-PCR
expression data revealed that there were two genes (PeYABBY14, PeYABBY16) that were
not expressed in the young leaves, while all eight PeYABBY genes were expressed in the
stems. Therefore, analysis of the expression patterns of these PeYABBY genes indicated
that many had tissue-specific expression patterns.

GO (Gene Ontology) analysis of YABBY proteins showed that they were involved in
numerous developmental processes and show a resistance to environmental stress (Buttar
et al., 2020). Kelley, Skinner & Gasser (2009) reviewed that twomajor polarity determinants
were the KANADI and YABBY gene families, that the KANADI and YABBY gene families
are two major polarity determineors, which are thought to be involved in integument
development. Two KAN members (KAN1 and KAN2) of KANADI were found to be
involved in the development of the outer integument together with the YABBY gene
family member INO and were essential regulators of lamellar extension of the outer
tegument (Simon et al., 2012). The PPI network prediction revealed that YABBY interacted
with KANADI family proteins to co-regulate plant growth and development. Moreover,
Boter et al. (2015) has been shown that YABBY interacts with transcriptional repressors
(JASMONATE-ZIM DOMAIN [JAZ] proteins) through its N-terminal domain and is
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involved in the regulation of jasmonate (JA)-related pathways. After JA triggering, the SCF
receptor complex (SCFCOI1) degrades JAZ3 and releases YABs, which activate a subset of
JA-regulated genes in leaves, leading to anthocyanin accumulation, chlorophyll loss, and
reduced bacterial defense (Boter et al., 2015).

An evolutionary theory of the YABBY gene in angiosperms has been reported.
Bartholmes, Hidalgo & Gleissberg (2012) proposed that ‘‘trophic’’ YABBY (FIL/YAB3,
YAB2 and YAB5) do not form monophyletic branches and that CRC and FIL evolved from
a common ancestral gene of which is sister of INO gene. Tertiary homology modeling
revealed that the INO subfamily was structurally specific and did not contain the helix-
loop-helix structure, such as PeYABBY5 contained atypical structural β-folded lamellaes,
which might be due to functional mutations that occurred during evolution.

CONCLUSIONS
In this study, 16 PeYABBY genes were identified and systematically analyzed. The results
of the study showed that YABBY genes from Moso bamboo could be classified into
three different subfamilies, which was different from the classification of other plants.
Each sequence had unique sequence features beyond the conserved amino acid structural
domain. Chromosomal/segmental duplication, tandem gene duplication, might contribute
to the expansion of the YABBY gene family. Transcriptome expression files indicated
that the YABBY gene family determined important functions in leaves and panicles
of development and growth. And most of the genes could be responsive to hormone
treatments. In conclusion, our data provide a basis for clarification of the function
and evolution of the YABBY members of the Moso bamboo and provide fundamental
information about the YABBY family in the Moso bamboo. And revealed the potential role
of PeYABBYs in hormone response during the development of Phyllostachys edulis.
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