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Accurately tracking a group of small biological organisms using algorithms to obtain their
movement trajectories is essential to biomedical and pharmaceutical research. However,
object mis-detection, segmentation errors and overlapped individual trajectories are
particularly common issues that restrict the development of automatic multiple small
organism tracking research. Extending on previous work, this paper presents an accurate
and generalised Multiple Small Biological Organism Tracking System (MSBOTS), whose
general feasibility is tested on three types of organisms. Evaluated on zebrafish, Artemia
and Daphnia video datasets with a wide variety of imaging conditions, the proposed
system exhibited decreased overall Multiple Object Tracking Precision (MOTP) errors of up
to 77.59%. Moreover, MSBOTS obtained more reliable tracking trajectories with a
decreased standard deviation of up to 47.68 pixels compared with the state-of-the-art
idTracker system. This paper also presents a behaviour analysis module to study the
locomotive characteristics of individual organisms from the obtained tracking trajectories.
The developed MSBOTS with the locomotive analysis module and the tested video datasets
are made freely available online for public research use.
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ABSTRACT12

Accurately tracking a group of small biological organisms using algorithms to obtain their movement

trajectories is essential to biomedical and pharmaceutical research. However, object mis-detection,

segmentation errors and overlapped individual trajectories are particularly common issues that restrict

the development of automatic multiple small organism tracking research. Extending on previous work,

this paper presents an accurate and generalised Multiple Small Biological Organism Tracking System

(MSBOTS), whose general feasibility is tested on three types of organisms. Evaluated on zebrafish,

Artemia and Daphnia video datasets with a wide variety of imaging conditions, the proposed system

exhibited decreased overall Multiple Object Tracking Precision (MOTP) errors of up to 77.59%. Moreover,

MSBOTS obtained more reliable tracking trajectories with a decreased standard deviation of up to

47.68 pixels compared with the state-of-the-art idTracker system. This paper also presents a behaviour

analysis module to study the locomotive characteristics of individual organisms from the obtained tracking

trajectories. The developed MSBOTS with the locomotive analysis module and the tested video datasets

are made freely available online for public research use.
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INTRODUCTION26

In recent years, small biological organisms such as zebrafish larvae (genetically and physiologically similar27

to humans), Artemia franciscana, and Daphnia magna have become powerful models and are widely used28

to study human disease (James et al., 2019), pharmacology (Comeche et al., 2017) and ecotoxicology29

(James et al., 2019; Comeche et al., 2017; Poynton et al., 2007). Accurate tracking techniques are vital for30

understanding the biology and ecology underlying their movement (Martineau and Mourrain, 2013; Nema31

et al., 2016; Colwill and Creton, 2011; Alyuruk et al., 2013; Ekvall et al., 2013). The traditional method32

relying on human visual observations is very tedious and time consuming. Also, the related experiments33

are difficult to reliably repeat. Though fluorescent labelling can improve the visual distinction of specific34

targets, fluorescent materials affect the behavioural response of these organisms (Ekvall et al., 2013).35

Automatic object tracking techniques have assisted in developing approaches to the behaviour analysis36

of large organisms such as mammals, birds and adult fish. However, the tracking of small organisms37

are hampered by the constraints of existing automatic tracking systems (Ekvall et al., 2013; Dur et al.,38

2011) as most organisms are considerably smaller than 1 mm (Marechal et al., 2004). There are many39

challenges imposed by the small sized organisms. Firstly, the widely used transponder (also called40

u-chips) in individual organism identification dramatically affect the natural behaviour of organisms41

within millimetre-scales (Ekvall et al., 2013; Lard et al., 2010) when affixing to their bodies, because42

the currently available smallest chip size is around 0.4 mm (Usami, 2004; Rashid et al., 2012). In43

addition, general object tracking is already a complex problem due to object occlusion, non-rigid structure44
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(caused by object rotation and scale changes), and motion pattern changes (Habibi et al., 2017). The45

challenge increases when the tracking targets are small in size, because small organisms provide very46

little information compared with imaging noise.47

Existing automatic tracking systems for multiple organisms (Zhou et al., 2014; Conklin et al., 2015)48

either use adult subjects (Pérez-Escudero et al., 2014) in a large container to limit object interaction, or49

use a petri dish plate to separate individual objects, allowing only one object in each dish well to avoid50

overlapped and swapped trajectories. The machine learning based CNNTracker (Zhiping and Cheng,51

2017) attempts to optimise individual identification accuracy by creating zebrafish head feature maps.52

However, this system only tested on adult zebrafish, which have very different movement characteristics53

and higher target-background imaging contrast than small sized larval organisms. Thus, this method may54

mis-classify larval organisms with multiple identities (Zhiping and Cheng, 2017). The Generalized Linear55

Mixed Model (GLMM) (Liu et al., 2017) studies the analysis of larval locomotive activities, but can only56

detect whether movement exists by reporting binary move/no-move classes, but does not enable object57

displacement estimation.58

Accurate object detection and segmentation provides a critical foundation for the performance of the59

subsequent tracking process. However, the results of existing Multiple Target Tracking (MTT) algorithms60

degenerate caused by false positive segmentation (i.e., noise fragments remaining after segmentation)61

and false negative segmentation (i.e. mis-detected objects and occluded objects) (Mallick et al., 2013).62

Such segmentation challenges commonly occur in microscopic small organism videos when taken under63

realistic experimental conditions (without deliberate imaging control). It is nearly impossible to identify64

and segment all small organisms without picking up noise using these microscopic videos (Noss et al.,65

2013). Non-ideal tracking results further pose challenges for behavioural analysis and maintaining66

individual identities over time (Martineau and Mourrain, 2013).67

IdTracker (Pérez-Escudero et al., 2014) is a well-known biological organism tracking system with68

‘fingerprint’ generation for subject identity differentiation, and the commercial LoliTrack (Závorka et al.,69

2017) system can also track multiple targets in a single container. However, both systems require the70

input videos to be taken under strict imaging conditions. As reported by Zhou et al. (2014) and Noss71

et al. (2013), even small impurities inside water (e.g., water bubbles) or lighting reflections (e.g., surface72

ripples) affect the object segmentation accuracy.73

3D systems with multiple cameras or super-resolution images built from multiple low-resolution74

images are presented to obtain more information for accurate tracking of small organisms (Ekvall et al.,75

2013; Günel et al., 2019; Noss et al., 2013). However, these systems increase computational complexity,76

change data association structure, and require further location registration among cameras or images. Thus,77

these challenges constrain the real-time application of these techniques in tracking multiple small-scaled78

organisms (Günel et al., 2019).79

Extending on our previous work (Wang et al., 2017a, 2018), this paper presents an automatic and80

accurate Multiple Small Biological Organism Tracking System (MSBOTS). The approach is robust against81

non-ideal object detection and segmentation results that are obtained from microscopic time-lapse videos82

taken under practical laboratory experimental conditions. The system applies Gaussian Mixture Model83

(GMM) based background subtraction in the segmentation module (Wang et al., 2017a) to detect and84

segment small organisms from each video frame, and initially maps detected objects between successive85

video frames based on the (non-ideal) segmentation results using the Hungarian algorithm (also called86

Kuhn–Munkres algorithm) (Bourgeois and Lassalle, 1971; Munkres, 1957). The positions of mis-detected87

and overlapped objects are then calculated through their neighbour’s locations. Then the theoretically88

computed locations are bridged in the individual tracking trajectories (Wang et al., 2018). This paper89

extends on this existing work to present a novel behaviour analysis module to implement locomotive90

behaviour analysis such as estimating object velocities, accelerations and movement directions. The91

performance and versatility of MSBOTS is then evaluated and demonstrated by tracking accuracy, and92

compared with existing multiple organism tracking systems using a zebrafish larvae video dataset (Wang93

et al., 2017a) as used in our previous work. In this paper, to evaluate the generalisation of the proposed94

system to track other small-sized organisms, we also apply the system to video datasets of another two95

types of small organisms Artemia franciscana, and Daphnia magna).96
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Figure 1. Flow chart of the proposed MSBOTS platform. It takes microscopic time-lapse frames as

input, and consists of three main modules: object segmentation, data association based on the centroid

locations of detected objects, and the behaviour analysis using the obtained individual trajectories.

METHODS97

Fig. 1 outlines the overall workflow of the proposed MSBOTS platform, which comprises an object98

segmentation module(Wang et al., 2017a), data association module (Wang et al., 2018) and the behaviour99

analysis module novel to this paper. The accurate differentiation of organisms from the image background100

and foreign matter (such as water impurities and objects faeces) in each video frame is the critical101

foundation for this system. Here, the image background is estimated by an adaptive Gaussian Mixture102

Model (GMM) (Zivkovic and Heijden, 2006) in the segmentation module. Organisms in every video103

frame are segmented after the background subtraction; details of this segmentation approach can be found104

in our previous work (Wang et al., 2017a). The following data association module assigns detected objects105

(as sources, represented by the computed centroids of segmented regions) to their corresponding targets in106

the successive frames. This part plays an essential role in maintaining consistent individual identities for107

the detected organisms over time; details of this approach are in Wang et al. (2018). The data association108

(also called mapping) algorithm not only finds the most likely targets in the following frames for detected109

organisms, but also calculates the theoretical positions for mis-detected or occluded organisms. After110

obtaining the individual trajectories of all organisms from the output of the data association module, the111

movement characteristics of each organism are then estimated in the novel behaviour analysis module112

proposed in this paper as shown in Fig. 1.113

This platform as a whole (as shown in Fig. 1) is tested on a zebrafish video dataset as used in our114

previous work (Wang et al., 2017a, 2018), and another two new video datasets of two different types of115

small organisms to evaluate the generalisation of our approach.116

Code of ethics117

Ethics approval is not required when filming videos of larval organisms. Further, no chemicals were tested118

with the larval organisms being filmed. The adult zebrafish video analysed is from a publicly available119

online repository (Pérez-Escudero et al., 2014).120

Organism detection and segmentation121

In the background subtraction step of the proposed MSBOTS platform, an improved GMM (Zivkovic and122

Heijden, 2006) was chosen to estimate the stationary background due to its ability to extend the detection123

period (Wang et al., 2017a). This is particularly effective for addressing the imbalanced movement124

problem of small biological organisms that occur in time-lapse microscopic video frames. As reported by125
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Figure 2. Storage structure of detected objects in a video sequence. The light blue parallelogram series

represent the detected organisms within each time-lapse frame. And the cell array Points{t} on the right

side shows the detailed data storage structure (that is how the individual identities and object Euclidean

locations are arranged) of the detected objects in the example frame t.

Liu et al. (2017), small organisms such as zebrafish larvae exhibit a mean proportion of activities less than126

7.5% over time with a ’bursty’ movement pattern of sudden swimming motion interspersed with mainly127

stationary periods.128

After video background estimation, the moving objects can be initially classified as the foreground129

organisms. Due to the ‘bursty’ movement pattern of small organisms, a moving organism will be firstly130

represented by a new region cluster with a small weight, whose value will be gradually increasing if the131

region remains stationary over time. This new region will not be classified as the background until its132

weight value exceeds a threshold c f , which is calculated as in Zivkovic and Heijden (2006). Thus, the133

detection period of a stationary organism can be extended for approximately log(1− c f ) \ log(1−α)134

frames, where α denotes the constant factor shaping an exponential decay envelope introduced in the135

GMM work by Zivkovic and Heijden (2006). This enables the detection and tracking of organisms that136

stop at a position for a certain period of time before restarting their motion.137

Furthermore, to adapt to background changes in microscopic videos over time, the adaptive GMM138

(Zivkovic and Heijden, 2006) adds flexibility when selecting the number of Gaussian components and139

their parameters. The approach by Zivkovic and Van Der Heijden (2004) and the Dirichlet criteria140

are applied, respectively, in model initialisation and selection of the number of Gaussian components.141

The Gaussian component parameters are then adaptively updated for each video frame to accurately142

represent background pixels, in contrast to traditional GMM models that apply one or a fixed number143

of components. The foreground objects are then obtained by the differentiation of the video frames144

from the corresponding estimated background. Furthermore, post-processes such as median filtering,145

morphological grayscale erosion, and size-based noise removal are applied to eliminate image distortion146

and scattered noise fragments from the foreground. Within these, the morphological grayscale erosion147

deploys a flat diamond-shaped structuring element to erode the obtained organism foreground image.148

Thus, the boundaries among organisms in very close proximity are further widened; thus, the estimated149

centroid positions of the detected regions are more accurate.150

The detection and segmentation of MSBOTS enables the removal of stationary backgrounds (such151

as the organism container and labels/markers drawn on its surface) and is robust against unbalanced152

organism movement patterns (e.g., ‘bursty’ movement) and water impurities. Hence, unlike existing153

systems, MSBOTS is able to process videos under practical experimental imaging conditions.154

Representing detected organisms155

To represent the positions of the detected organisms in each video frame, the centroid locations of156

segmented foreground regions in Cartesian coordinates are used and stored in a vertical cell array matrix,157

as shown by the parallelogram series (indicating video frames) and Points{t} matrix in Fig. 2. In the158

Points{t} cell array, the first column stores the temporary identity, numbered from 1 to the number159

of detected organisms in each video frame, where nob j(t) indicates the number of detected organisms160

in frame t. The second and third column stores the horizontal and vertical positions of each detected161

organism in x and y coordinates, respectively. This cell array matrix representation allows for varying162

element length (indicating the number of detected organisms in frame t), which can change frame-to-frame163
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due to detection and segmentation errors.164

Organism assignment between frames165

The centroid locations of detected organisms are obtained in the segmentation module and represented166

frame-by-frame using a cell array for each video sequence as described in the previous section. However,167

the organism identities over video frames are still unknown. That is, which organism in the current168

frame corresponds to which organism in the following frame has not been mapped. In addition, there169

are still some remaining mis-detected organisms that have been classified into background regions or170

overlapped with other detected organisms. The data association module of MSBOTS thus builds tracking171

trajectories of individual organisms by mapping the detected organisms between successive pairs of172

frames, calculating the positions of mis-detected or occluded organisms, and bridging the theoretical173

locations back to their correct trajectories by adjusting the initial assignment results.174

Initial assignment175

The initial frame-by-frame data association of detected organisms is a partial assignment using an176

extension of the Kuhn-Munkres algorithm (Bourgeois and Lassalle, 1971) to process the rectangular cell177

array Points{t}. Extending on the original Hungarian algorithm (Harold, 1955) that solves the assignment178

problem with an equal number of workers and tasks represented by a n×n matrix, the number of workers179

and tasks can be unequal and represented in a rectangular matrix (Bourgeois and Lassalle, 1971). This180

extended algorithm can then be applied to multiple organism tracking, where the number of detected181

organisms can change due to non-ideal segmentation resulting from organism mis-detection and occlusion.182

In the initial assignment process, all the detected organisms annotated by Points{t} in frame t are183

taken as source points, and the segmented organisms Points{t +1} in the following frame t +1 are seen184

as the target points. The target points Points{t + 1} need to be mapped to the source points Points{t}185

frame-by-frame across a video sequence. The Euclidean distance of a source point Si to a target point Tj186

calculated by Equation (1) is the cost to connect this point pair. A matrix D, as shown in Equation (2), is187

created to represent the cost of assigning source organisms S = {S1,S2,S3, · · · ,Sn} in the frame t to the188

target organisms T = {T1,T2,T3, · · · ,Tm} in the frame t +1.189

dSi,Tj
=
√

(x j − xi)2 +(y j − yi)2 (1)

D(S,T ) =











dS1,T1
dS1,T2

dS1,T3
· · · dS1,Tm

dS2,T1
dS2,T2

dS2,T3
· · · dS2,Tm

...
...

. . .
...

dSn,T1
dSn,T2

dSn,T3
· · · dSn,Tm











(2)

where n and m are the detected number of organisms in the frame t and the successive frame t + 1,190

respectively.191

The frame-to-frame objects mapping searches for unique assignments in the cost matrix D(S,T ) by192

connecting the source organism Si in the frame t to only one target organism Tj in the successive frame193

t +1. The sum of the resultant complete assignments between Points{t +1} and Points{t} is the global194

optimum with the lowest overall cost amongst all the possible assignments within two successive frames.195

Thus, the assignment seeks for the most likely correspondences for all detected source points in the196

successive frame (combinatorial optimisation). The matched target points propagate the identities of197

the source points. Thus, connecting the points with the same identities across video frames gives the198

individual organism tracking trajectories after calculating the assignment maps for all the successive video199

frames.200

It is possible to avoid the propagation of false positive detections within the segmentation results201

when constructing the individual trajectories. In the initial frame-to-frame assignment step, a distance202

threshold is set as a constraint in the source-target cost matrix D(S,T ). The threshold value is calculated203

by δ ∗median(dSi,Tj
), as in Zhiping and Cheng (2017). When the minimum value of the i-th row in204

the source-target cost matrix D(S,T ) is larger than the estimated threshold value, this indicates that the205

distances between the source point Si to all of the points in the successive frame exceed the threshold value.206
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Figure 3. A point calculation example for occluded organisms. The object Pi in the frame t +1 as

shown by the partial red dot disappears due to occlusion by the object Pj. However, an approximate

location of it in the frame t +1 annotated by the orange point can be estimated by the relative locations of

its correspondences in the neighbour frames t and t +2.

Thus, the source point Si is considered as a segmentation noise fragment to not be further assigned to a207

target point and its corresponding position information will be removed from the point matrix Points{t}.208

This enables the estimation of reliable tracking results, resilient to ‘bursty’ movement (tested by zebrafish209

larvae videos as seen in Section ‘Tracking accuracy evaluation’ ), flexible and jerky hopping movement210

patterns (tested by Daphnia videos as seen in Section ‘Tracking accuracy evaluation’). Only in one211

occasion where an organism suddenly moves extremely fast in the same direction (resulting in a large212

distance change within a short period of time over the distance threshold), this process will incorrectly213

eliminate the organism as a noisy fragment.214

When an organism disappears in frame t due to mis-detection or occlusion, a source point in frame215

t −1 therefore cannot be assigned to a target. A gap will then occur in the tracking trajectory where the216

organism fails to be detected, and a new tracking trajectory will start from the frame when the organism217

is correctly detected again. This source point in frame t − 1 without a mapped target is saved in an218

unmatched source matrix for this video sequence.219

Similarly, when an organism is re-detected in the frame t +n after being missed for n frames, there is220

one more point in Points{t +n} compared with its previous fame Points{t +n−1}. To map the points221

Points{t +n−1} to Points{t +n}, a point in the frame t +n cannot find a source point in the previous222

frame. This leftover point in frame t + n is saved in the unmatched target matrix for the same video223

sequence.224

The methods to calculate the theoretical positions between the unmatched source points and unmatched225

target points, and adding these points to their correct tracking trajectories are explained in the following226

two sections, respectively.227

Position estimation for mis-detected and occluded organisms228

Fig. 3 illustrates the location computation for the overlapped organism Pi in the frame t +1. The two229

points Pi (shown by blue dots) and Pj (shown by green dots) overlap with each other in the frame t +1,230

and this overlapped point at time t +1 is assigned to the object Pj in the initial mapping process. Since231

the point Pi in the frame t cannot find a target in the frame t +1, and this point in the frame t +2 cannot232

be assigned to a source point in frame t +1, this point is classified as an unmatched source point in frame233

t, and an unmatched target point in frame t +2, respectively. The position of the missing point due to234

occlusion (as shown by the red dot occluded by the green dot in Fig. 3) or mis-detection (for example,235

when the red dot is completely occluded by the green dot in Fig. 3) is calculated using the locations of the236

unmatched source point Pi(t) and unmatched target point Pi(t +2). In this example, as shown in Fig. 3,237

the location of the missing point Pi in frame t +1 is calculated by the median point between Pi(t) and238

Pi(t +2).239

When there are multiple unmatched pairs, the mapping from unmatched source points to the unmatched240

target points is also according to the extended Hungarian assignment algorithm (Bourgeois and Lassalle,241

1971). In this step, the unmatched source points firstly search for possible correspondences in the following242

2nd frame. If no assignment can be mapped, the search extends to the unmatched targets in the following243

3rd frame. It was shown in Noss et al. (2013) that a trajectory fragment can be bridged to its subsequent244

tracking fragment so long as the frame separation is less than 6 video frames. Thus, the default search245

range in MSBOTS is from the 2nd to the 6th frame following the frame when the mis-detection and246

occlusions originally occur. The positions of missed organisms (xmiss,ymiss) are calculated by Equations247

(4) and (5) using the matched point pair from the the locations of unmatched source point (xs,ys) and an248

unmatched target point (xt ,yt).249
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xmiss = xs +
1

j
∗ (xt − xs) (4)

ymiss = ys +
1

j
∗ (yt − ys) (5)

where j indicates the following j-th frame from the unmatched source point.250

Bridging trajectory gaps for mis-detected and occluded organisms251

Individual tracking trajectories for each organism are obtained through connecting the matched points with252

the same identities frame-by-frame over a video sequence. However, the tracking trajectories obtained253

from the initial assignment process are usually trajectory fragments, separated when organisms are mis-254

detected or overlapped, caused by segmentation errors. In the proposed MSBOTS, these trajectory gaps255

are bridged by adding the estimated points of these mis-detected or overlapped organisms as described in256

the previous section.257

To connect trajectory fragments, the points stored in the unmatched source matrix are mapped to258

the points in the unmatched target matrix, and the positions of the missed points between the newly259

matched unmatched-source to unmatched-target pairs are also calculated during this mapping process.260

For example, as shown in Fig. 3, the unmatched source Pi(t) as the end point of its trajectory fragment is261

connected to the unmatched target point Pi(t +2), which is the start point of its trajectory fragment, and262

the middle point shown by the orange dot is added between points Pi(t) and Pi(t +2) as the theoretical263

position of the overlapped point Pi(t +1).264

Locomotion characteristic analysis265

After obtaining the individual tracking trajectories for each organism in the video sequence, the movement266

characteristics of these organisms can be analysed. The calculation of three movement parameters,267

movement velocity, acceleration and direction as represented by Equations (6-8), respectively, are268

implemented and presented in this work.269

velocity =

√

(xt+1(i)− xt(i))2 +(yt+1(i)− yt(i))2

dt
(6)

acceleration =
d(velocity)

d2t
(7)

direction = atan2
yt+1(i)− yt(i)

xt+1(i)− xt(i)
(8)

where dt = 1/ f s and f s is the video frame rate, and xt(i) and yt(i) are the Cartesian coordinates of270

organism i (i is the assigned organism identity) in frame t.271

RESULTS AND DISCUSSION272

To evaluate the performance of MSBOTS, microscopic videos of three types of small biological organisms273

(zebrafish, Artemia and Daphnia) were tested, where preliminary evaluation using zebrafish was presented274

in our previous work (Wang et al., 2018; Wang, 2018). Evaluated on a set of single and multiple larvae275

and adult zebrafish, Artemia and Daphnia videos here, a wide variety of (complex) imaging conditions276

were tested, including shadowing, labels (manually drawn on the petri dish), and background artefacts277

(such as water impurities, object faeces and water bubbles of varying sizes). No chemical stimuli were278

tested on the studied organisms in this work, so their behaviour analysed corresponds to natural response.279

In addition to the tracking accuracy evaluation, the natural locomotive characteristics as described by280

movement velocity, acceleration and direction are also analysed on the video datasets to test the dynamic281

behaviour analysis capability of the proposed system.282

Small biological organism datasets283

Microscopic time-lapse videos of three types of small organism models: zebrafish, Artemia and Daphnia284

were applied to evaluate the proposed MSBOTS platform. Both low frame rate videos (of 14 or 15 fps285

recorded by a AD7013MT Dino-Lite microscope) and high frame rate videos (captured by an UI-3360CP-286

C-HQ microscope) are tested in this work.287
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Wild zebrafish (Danio rerio) embryos were incubated at 28◦C in a petri dish filled with an E3 medium.288

Zebrafish larvae were obtained from the hatched embryos five days post-fertilization. Zebrafish larvae289

were transferred to round poly (methyl methacrylate) (PMMA) housing wells for shooting microscopic290

time-lapse videos. The zebrafish dataset consists of 10 video sequences with 3056 frames in total: nine291

zebrafish larvae videos captured as prescribed here and one adult zebrafish video provided by Pérez-292

Escudero et al. (2014) from their publicly available online repository (‘Example video of 5 zebrafish’ at293

http://www.idtracker.es/download). The size of the zebrafish larvae video frames is 960 pixels x 1280294

pixels, and the average zebrafish larvae size is around 1900 pixels. More details about the larvae zebrafish295

dataset and its generation can be found in our previous work (Wang et al., 2017b).296

Cysts of the marine crustacean Artemia franciscana and freshwater Daphnia magna were hatched297

and cultured according to the Artoxkit-M and Daphtoxkit-F (MicroBioTests Inc., Belgium) standard298

operating protocols. Artemia franciscana were hatched in a petri dish filled with sea water (pH 8.0±0.5)299

at 24±0.5◦C under exposure to 3000-4000 lux light source for 30 hours. Artemia were placed into a group300

of 10 in a miniaturised Lab-on-a-Chip (LOC) chamber as per Solis et al. (2015) when shooting videos301

with microfluidics infused at a flow rate of 5.25 mL/h. Five Daphnia magna neonates were randomly302

selected and transferred into a petri dish with the temperature maintained at 20.0±0.5◦C. The Artemia303

franciscana and Daphnia magna dataset consists of 5 video sequences each with 4802 frames and 4804304

frames in total, respectively.305

Artemia franciscana microscopic videos containing 5 organisms and artifacts (bubbles of different306

sizes, video sequences 1-5), with Fig. 4b a microscopic video frame example of Artemia franciscana307

in 480 pixels x 640 pixels. The average size of an Artemia franciscana object is approximately 500308

pixels. Daphnia magna microscopic videos containing 10 organisms and artifacts (bubbles and impurities309

of different sizes, video sequences 1-5), with Fig. 4c a microscopic video frame example of Daphnia310

magna in 480 pixels x 640 pixels. The average size of Daphnia magna tested is approximately 400 pixels.311

Both the Artemia and Daphnia videos were ordered randomly to test the flexibility and feasibility of the312

proposed system.313

Tracking evaluation metrics314

To objectively and quantitatively evaluate the tracking performance of the proposed MSBOTS platform,315

the widely utilised standard metric, Classification of Events, Activities and Relationships (CLEAR MOT)316

(Bernardin and Stiefelhagen, 2008), for Multiple Object Tracking (MOT) is employed in this paper.317

CLEAR MOT comprises two metrics: Multiple Object Tracking Precision (MOTP) as presented by318

Equation (9) and Multiple Object Tracking Accuracy (MOTA) as shown by Equation (10). MOTP319

measures the position precision of all segmented organisms compared to that of the manually labelled320

ground truth in every video frame, whereas MOTA estimates the individual trajectory accuracy (the ability321

to produce exactly one trajectory per organism with a consistent label over time).322

MOT P =
∑i,t |Pi,t −GTi,t |

∑t Nt

(9)

(a) (b) (c)

Figure 4. Microscopic video frame examples of (a) zebrafish larvae (960 pixels x 1280 pixels), (b)

Artemia franciscana (480 pixels x 640 pixels), and (c) Daphnia magna (480 pixels x 640 pixels). The

average sizes of zebrafish larvae, Artemia and Daphnia tested are approximately 1900, 500 and 400

pixels, respectively.
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MOTA = 1−
∑t(Mt +FPt +SIIt)

∑t gt

(10)

where |Pi,t −GTi,t | is the Euclidian distance between the estimated centorid position of the i-th detected323

organism Pi(t) in the frame t. Its position in the manually labeled ground truth is denoated as (GTi,t) and324

Nt indicates the total number of segmented organisms in the ground truth in frame t. The smaller the325

MOTP value, the more precise the segmentation result.326

MOTP measures the organism segmentation accuracy compared with the ground truth, whereas the327

MOTA metric emphasises the evaluation of the individual tracking trajectories, where Mt , FPt , and SIIt328

indicate the number of missed detections, false positive detection (i.e., image noise fragments segmented329

as organisms), and the Swapping of Individual Identities (SII), respectively, in the frame t. And gt means330

the total number of organisms detected in frame t. The ideal value of MOTA is 1, and the value decreases331

with the occurrence of detection errors and identity swapping. Comparing with the total number of332

detected organisms, the MOTA value will generate negative numbers (as shown in Fig. 5a) when the333

combination of detection errors and identity swapping is high, which implies low system reliability and334

the resultant tracking trajectories should be considered as unreliable.335

(a)

(c)

(b)

Figure 5. Evaluation of tracking results comparing the proposed system MSBOTS to existing systems -

SimpleTracker (Bourgeois and Lassalle, 1971), idTracker (Pérez-Escudero et al., 2014) and LoliTrack

(Závorka et al., 2017) - using videos of three types of small biological organism. (a), (b) and (c) show the

estimated MOTP and MOTA values for zebrafish, Artemia and Daphnia video datasets, respectively.

MOTP values measure the segmentation performance, and the smaller the value the higher the

segmentation accuracy. MOTA compares the accuracy of the resultant individual tracking trajectories,

with a higher value denoting a more accurate result.
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Tracking accuracy evaluation336

To evaluate the proposed tracking system, its tracking performance over the microscopic video dataset is337

compared with the well-known multiple object tracking platform idTracker (Pérez-Escudero et al., 2014),338

SimpleTracker (Bourgeois and Lassalle, 1971) (using the Kuhn-Munkres tracking algorithm for initial339

association and the nearest neighbourhood to directly connect trajectory fragments, without considering340

missed organisms), and the off-the-shelf commercial LoliTrack system (Závorka et al., 2017). Fig. 5341

shows the estimated tracking accuracy measured by the MOTP and MOTA metrics, with Fig. 5a showing342

results from zebrafish videos, Fig. 5b showing Artemia videos, and Fig. 5c showing Daphnia videos.343

It can be seen from Fig. 5a (the upper MOTP figure) that the positions of detected organisms using344

adult and larvae zebrafish videos consistently exhibit the smallest distance differences with the manually345

labelled ground truth positions amongst all the methods tested. The proposed MSBOTS approach346

resulted in overall smaller MOTP values of 0.92, 25.59, and 44.48 pixels (71.59% increase) compared347

to SimpleTracker, idTracker, and LoliTrack, respectively. The improved organism position detection348

results demonstrate the accuracy of the theoretical position estimation based on the organism detection349

and segmentation results using the adaptive GMM model and post-processing in the proposed MSBOTS350

system. Supplementary Table S1 summarises the estimated tracking accuracy measured by MOTP and351

MOTA values across all the zebrafish video sequences.352

All of the methods performed well for the position accuracy of detected organisms when the videos had353

a clear background, as shown by sequences 1-6. However, the location errors measured by MOTP for the354

detected organisms in the zebrafish videos compared to the ground-truth did not decrease as dramatically355

as LoliTrack or idTracker with increasingly complex video backgrounds, as shown by the MOTP values356

in sequences 7-10 in Fig. 5a. Accordingly, the proposed MSBOTS method still out-performed the existing357

approaches when taking into account mis-detection, false positive segmentation and identity swapping,358

with 31.20%, 63.01%, and 24.61% higher MOTA values than SimpleTracker, idTracker, and LoliTrack,359

respectively. This was mainly achieved by the ability to estimate the positions of the mis-detected or360

overlapped organisms using their neighbour position knowledge from the segmentation results in the361

proposed MSBOTS platform. In addition, the bridging of trajectory fragments in MSBOTS based on362

the extended Hungarian assignment algorithm (Bourgeois and Lassalle, 1971) when there are multiple363

unmatched trajectory fragments decreased the possibility of individual identity swapping, compared with364

SimpleTracker, which only used a distance metric by nearest neighbour algorithm (which in turn can365

generate identity swapping during the gap bridging process).366

In addition, Fig. 5b and Fig. 5c show the tracking accuracy evaluation using Artemia franciscana367

and freshwater Daphnia magna videos, respectively, to test the generalisation of the proposed MSBOTS368

system on other small organisms with movement characteristics different to zebrafish larvae. Artemia369

display flexible movement and vary according to surrounding fluidics (Tyson, 1974; Williams, 1994), and370

Daphnia exhibits short, jerky hopping movement in water (Rottmann et al., 1992)). The overall tracking371

accuracy performance of the proposed MSBOTS method is consistent for the tested videos on these two372

organism types. The detailed data on tracking accuracy measured by MOTP and MOTA values can be373

seen in Supplementary Table S2 & S3.374

As can be seen from the MOTP values in Fig. 5b, the proposed method exhibits 47.68 pixels smaller375

standard deviation than the idTracker system, which illustrated the usability of the proposed system on376

Artemia microscopic videos and the enhanced ability on Artemia detection accuracy. Though idTracker377

can produce smaller organism position estimation errors (MOTP) as shown by sequences 3-5 in Fig. 5b,378

the mean MOTA value is 7.07%, and 6.44% less than the proposed MSBOTS and LoliTrack, respectively,379

which illustrates the existence of a similar detection problem when testing zebrafish larvae. That is, the380

organism is detected as background, and impurities as an organism, due to their small size differentiation381

and similar movement characteristics when the organism stops moving or the water impurities are stirred382

up by organism movement; this further causes identity confusion.383

Fig. 5c shows the overall tracking accuracy of the proposed MSBOTS system and idTracker consis-384

tently outperformed the other two systems under comparison, measured by MOTP and MOTA. However,385

the mean MOTA value of the proposed MSBOTS system is still 5.48% higher than idTracker. The386

generalised tracking accuracy of the proposed MSBOTS system is further illustrated by applying it to387

Daphnia video sequences with short, jerky hopping movement characteristics, compared with these388

existing systems.389
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Analysis of organism movement characteristics390

To explore the capability of the proposed MSBOTS approach in analysing organism movement character-391

istics, this paper presents the estimation of movement velocity, acceleration and direction calculated from392

the individual tracking trajectories.393
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Figure 6. Organism movement acceleration over time for every tested zebrafish video ( one video per

subplot), with the centre subplot combining the results of videos 5 and 6 housing a single zebrafish larvae

each. The line colors represent different zebrafish individuals in every video.

Fig. 6 shows the movement acceleration analysis for each zebrafish video using the resultant tracking394

trajectories generated by the proposed MSBOTS. It was found that in Hinz and de Polavieja (2017), the395

interaction and movement of zebrafish larvae was very close to zero by 7 dpf. As shown in Fig. 6, in396

general the variation of movement speed (shown by the computed acceleration values) that is obviously397

visually perceptible to the human eye occurred only within approximately 10 seconds, as tested in the 10398

adult and larvae zebrafish videos. This is due to the natural (anxious) response of zebrafish when turning399

on the imaging camera (Peng et al., 2016)). The zebrafish movement speeds are more subtle from this400

point on, which is consistent with the zebrafish movement characteristics found in Peng et al. (2016);401

Hinz and de Polavieja (2017).402

As organism movement speed and direction changes can provide insight into the interaction rules403

(Hinz and de Polavieja, 2017), Fig. 7 shows an example of the calculated velocity and movement direction404

results for each zebrafish video, respectively. The equal number of boxes with the number of zebrafish405

housing in each video show that all individuals were successfully assigned with one identity (which406

also illustrated the one-to-one organism mapping accuracy in the proposed MSBOTS system), and the407

median velocity (labelled by the red line inside each box) of each larvae indicates the consistent movement408

characteristic within the same housing well. Mean, minimum and maximum velocity values can also be409

easily obtained from the visual box plot shown in Fig. 7.410

There is no specific speed requirement for the organisms that can be tracked by the MSBOTS platform.411

Both organisms travelling at high speed or average low speed as illustrated by Fig. 6 and Fig. 7a,412

respectively, can be accurately detected and tracked over time by the system. Thus, this system can be413

used for automatic tracking, comparison and analysis of small organisms in natural response or under the414

exposure of testing chemicals. The recommended lowest frame rate of time-lapse videos is 14 f/s as in the415

tested dataset from trial-and-error comparison.416
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(a) (b)

Figure 7. Analysis of zebrafish locomotion characteristics across video sequences, where (a) and (b)

show movement speed and direction analysis of individual organisms, respectively, in very video frame

(the centre subplots combines the results of single zebrafish larvae in videos 5 & 6).

CONCLUSION417

Accurate automatic tracking for multiple small biological organisms provides an efficient approach for418

many biomedical and ecotoxicity applications. However, organism mis-detection and occlusion are419

inevitable problems when detecting and segmenting these small biological organisms from time-lapse420

microscopic videos. The detection and segmentation becomes more challenging when tracking small421

biological aquatic organisms compared with general objects, which in turn affects the subsequent organism422

tracking processes. To improve the tracking accuracy based on the non-ideal organism detection and423

segmentation results, extending on and improving our previous work, this paper presents a Multiple Small424

Biological Organism Tracking System (MSBOTS), combining a multiple object association algorithm425

for linking detected objects frame-by-frame and tracking trajectory adjustment techniques. To address426

segmentation errors due to mis-detected or occluded organisms, the proposed MSBOTS approach es-427

timated positions of organisms in interim frames using corresponding points in neighbouring frames.428

Finally, the calculated points are applied to connect and adjust the tracking trajectory fragments from429

the initial association based on an extended Kuhn-Munkres algorithm. The proposed system was tested430

on three different types of small organisms with variant movement characteristics, using 20 videos in431

total for evaluation. The resulted tracking accuracy of the proposed system outperformed three existing432

(state-of-the-art or commercial) tracking systems. Moreover, this system also provides locomotive charac-433

teristic analysis using the generated individual tracking trajectories to facilitate small organism behaviour434

analysis research. Behavioural rules and new medicine or chemical effects on the dynamic behaviour of435

organisms can thus be investigated using the proposed behaviour analysis module, enabling an automatic436

and quantitative movement analysis to the related experiments.437
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