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Abstract Background. Pharmacogenetic variation is important to drug responses through diverse and
complex mechanisms. Predictions of the functional impact of missense pharmacogenetic variants
primarily rely on the degree of sequence conservation between species as a primary discriminator.
However, idiosyncratic or off-target drug-variant interactions sometimes involve effects that are
peripheral or accessory to the central systems in which a gene functions. Given the importance of
sequence conservation to functional prediction tools – these idiosyncratic pharmacogenetic variants very
likely violate the assumptions of predictive software commonly used to infer their effect.

Methods. Here we exhaustively assess the effectiveness of eleven missense mutation functional
inference tools on all known pharmacogenetic missense variants contained in the Pharmacogenomics
Knowledgebase (PharmGKB) repository. We categorize PharmGKB entries into sub-classes to catalog
likely off-target interactions , such that we may compare predictions across different variant annotations.

Results. As previously demonstrated, functional inference tools perform poorly on the complete set of
PharmGKB variants, with large numbers of variants incorrectly classified as ‘benign’. However, we find
substantial differences amongst PharmGKB variant sub-classes, particularly in variants known to cause
off-target, type B adverse drug reactions, that are largely unrelated to the main pharmacological action
of the drug. Specifically, variants associated with off-target effects (hence referred to as off-target
variants) were most often incorrectly classified as ‘benign’. These results highlight the importance of
understanding the underlying mechanism of pharmacogenetic variants and how variants associated with
off-target effects will ultimately require new predictive algorithms. We describe how to identify variants
associated with off-target effects within PharmGKB in order to generate a training set of variants that is
needed to develop new algorithms specifically for this class of variant. Development of such tools will
lead to more accurate functional predictions and pave the way for the increased wide-spread adoption of
pharmacogenetics in clinical practice.
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15 Abstract

16 Background. Pharmacogenetic variation is important to drug responses through diverse and 

17 complex mechanisms. Predictions of the functional impact of missense pharmacogenetic variants  

18 primarily rely on the degree of sequence conservation between species as a primary 

19 discriminator. However, idiosyncratic or off-target drug-variant interactions sometimes involve 

20 effects that are peripheral or accessory to the central systems in which a gene functions. Given 

21 the importance of sequence conservation to functional prediction tools – these idiosyncratic 

22 pharmacogenetic variants very likely violate the assumptions of predictive software commonly 

23 used to infer their effect.

24

25 Methods. Here we exhaustively assess the effectiveness of eleven missense mutation functional 

26 inference tools on all known pharmacogenetic missense variants contained in the 

27 Pharmacogenomics Knowledgebase (PharmGKB) repository. We categorize PharmGKB entries 

28 into sub-classes to catalog likely off-target interactions , such that we may compare predictions 

29 across different variant annotations.

30

31 Results. As previously demonstrated, functional inference tools perform poorly on the complete 

32 set of PharmGKB  variants, with large numbers of variants incorrectly classified as ‘benign’.  

33 However, we find substantial differences amongst PharmGKB variant sub-classes, particularly in 

34 variants known to cause off-target, type B adverse drug reactions, that are largely unrelated to 

35 the main pharmacological action of the drug.  Specifically, variants associated with off-target 

36 effects (hence referred to as off-target variants) were most often incorrectly classified as 

37 ‘benign’. These results highlight the importance of understanding the underlying mechanism of 

38 pharmacogenetic variants and how variants associated with off-target effects will ultimately 

39 require new predictive algorithms. We describe how to identify variants associated with off-
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40 target effects within PharmGKB in order to generate a training set of variants that is needed to 

41 develop new algorithms specifically for this class of variant.  Development of such tools will 

42 lead to more accurate functional predictions and pave the way for the increased wide-spread 

43 adoption of pharmacogenetics in clinical practice.

44

45 Introduction

46 Individual variability in drug response poses a large challenge to safe and effective patient 

47 treatment (Meyer 2000; Pirmohamed 2001). Many oncology drugs have be shown to be 

48 ineffective in subsets of patients, meaning that often multiple drugs must be tried before an 

49 effective treatment is found (Dancey et al. 2012). For example, it is not understood why statins (a 

50 class of drugs commonly prescribed for cardiovascular disease) behave differently between 

51 individuals (Silva et al. 2006), and can even cause a very severe toxic reaction in a small number 

52 of patients (Gabb et al. 2013). It is been estimated that 15-30% of this variability in drug 

53 response is due to genetic factors (Eichelbaum et al. 2006; Pang et al. 2009) however the precise 

54 mechanism of such genetic factors is often little understood. Numerous other factors play a role 

55 in variable drug response, including age, ethnicity, gender and differences in alcohol intake. 

56

57 There are a growing number of databases that aggregate, curate and annotate the increasing body 

58 of identified genetic variants that occur in genes that interact with a pharmaceutical 

59 (pharmacogenes).  (Sim et al. 2011) The Pharmacogenomic Knowledgebase (PharmGKB) 

60 (Whirl-Carrillo et al. 2012) is the largest, open database of pharmacogenetic data, and at time of 

61 publication, includes information on nearly 150 pathways and over 23,000 individual variant 

62 annotations.  Variants within PharmGKB are also annotated with effect types (dosage, efficacy, 

63 toxicity) and the level of confidence (categories 1-4) of the pharmacogenetic association, with 

64 category 1 being the highest.  The pharmacogenetic variants included in PharmGKB cover a 

65 wide range of mutation types, from nonsynonymous and synonymous single nucleotide variants 

66 (SNVs) to non-coding, intergenic and copy number variants.  

67

68 Predicting the potential functional impact of a missense mutation is necessary, due to the 

69 disparity between the number of identified variants and the number that have experimentally-

70 derived functional data. For missense mutations, this interpretation gap is presently filled by 

71 mutation function inference tools, such as PolyPhen2 (Adzhubei et al. 2010), CADD  (Kircher et 

72 al. 2014) and SIFT (Sim et al. 2012).  These are data tools that integrate sequence conservation 

73 and, often, structural information to predict whether alterations to the amino-acid sequence are 

74 likely to alter the function of a protein (Khan & Vihinen 2010).  These tools are known to suffer 

75 from high false positive rates with previous work estimating >40% of all variants predicted to be 

76 deleterious had little measurable impact on protein function (Miosge et al. 2015). Generally, the 

77 algorithms work by deriving a multi-factorial score with higher values (with the exception of 

78 SIFT) representative of variants more likely to be damaging to the structure and function of the 

79 protein. Several algorithms bin their values into discrete named categories with PolyPhen2 
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80 applying labels of ‘benign’ for scores from 0 and <0.15, ‘possibly damaging’ for scores from 

81 0.15 and <0.85 and ‘probably damaging’ for scores of 0.85-1. The algorithms are often trained 

82 on distinct sets of variants with CADD employing a machine learning model trained on a binary 

83 distinction between fixed variants arisen since the human/chimp split and simulated de novo 

84 variants.  The types of evidence employed by the algorithms are numerous with CADD 

85 considered 60 annotation sets based largely based on conservation (e.g. phastCons, GERP), 

86 epigenetic modifications (e.g. DNase-Seq, H3K9Ac), functional prediction (e.g. TF motif, amino 

87 acid change), and genetic content (e.g. GC content, CpG content) amongst others. Despite the 

88 diversity of evidence types however, in almost all cases if a variant or mutation lies in a highly 

89 conserved region in a multi-species alignment of orthologous gene sequences, the variant will 

90 very likely be considered deleterious or damaging.  Conversely, should the variant be broadly 

91 similar to existing sequence variation in this same alignment, the variant will be considered 

92 benign or functionally homologous.  While some tools do consider structural information 

93 pertaining to the missense mutations, to our knowledge all tools incorporate sequence 

94 conservation data in their algorithms.  Hence, sequence conservation is the strongest evidence 

95 presently used to classify a variant as either benign or deleterious.  

96

97 The reliance of such tools on sequence conservation is critical when considering 

98 pharmacogenetic variation.  A recent study assessed the effectiveness of eight tools on variants 

99 in the RYR1 gene, which is linked to pharmacogenetic disorder malignant hyperthermia (MH) 

100 (Schiemann & Stowell 2016). They compared MH-causative variants and common variants and 

101 found none of the prediction programmes could classify all variants correctly as either 

102 'damaging' or as 'benign' respectively (84% - 100% range for sensitivity and 25% - 83% range of 

103 specificity). Specific missense mutations have been shown to cause adverse off-target effects 

104 with rs1050828 causing glucose-6-phosphate dehydrogenase (G6PD) deficiency which induces 

105 haemolytic anaemia from anti-malarial drugs such as primaquine (Gampio Gueye et al. 2019). 

106 A broader study appraised mutation functional inference methods across a variety of 

107 pharmacogenetic missense variants and also found them to perform poorly with the effect 

108 attributed to the ill-suited training sets used to build the models on which the algorithms rely 

109 (Zhou et al. 2018b).  Such studies led us to examine pharmacogenetic variants in order to 

110 identify subclasses that are likely to perform poorly with such tools such as variants associated 

111 with adverse drug reactions (ADRs).

112

113 ADRs are broadly classified according to general mechanistic distinctions (Patton & Borshoff 

114 2018).  Type A reactions are common and their effects are predictable and mostly dose-

115 dependent.  Type A reactions relate to interactions of a drug with its’ primary drug target.  

116 Conversely, type B reactions are less common and are mostly unrelated to the main 

117 pharmacological action of the drug.  Type B reactions, sometimes also called idiosyncratic drug 

118 reactions (Uetrecht & Naisbitt 2013), can be dose-dependent or dose-independent, may be 

119 immunologically-mediated and/or may involve off-target drug interactions (Patton & Borshoff 

120 2018).  Immune-mediated Type B reactions involve the drug inducing a specific immune 
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121 response, such as the development of a skin rash commonly caused by administration of 

122 penicillin (Weiss & Adkinson 1988).  Off-target drug effects can also occur without an 

123 immunological component, such as the interactions of anesthetics with the ryanodine receptor 1 

124 (RYR1) protein causing malignant hyperthermia (Robinson et al. 2006).

125

126 We extracted all PharmGKB variants causing missense mutations and assessed the effectiveness 

127 of eleven functional inference tools.  PharmGKB contains substantial numbers of variants, across 

128 all variant evidence levels, that are computationally predicted to be benign. We independently 

129 analyzed variant sub-classes associated with Type A and Type B reactions to determine whether 

130 the functional inferences differ.  We find that most PharmGKB entries incorrectly classified as 

131 benign are generally off-target, idiosyncratic variants.   As such, using current functional-effect 

132 prediction tools may produce poor inferences on idiosyncratic pharmacogenetic variants.  

133 Identifying lists of such variants generates a training set suitable to develop and calibrate new 

134 algorithms designed for this specific sub-class of variant.

135

136 Materials & Methods

137 Pharmacogenetic Variant Datasets

138 A set of pharmacogenetic variants with dbSNP reference cluster identifiers (RS) (Sherry et al. 

139 2001) were obtained from PharmGKB (Whirl-Carrillo et al. 2012) and custom overlap code used 

140 to combine variant annotations (Field et al. 2015). Variants within PharmGKB are classified by 

141 gene, type of effect, level of evidence, specific drug, chemical, disease and phenotype. To obtain 

142 functional inference scores, variants were further annotated with Variant Effect Predictor (VEP) 

143 (McLaren et al. 2016).

144

145 Classification of Off-Target Pharmacogenetic Variants

146 A simple classification scheme was devised to identify and confirm likely off-target variants 

147 (Table 1).   Input variants for this classification were the complete set of PharmGKB variants 

148 (Whirl-Carrillo et al. 2012). First, of these variants, all synonymous and non-coding variants 

149 were excluded, leaving just missense variants.  All clinical variants were then filtered for 

150 PharmGKB annotations of effect type ‘Toxicity/ADR’ for any particular chemical and/or drug.  

151 Variants were removed if they also had an additional effect type (other than ‘Toxicity/ADR’) for 

152 the same drug.  Next, variants were removed if they were present in absorption, distribution, 

153 metabolism, and excretion process genes (ADME; categorized as such in the PharmaADME 

154 database; www.pharmaadme.org) or were annotated with Gene Ontology (24) categories of 

155 ‘xenobiotic metabolism process’ or with ‘transporter’.  With this filtered list, the cited literature 

156 for each variant was then appraised to discern whether a mechanism of action was known and 

157 that the variant resulted in an off-target or idiosyncratic effect.  The classification scheme and 

158 variant counts at each step is summarized in Table 1 and the list of filtered variants in 

159 Supplemental Table S1.

160
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161 Validation of classification scheme

162 To validate how effective this classification system was at capturing off-target variants, we 

163 randomly sampled high-confidence, missense variants from the PharmGKB (Whirl-Carrillo et al. 

164 2012) until we derived 30 variants with a known pharmacogenetic mechanism (Supplemental 

165 Table S2).    For each of these 30 variants we conducted a literature review to manually classify 

166 each variant as Type A or Type B.  Manual classification was geared toward being stringent and 

167 followed a checklist where the variant was assigned to Type B if it satisfied all of the following 

168 criteria: 1) was not a metabolic process gene associated with normal metabolism of the drug, 2) 

169 was not in a gene associated with the system the drug is prescribed to target, and 3) did not have 

170 a dose effect.  These variants were used as a truth set to measure the performance of the 

171 classification scheme.

172

173 Functional Effect Prediction

174 For all PharmGKB missense mutations, the predicted functional effect of mutations was predicted 

175 with SIFT (Sim et al. 2012), PolyPhen2 (Adzhubei et al. 2010), CADD (Kircher et al. 2014), 

176 DANN (Quang et al. 2015), FATHMM (Shihab et al. 2013), GERP++ (Davydov et al. 2010), 

177 MutPred (Li et al. 2009), Mutation Assessor (Reva et al. 2011), Mutation Taster (Schwarz et al. 

178 2014), REVEL (Ioannidis et al. 2016) and PhastCons (Siepel et al. 2005), relative to EnsEMBL 

179 canonical transcripts annotated with dbNSFP v2.0 (Liu et al. 2013), queried with Variant Effect 

180 Predictor (McLaren et al. 2016) (Supplemental Table S3). 

181

182 Receiver Operator Curves (ROC)

183 ROC curves were obtained for the most-widely used subset of these tools (CADD, PolyPhen2, 

184 SIFT, Mutation Assessor, MutPred and REVEL) using the R package ROCR (Sing et al. 2005) 

185 (Figure 1).  All high-confident PharmGKB Category 1 variants were input as the positive set 

186 while a set of randomly selected common variants (MAF > 0.1) were input as the negative set 

187 using the Perl function rand() across the entire set of dbSNP missense variants. Labels were 

188 inverted for SIFT due to lower scores representing likely damaging mutations and CADD and 

189 Mutation Assessor scores were scaled into the range of 0-1. Area under the curve and Matthew 

190 Correlation Coefficient were calculated using the R-package ROCR performance function 

191 (Table 2).

192

193 Results

194 Distributions of pharmacogenetic variant functional inferences

195 Functional inference scores were obtained for 561 missense single nucleotide variants (SNVs) 

196 present in PharmGKB, that also had dbSNP cluster identifiers.  Predictions were made for each 

197 SNV with eleven different prediction tools (SIFT, PolyPhen2, CADD, DANN, FATHMM, 

198 GERP++, MutPred, Mutation Assessor, Mutation Taster, REVEL and PhastCons) (Supplemental 

199 Table S3).  Instances where a tool produced no value for a given SNV were recorded as an NA 
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200 value. The distributions of scores from the most widely-used subset of these tools (CADD, 

201 PolyPhen2, SIFT, Mutation Assessor, Mutation Predictor and REVEL) are plotted with variants 

202 grouped by major PharmGKB category 1-4 (Figure 2).  The predictions calculated for these 

203 functional variants ranged widely from benign to deleterious.  While four of the tools generate 

204 scores in the range of 0-1 (with 1 being most damaging expect for SIFT with 0 being most 

205 damaging). Mutation Assessor and CADD employ a range of positive values with CADD 

206 calculating a Phred-quality score.  For example, a CADD score of 20 implies the variant is ranked 

207 in the top 0.1% of all possible variant scores based on all possible changes in the human genome 

208 (CADD score of 10 is top 1%, CADD score of 20 is top 0.1%, CADD score of 30 is top 0.01%, 

209 etc.). For comparison to expected background levels, we also selected a random set of 2155 

210 common human missense SNVs with assigned RS cluster identifiers.  Overall, the distribution of 

211 random variants mirrors our previous work with Polyphen2 exhibiting a characteristic hourglass 

212 curve with very few intermediate values (Andrews et al. 2012).  These tools represent a broad 

213 range of methodologies available for mutation functional prediction and the categories of 

214 information used by each tool are annotated in Figure 2 as seq (sequence conservation), struct 

215 (protein structural metrics), and ens (ensemble tool that integrates individual tools). The results 

216 demonstrate how some of the highest confidence PharmGKB variants annotated as functionally 

217 important are predicted to be benign.  Of the 119 highest confidence category 1 variants, the 

218 majority are predicted to be deleterious by PolyPhen2 (median score 0.996), however 6 variants 

219 were classified benign (rs116855232, rs1057910, rs121909041, rs3745274, rs1050828 and 

220 rs2228001). The 183 variants in category 2 had a much broader range of predicted functional 

221 effects with 33 variants predicted as benign and an overall median score of 0.138, even less than 

222 the median score of 0.245 for the randomly selected variants. Similarly, the distribution of 

223 functional effect predictions in category 3 was strongly skewed towards benign variants 

224 (PolyPhen2 median score 0.012) and category 4 had a distribution very similar to the random 

225 variant set (PolyPhen2 median score 0.319).  Lower-confidence PharmGKB variants in category 

226 3 and 4 are expected to contain a mix of real and false positive pharmacogenetic variants making 

227 it difficult to gauge whether these categories are enriched for type B variants.  

228

229 To better assess the performance of the individual algorithms on high quality pharmacogenetic 

230 variants, ROC plots were generated for CADD, PolyPhen2, SIFT, Mutation Assessor, Mutation 

231 Predictor and REVEL (Figure 1). Area under the curve (AUC) and Matthews Correlation 

232 Coefficient were calculated (Table 2). Overall, Mutation Predictor had the highest AUC at 0.974 

233 followed by REVEL at 0.94, PolyPhen2 at 0.852 and the remaining algorithms raging from 0.727-

234 0.774.  PolyPhen2 had the highest Matthews Correlation Coefficient at 0.986, followed by SIFT 

235 at 0.97, Mutation Predictor at 0.828 and the remaining algorithms raging from 0.643-0.786. While 

236 there are significant differences, no single best tool performs optimally across all variants.  

237

238 In addition to missense mutations, tools such as CADD are able to generate scores for other variant 

239 types such as non-coding SNVs. While detailed analysis of this type of variant is beyond the scope 
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240 of this study, we identified 14 PharmGKB high-quality category 1 and 2 non-coding variants and 

241 generated CADD scores. The median CADD score was 14.0, well below the average of 27.2 for 

242 category 1 PharmGKB and even less than the 22.1 for the random 2155 dbSNP variants.

243

244 Classification of pharmacogenetic variation to detect off-target effects

245 A prior study (Zhou et al. 2018b) demonstrated that functional prediction tools do not perform 

246 well across all pharmacogenetic variation. While overall our results support this conclusion, we 

247 hypothesized that the majority of pharmacogenetic variants predicted to be benign were type B 

248 variants associated with off-target effects.  To investigate the possibility that type B 

249 pharmacogenetic variants are predominantly predicted to be benign, we devised a simple 

250 classification system to enrich these from PharmGKB (described in Materials and Methods and 

251 summarized in Table 1).  Our starting data was a possible all PharmGKB clinical variants found 

252 to cause missense mutations.  In order to discern how effective this classification system was at 

253 capturing Type B variants, we randomly sampled from the starting set of PharmGKB variants 

254 until we derived 30 variants from distinct genes with a published pharmacogenetic mechanism 

255 (Supplemental Table S2).    From a literature review we manually classified each variant as 

256 being of Type A or Type B (see Methods), finding nine of the 30 variants (30%) to be Type B 

257 variants.  With this validation data as a truth set, we counted true and false positives and 

258 negatives resulting from our classification scheme (Supplementary Table S3). Of the starting 

259 set of 30 variants, the filtering scheme retained eight putative Type B variants.  Of these eight, 

260 five were true positive Type B variants (with no false negatives) and three were false positives.  

261 Given this retention of Type B variants from the unfiltered variant pool (9/30=0.3) to the 

262 enriched pool (5/8=0.63), we estimate from this data that this classification scheme yields a 2.1-

263 fold (0.63/0.3) enrichment of Type B missense variants, with a sensitivity of 63% (5/8) and a 

264 specificity of 100% (21/21).  Subsequently, with this classification scheme, we performed the 

265 classification on the full set of 561 PharmGKB variants causing missense mutations.  Of these, 

266 this filtering system retained 142 missense variants and generated a median PolyPhen2 score of 

267 0.061 (Supplemental Table S1) substantially lower than the median value of 0.245 for the 

268 randomly selected variants.  Further, these 142 variants included all nine Type B variants 

269 identified in the validation set. 

270

271 Discussion

272 In this work we have appraised whether pharmacogenetic variants associated with Type B, off-

273 target effects are consistently predicted to be less deleterious than other functionally-important 

274 variants.  We find this to be the case and postulate that this results arises from the reliance of the 

275 current generation of missense mutation inference tools on sequence conservation information.  

276 Generally, when a deeply conserved genetic element is found to be mutated, this will result in 

277 this mutation being predicted to be deleterious.  However, should a nucleotide not be conserved 

278 across deep evolutionary distances, but be the site of interaction with a recently developed (in an 

279 evolutionary sense) drug molecule, mutations at this site are likely to be predicted ‘benign’.  Yet, 
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280 this is clearly not the case, should this drug confer a life-saving benefit.  The current cohort of 

281 predictive tools that utilize sequence conservation assume that nucleotide sites that vary over 

282 evolutionary timescales are necessarily benign.  However, there are several reasons why this 

283 assumption may not hold for some pharmacogenetic variants. 

284

285 One explanation is the time required for purifying selection to act. Purifying selection acts to 

286 remove damaging mutations over an evolutionary time scale.  Xenobiotic drugs being prescribed 

287 to human patients, however, is a very recent occurrence in an evolutionary context.  Unless a 

288 pharmacogenetic variant is related to the evolved functions of a gene, then no information is 

289 present in the ancestral sequence record from which to detect functional importance. The action 

290 of drugs is a recent event on an evolutionary time scale and further has only applied to a very 

291 limited range of species.  Many genes that interact with drugs (pharmacogenes) contain variants 

292 which generate Type A ADRs.  For these Type A pharmacovariants, the drug most often just 

293 another xenobiotic compound which the target-protein acts upon.  Variants which adversely 

294 affect the function of the pharmacogene should be correctly classified as ‘deleterious’ by the 

295 current generation of functional inference tools. This is supported by previous work showing an 

296 association between the residual evidence intolerance score (RVIS which measure the tolerance 

297 of a gene to mutations) and targets of approved drugs (Nelson et al. 2015) however it is unknown 

298 whether this holds for off-target variants. Variants that cause a type B or off-target effect are 

299 much less likely to be subject to the same selection pressures as those of type A, meaning such 

300 variants will may be incorrectly classified as ‘benign’ due to the lack of observed sequence 

301 conservation.  Indeed, we show most off-target pharmacogenetic variants of this type are 

302 predicted to be functionally unimportant and will be missed using current tools.  Given the 

303 importance of pharmacogenetic variation and the numerous nature of Type B pharmacovariants, 

304 new methods are urgently needed to capture this important class of variation.

305

306 Another possible explanation proposed by Zhou et al (Zhou et al. 2018a)  is that the genes 

307 containing many pharmacogenetic variants are often poorly conserved, making the reliance of 

308 the algorithms on sequence conservation alone problematic.  The quality of the multiple 

309 sequence alignments is also important with the class of multiple sequence alignment algorithm 

310 selected shown to substantially impact downstream analyses (Blackburne & Whelan 2013). An 

311 additional consideration is the constraints imposed by domain structure on missense mutations 

312 across the human genome (MacGowan et al. 2017).  This work identified regions of  the genome 

313 depleted of missense mutations and while most such regions were conserved across species, they 

314 identified regions that are not conserved yet were enriched for pathogenic variant, ligands, and 

315 DNA and protein binding interactions. Such variants are also unsuitable for the sequence based 

316 tools and similar to pharmacogenetic variants require non-sequence based tools to accurately 

317 predict their functional impact. A final consideration is the possibility that a SNV could disrupt 

318 the interaction between the protein and the drug however it would exhibit no impact on the 
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319 protein function in isolation. Such pharmacogenetic variants would be expected to be invisible to 

320 the current generation of functional inference prediction software.

321

322 While sequence conservation is a useful metric for predicting the impact of many variants, we 

323 have shown for certain subclasses of variants it is not suitable.  However, without using sequence 

324 conservation information as a primary discriminator, what methods and datasets are available to 

325 differentiate between truly benign and functionally important variation causing off-target effects?  

326 Tools that incorporate protein structural information would be expected to work better on such 

327 variants, yet our investigation showed little difference between tools which use structural 

328 features and those which do not (Table 2: average AUC for tools using structural information is 

329 0.849 vs 0.825 for tools that do not; p-value=0.79 2-sample t-test). In hopes of finding new ways 

330 to predict damaging missense mutations, researchers are increasingly applying machine learning 

331 techniques to improve functional prediction algorithms particularly for identifying disease 

332 causing variants (Kalinin et al. 2018).  However, for pharmacogenetic variants options are 

333 limited.  A recent study reported improved sensitivity and specificity using a functionality 

334 prediction framework optimized for pharmacogenetic variants however no code has yet been 

335 released to independently assess this claim (Zhou et al. 2018b). Regardless of the eventual 

336 outcome, the ability to accurately predict pharmacogenetic variants associated with off-target 

337 effects is critical for the increased adoption of pharmacogenetics in clinical practice.

338

339 Conclusions

340 Pharmacogenetic missense variants represent a complex set of genetic factors with highly diverse 

341 functional mechanisms that influence drug efficacy. Functional predictions of the likely impact 

342 of a given missense variant are driven by measures of sequence conservation over deep 

343 evolutionary timescales including mammals, invertebrates and even yeast.  Our analysis 

344 confirms that in many cases, the assumptions of functional inference tools are invalid, 

345 particularly for variants associated with off-target, type B adverse drug reactions. We describe a 

346 simple method to identify such variants and note that the majority are predicted to be benign and 

347 functionally unimportant. Generating a subset of such variants will enable the development of 

348 urgently needed new methods that can accurately detect pharmacogenetic variation.

349
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470 Figure 1 – Receiver operator curves (ROC) for CADD, Mutation Assessor, MutPred, 

471 PolyPhen2, REVEL, and SIFT generated with ROCR. All high-confident PharmGKB Category 1 

472 missense variants were input as the positive set while a set of randomly selected common 

473 variants (MAF > 0.1) were input as the negative set using the Perl function rand() across the 

474 entire set of dbSNP missense variants. Labels were inverted for SIFT due to lower scores 

475 representing likely damaging mutations and CADD and Mutation Assessor scores were scaled 

476 into the range of 0-1.

477

478 Figure 2 - Distribution of functional effect scores of PharmGKB variants predicted by six 

479 mutation effect inference tools.  Boxplots shown are of a) CADD Phred score, b) PolyPhen2 

480 score, c) SIFT score, d) Mutation Assessor score, e) MutPred score and f) REVEL score.  Scores 

481 are plotted for each tool in variant confidence categories (from 1 (highest) to 4 (lowest)) assigned 

482 by the PharmGKB annotation.  Each tool is annotated with the information types it employs to 

483 make predictions – Seq: sequence conservation, Struct: protein structural metrics, Ens: an 

484 ensemble tool that integrates results of several individual tools. Each tool employs categorical 

485 cutoffs with CADD suggesting >15, PolyPhen2 using >0.85, SIFT using < 0.05, MutPred using 

486 >0.5, Mutation Assessor using >0.65, and REVEL suggesting > 0.5.

487

488
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Figure 1
Receiver operator curves (ROC) for six functional inference tools.

Receiver operator curves (ROC) for CADD, Mutation Assessor, MutPred, PolyPhen2, REVEL,
and SIFT generated with ROCR. All high-confident PharmGKB Category 1 missense variants
were input as the positive set while a set of randomly selected common variants (MAF > 0.1)
were input as the negative set using the Perl function rand() across the entire set of dbSNP
missense variants. Labels were inverted for SIFT due to lower scores representing likely
damaging mutations and CADD and Mutation Assessor scores were scaled into the range of
0-1.
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Figure 2
Functional inference scores across all PharmGKB variants grouped by confidence level.

Distribution of functional effect scores of PharmGKB variants predicted by six mutation effect
inference tools. Boxplots shown are of a) CADD Phred score, b) PolyPhen2 score, c) SIFT
score, d) Mutation Assessor score, e) MutPred score and f) REVEL score. Scores are plotted
for each tool in variant confidence categories (from 1 (highest) to 4 (lowest)) assigned by the
PharmGKB annotation. Each tool is annotated with the information types it employs to make
predictions – Seq: sequence conservation, Struct: protein structural metrics, Ens: an
ensemble tool that integrates results of several individual tools. Each tool employs
categorical cutoffs with CADD suggesting >15, PolyPhen2 using >0.85, SIFT using < 0.05,
MutPred using >0.5, Mutation Assessor using >0.65, and REVEL suggesting > 0.5.
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Table 1(on next page)

Classification criteria used to identify off-target pharmacogenetic variants from the
PharmGKB database.
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Step Filter Number Varints

1

Exclude synonymous and 

non-coding variants 561

2

Include variants that have 

type:toxicity/ADR 339

3

For drug and gene pairs, 

exclude variants with 

additional effect types other 

than Toxicity/ADR 273

4

Gene containing variant is 

NOT an ADME process gene 

OR annotated in GO with 

'xenobiotic metabolic 

process' OR 'transporter' 196

5

Literature review indicates a 

known mechanism AND 

mechanism indicated an 

idiosyncratic drug/protein 

interaction 142

1

2
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Table 2(on next page)

AUC and MCC from PolyPhen2, MutPred, REVEL, SIFT, CADD, and Mutation Assessor
using category 1 and 2 PharmGKB variants versus common dbSNP variants.
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Algorithm Area Under Curve (AUC)

Matthews Correlation 

Coefficient (MCC)

PolyPhen2 0.8521586 0.986

MutPred 0.9745274 0.828

REVEL 0.9416667 0.786

SIFT 0.7739619 0.97

CADD 0.7279054 0.643

Mutation Assessor 0.7632535 0.6932515

1
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