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Accurately tracking a group of small biological organisms using computers to obtain their
movement trajectories is essential to many biomedical and pharmaceutical research.
However, object miss-detection, segmentation errors and overlapped individual
trajectories are especially common issues that restrict the development of automatic
multiple small organism tracking research. Extended on previous work, this paper presents
an accurate and generalised Multiple Small Biological Organism Tracking System
(MSBOTS), robust against non-ideal object detection and segmentation based on the Kuhn-
Munkres association algorithm and the proposed object position calculation using inter-
frame knowledge. Evaluated on a set of zebrafish, Artemia and Daphnia videos, a wide
variety of video conditions were tested. The proposed system exhibits decreased overall
MOTP errors of up to 71.59%, 77.59% and 72.73% when tested on zebrafish, Artemia and
Daphnia videos, respectively. The MOTA accuracy of MSBOTS increased by up to 63.01%
compared with the state-of-the-art idTracker system. Moreover, MSBOTS obtains more
reliable tracking trajectories with a smaller standard deviation of up to 47.68 pixels
compared with idTracker. The analysis of detailed locomotive characteristics of individual
organisms from tracking trajectories is also presented in this paper. The developed
MSBOTS system, analysed data and the locomotive analysis code are made freely
available online.
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ABSTRACT12

Accurately tracking a group of small biological organisms using computers to obtain their movement

trajectories is essential to many biomedical and pharmaceutical research. However, object miss-detection,

segmentation errors and overlapped individual trajectories are especially common issues that restrict

the development of automatic multiple small organism tracking research. Extended on previous work,

this paper presents an accurate and generalised Multiple Small Biological Organism Tracking System

(MSBOTS), robust against non-ideal object detection and segmentation based on the Kuhn-Munkres

association algorithm and the proposed object position calculation using inter-frame knowledge. Evaluated

on a set of zebrafish, Artemia and Daphnia videos, a wide variety of video conditions were tested. The

proposed system exhibits decreased overall MOTP errors of up to 71.59%, 77.59% and 72.73% when

tested on zebrafish, Artemia and Daphnia videos, respectively. The MOTA accuracy of MSBOTS

increased by up to 63.01% compared with the state-of-the-art idTracker system. Moreover, MSBOTS

obtains more reliable tracking trajectories with a smaller standard deviation of up to 47.68 pixels compared

with idTracker. The analysis of detailed locomotive characteristics of individual organisms from tracking

trajectories is also presented in this paper. The developed MSBOTS system, analysed data and the

locomotive analysis code are made freely available online.
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INTRODUCTION28

In recent years, small biological organisms such as zebrafish larvae (genetically and physiologically29

similar to humans), Artemia franciscana, and Daphnia magna have become powerful models and are30

widely used to study human disease James et al. (2019), toxicology, pharmacology Comeche et al. (2017)31

and ecotoxicology James et al. (2019); Comeche et al. (2017); Poynton et al. (2007). Accurate tracking32

techniques are vital for understanding the biology and ecology underlying their movement Martineau33

and Mourrain (2013); Nema et al. (2016); Colwill and Creton (2011); Alyuruk et al. (2013); Ekvall et al.34

(2013). Traditional manual observation approaches are very tedious, time consuming, and the results are35

difficult to reliably repeat and reproduce. Fluorescent labelling can improve the human visual distinction36

ability of specific targets, but fluorescent materials affect the behavioural response of organisms Ekvall37

et al. (2013).38

However, while automatic object tracking techniques have assisted in developing approaches for39

the behaviour and interaction analysis of large organisms such as mammals, birds and adult fish, the40

tracking of small organisms (in millimetre scale, most are considerably smaller than 1 mm Marechal41

et al. (2004)) are hampered by the constraints of existing automatic tracking methods Ekvall et al. (2013);42

Dur et al. (2011). There are many challenges imposed by the small size factor especially of aquatic43

organisms. Firstly, radio frequency identification chips, also called u-chips or transponders, are widely44
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used in individual organism identification application, while the available smallest chip size is around 0.445

mm in current Usami (2004). Such sized devices will dramatically affect the natural dynamic behaviour46

of organisms in mm-scale Ekvall et al. (2013); Lard et al. (2010). In addtion, general object tracking is47

already a complicated problem due to object occlusion or overlapping, non-rigid object structure (object48

rotating and scale changing), and motion pattern changing and more Habibi et al. (2017). The difficulty49

level rises when the tracking targets are in small size because small organisms provide little information50

regarding the imaging noise.51

Existing automatic tracking approaches for multiple organisms Zhou et al. (2014); Conklin et al.52

(2015); Liu et al. (2017) either use adult fish Pérez-Escudero et al. (2014) in a big container to limit the53

chance of object interactions or use a petri dish plate to separate individual objects, allowing only one54

target in each petri dish to avoid overlapped and swapped trajectories that commonly seen in multiple55

organisms housed in one container. A recent machine learning technique applied to biological organism56

tracking is CNNTracker Zhiping and Cheng (2017), which optimises the accuracy of the zebrafish head57

feature map classification with individual identities. However, CNNTracker only tested on adult zebrafish,58

which has different movement characteristics and higher intensity contrast than millimetre-scale small59

organisms. Thus this method may miss-classify organisms with multiple identities Zhiping and Cheng60

(2017). The generalized linear mixed model (GLMM) based approach Liu et al. (2017) attempts to61

analyse larval locomotive response, but can only detect whether movement exists by handling binary62

move/no-move classification, but object displacement cannot be computed. However, these methods do63

not allow for the study of small organism interaction and group behaviour.64

Furthermore, the accurate estimation of an object’s location from segmentation results provides the65

critical foundation for the performance of subsequent tracking processes. However, the performance of66

such Multiple Target Tracking (MTT) methods is affected by false positive segmentation (e.g., noise67

fragments remaining after segmentation), and false negative segmentation from missed object detections68

and occluded objects Mallick et al. (2013). Such segmentation challenges commonly occur in microscopic69

videos of multiple small organisms, especially when taken under realistic experimental conditions. In70

addition, due to the small organism size, miss-detection and object occlusion or overlap are inevitable71

problems for multiple small organism tracking, and it is near impossible to identify and segment all72

organisms when videos taken under realistic experimental conditions (not high quality) are used Noss73

et al. (2013).74

IdTracker Pérez-Escudero et al. (2014) is a well-known biological organism tracking system with75

’fingerprint’ generation for organism identity differentiation, and the commercial LoliTrack Závorka et al.76

(2017) system can track multiple targets in a single container. However, both approaches require the77

video input to be under strictly constrained imaging conditions to obtain accurate organism detection78

and segmentation results. As reported in the paper Zhou et al. (2014), even small impurities inside the79

water and lighting reflection will affect the object segmentation accuracy. Non-ideal tracking results then80

subsequently pose challenges for the movement behavioural analysis and maintaining individual organism81

tracking identities over time Martineau and Mourrain (2013).82

3D systems with multiple cameras or super-resolution images built from multiple low-resolution83

images Ekvall et al. (2013); Günel et al. (2019); Noss et al. (2013) are presented to obtain more information84

for accurate tracking of small organisms. These systems increase computational complex, change detection85

and association tracking system structure and require further object location registration and association86

among cameras or images. These challenges constrain the application in real-time detection and tracking87

of multiple organisms in group or in small-scale larval organisms Günel et al. (2019). And the detection88

and tracking performance are found also affected by the environmental conditions of videos Noss et al.89

(2013).90

Extended upon our previous work Wang et al. (2017b, 2018), this paper presents an automatic,91

accurate and effective Multiple Small Biological Organism Tracking System (MSBOTS) robust against92

non-ideal object detection and segmentation results obtained from microscopic time-lapse videos taken93

under practical laboratory experimental conditions. The proposed system applies Gaussian Mixture Model94

(GMM) based background subtraction in segmentation module Wang et al. (2017b) to detect and segment95

the small organisms from each video frame, and initially maps detected objects between successive96

video frames to generate individual tracking trajectories based on the (non-ideal) segmentation results97

using the Hungarian algorithm (also called Kuhn–Munkres algorithm) Bourgeois and Lassalle (1971);98

Munkres (1957), which guarantees one to one association. The positions of miss-detected and overlapped99

2/13PeerJ reviewing PDF | (2020:11:55756:0:0:NEW 25 Nov 2020)

Manuscript to be reviewed

Sticky Note
I am not sure this is very relevant - most people would not use RFID.

Highlight

Highlight

Sticky Note
Define, as I've used idTracker and didn't find that the conditions were any more constrained that for other analysis software.



Segmentation

Create cost 

matrix

Initial 

assignment
Bridge gaps

Background 

subtraction

Association

Frame 

duplication

GMM 

background 

subtraction

Long 

video?

Yes

No

Input Centroid 

position

Compute 

misdetected 

points 

Figure 1. Flow chart of the overall multiple small organism tracking system.

objects are then calculated through knowledge of their neighbour’s locations. And the theoretically100

computed locations are bridged in the individual tracking trajectories in the developed system. In addition,101

the tracking results enable locomotive analysis and behaviour study, where this paper further presents102

developed software to estimate the velocity, acceleration and movement direction. The performance and103

versatility of the proposed MSBOTS system is evaluated and demonstrated based on tracking accuracy,104

and compared with existing multiple organism tracking systems using three types of small organisms:105

zebrafish larvae, Artemia franciscana, and Daphnia magna.106

METHODS107

Figure 1 outlines the overall work-flow of the proposed MSBOTS System. The accurate differentiation of108

organisms from the video background and water impurities in each video frame is the critical foundation109

for multiple organism tracking systems. In the proposed MSBOTS platform, the video background is110

estimated by an adaptive Gaussian Mixture Model (GMM) Zivkovic and Heijden (2006). Organisms in111

every video frame are segmented after the background subtraction; details of this segmentation approach112

based on background subtraction has been summarised and reported in our previous work Wang et al.113

(2017b). The following source-target assignment procedure is based on the computed centroid point114

locations of segmented regions. This step plays an essential role in maintaining consistent identities115

for individual detected objects over time. To find the corresponding organismss between frames, the116

Kuhn-Munkres algorithm Bourgeois and Lassalle (1971) is applied in the association module.117

The proposed mapping algorithm not only finds the targets in the next frame for the organisms detected118

in every frame, but also calculates the theoretical positions for miss-detected or occluded organisms. After119

obtaining the moving trajectories of all organisms associated with individual identities, the movement120

characteristics for each organism are then estimated for dynamic behaviour analysis.121

Code of Ethics122

Ethical approval is not applicable to this work, because no chemicals or medicine were tested with the123

organisms being filmed.124

Organism Detection and Segmentation125

Small biological organisms from time-lapse microscopic videos are difficult to detect and segment due126

to imbalanced movement characteristics, where organisms such as zebrafish larvae can exhibit a mean127

proportion of activities less than 0.075 over time Liu et al. (2017), with ’bursty’ movements of sudden128

swimming locomotion interspersed with substantially stationary periods of little or no movement Liu129

et al. (2017). In addition, the relative small size between organisms and water impurities (e.g. the water130

bubbles and ripple surface injections) render the distinguishing between them a challenge. For example,131

the typical size used in dynamics and path tracking study is less than 0.4 mm Rashid et al. (2012).132

For background subtraction in the proposed MSBOTS approach as reported in our previous work Wang133

et al. (2017b), an improved GMM Zivkovic and Heijden (2006) was chosen to estimate the stationary134
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Figure 2. Storage structure of detected objects in a video sequence.

background due to its detection period extension ability. In the video background estimation, a moving135

object will be firstly represented by a new region cluster with a small weight, whose value will be gradually136

increasing if the region remains the motion state. The new region cluster will be classified as a foreground137

object only if its weight exceeds a threshold c f (whose value is calculated as in Zivkovic and Heijden138

(2006)). Thus, with a decaying envelope factor α , the detection period of an object with no movement is139

extended for approximately log(1− c f )\ log(1−α) frames Zivkovic and Heijden (2006).140

Furthermore, to adapt to background changes, the adaptive GMM Zivkovic and Heijden (2006)141

adds flexibility to the number of Gaussian components that describe the background by adaptively and142

recursively selecting the number of Gaussian components. For the initialisation and selecting the number143

of Gaussian components, the approach from Zivkovic and Van Der Heijden (2004) and the Dirichlet144

criteria are applied, respectively. The component parameters are then updated for each video frame, in145

contrast to traditional GMM models that apply one or a fixed number of components to model each146

pixel. The foreground objects are then obtained by the differentiation of the video frames with the147

corresponding background estimated by the adaptive GMM Zivkovic and Heijden (2006). After the148

background subtraction is performed, a median filter and morphological grayscale erosion are applied to149

remove remaining image distortion and scattered small noise fragments Pnevmatikakis and Polymenakos150

(2006).151

The MSBOTS background subtraction approach enables the removal of stationary backgrounds such152

as the organism container and labels drawn on the containers; hence, unlike existing techniques, the153

proposed system is able to process videos under practical experimental imaging conditions.154

Representing Detected Organisms155

To represent the positions of the detected organisms in each video frame, the centroid locations of156

segmented foreground regions in Cartesian coordinates are used and stored in a vertical cell array matrix,157

as shown by the parallelogram series (indicating video frames) and Points{t} matrix in Fig. 2. In the158

Points{t} cell array, the first column stores the temporary identity, numbered from 1 to the number of159

detected organisms in each frame, where nob j(t) indicates the number of detected organisms in frame t.160

The second and third column stores the horizontal and vertical positions of each detected organism in161

X and Y coordinates, respectively. This cell array and matrix representation allows for varying element162

length to indicate the number of detected foreground organisms, which can change frame-to-frame due to163

detection and segmentation errors.164

Organism Assignment between Frames165

The centroid positions of detected organisms are obtained in the segmentation processes and represented166

frame-by-frame using a cell array for a video sequence as described in the previous section; however,167

the organism identities in each frame are still unknown. That is, which organism in the current frame168

corresponds to which organism in the following frame has not been mapped. In addition, there are still169

some remaining miss-detected organisms that have been classified into background clusters or overlapped170

with other detected organisms. The assignment algorithm within the proposed MSBOTS approach171

constructs the individual tracking trajectories by linking the detected organisms in each video sequence to172

correspondences in the next successive frame, calculating the positions of miss-detections or occlusions,173

and reassigning the calculated organisms to their correct trajectories by adjusting initial assignment174

results.175
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Initial assignment176

The initial assignment of detected organisms in each video frame is a partial assignment using an extension177

of the Kuhn-Munkres algorithm to frame-by-frame processing for rectangular arrays Bourgeois and178

Lassalle (1971). Extending the original Hungarian algorithm Harold (1955) from solving the assignment179

problem with an equal number of workers and tasks represented in a n×n matrix, the number of workers180

and tasks can be unequal and represented in a rectangular matrix. This approach can then be applied to181

organism tracking, where the number of detected organisms can change due to non-ideal segmentation182

resulting from organism miss-detection and occlusion.183

In the initial assignment process in this extended Kuhn-Munkres approach Bourgeois and Lassalle184

(1971), all the detected organisms Points{t} in frame t are taken as source points, and the segmented185

organisms Points{t + 1} in the following frame t + 1 are seen as the target points between connected186

frames. The target points in Points{t +1} are mapped to the source points in Points{t} frame-by-frame187

across a video sequence. An n×m matrix D is created to annotate the cost of associating source organisms188

O = {O1,O2, · · · ,On} in the frame t to the target organisms T = {T1,T2, · · · ,Tm} in the frame t +1:189

D(O,T ) =











dO1,T1
dO1,T2

· · · dO1,Tm

dO2,T1
dO2,T2

· · · dO2,Tm

...
...

. . .
...

dOn,T1
dOn,T2

· · · dOn,Tm











(1)

where n is the detected number of organisms in the frame t, and m is the number of organisms segmented190

in the successive frame t+1. The element dOi,Tj
in the matrix denotes the cost to connect the i-th organism191

in the frame t, to the j-th organism in the frame t +1, and is calculated by the Euclidean distance between192

the source point to the target point using Equation (2):193

dOi,Tj
= (x j − xi)

2 +(y j − yi)
2 (2)

The frame-to-frame organism assignment based on the cost matrix is performed using the Muncres194

implementation of the Hungarian algorithm Pilgrim (2017), which searches for unique assignments to195

assign source organism i to only one target organism j in the successive frame. The final sum of the196

resultant complete assignment between Points{t + 1} and Points{t} is a global optimal cost, which is197

the lowest summed distance amongst all of the possible assignments within two successive frames. The198

matched target points propagate the identities of their matched source points; thus, after obtaining the199

final assignment map for the whole video, connecting the points with the same identities over frames of a200

video gives the individual organism tracking trajectories.201

To eliminate the false positive points from the segmentation results when building the individual202

trajectories, a distance constraint is set as a threshold in the source-target cost matrix when applying203

the initial frame-to-frame assignment. The threshold is calculated by δ ∗median(disi, j) Zhiping and204

Cheng (2017). When the minimum value of the i-th row in the source-target cost matrix is larger than the205

threshold value of this video sequence, which indicates that the distance between the source point i to all206

of the points in the successive frame exceeds the threshold value, the source point i with its corresponding207

position information will be removed from the point matrix and considered as a segmentation noise208

fragment to not be further assigned to a target point.209

When an organism disappears in a frame t due to miss-detection or occlusion, a source point in frame210

t −1 therefore cannot be assigned to a target. A gap will then occur in the tracking trajectory where the211

organism fails to be detected, and a new tracking trajectory will start from the frame when the organism212

is correctly detected again. This source point in frame t − 1 without a mapped target is saved in an213

unmatched source matrix.214

When the organism is re-detected in the frame t + n after being missed for n frames, there is one215

more point in Points{t + n} compared to Points{t + n− 1}. To map the points Points{t + n− 1} to216

Points{t +n}, a point in the frame t +n cannot be assigned to a source point in the previous frame; this217

point in frame t +n is saved in the unmatched target matrix.218

The methods to calculate the theoretical positions between the unmatched source points and unmatched219

target points and adding these points to their correct tracking trajectories are explained in the following220

two sections, respectively.221
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Figure 3. Point calculation for occluded organisms

Position estimation for miss-detected and occluded organisms222

Fig. 3 illustrates the location computation of an overlapped organism. The two points Oi (shown by the223

blue dot) and O j (shown by the yellow dot) overlap with each other in the frame t +1, and this overlapped224

point at time t +1 is assigned to the object O j by the initial tracking process. Since the point Oi in the225

frame t cannot find a target in the frame t +1, and the point in the frame at time t +2 cannot be assigned226

to a source point in frame t +1, the point Oi is classified as an unmatched source point in the frame t, and227

unmatched target point in frame t +2 by the initial assignment approach described in the previous section,228

respectively.229

The position of the missed point due to occlusion (as shown by the blue dot partially covered by the230

yellow dot in Fig. 3) or miss-detection (for example, when the blue dot is totally covered by the yellow231

dot in Fig. 3) is calculated by the unmatched source point Oi(t) and unmatched target point Oi(t +2). For232

example, as shown in Fig. 3, the location of the missed point Oi at frame t +1 is calculated by the median233

point between Oi(t) and Oi(t +2).234

When there are multiple unmatched pairs, the mapping from unmatched target points to the unmatched235

source points is also based on the extended Hungarian assignment algorithm Bourgeois and Lassalle (1971).236

In searching for target points, the unmatched source points firstly search for possible correspondences in237

the following frame. If no assignment can be mapped, the search extends to the unmatched targets in the238

following 3rd frame. It was shown in Noss et al. (2013) that a trajectory fragment can be connected to its239

subsequent fragment track so long as the frame separation is less than 6 video frames. Thus, the default240

search range in the proposed MSBOTS system is from the second to the sixth frames following the frame241

when the miss-detections and occlusions originally occur. The positions of missed organisms (xc,yc) are242

calculated by Equations (4) and (5) using the matched point pair from an unmatched source point (xs,ys)243

and an unmatched target point (xt ,yt).244

xc = xs +
1

j
∗ (xt − xs) (4)

yc = ys +
1

j
∗ (yt − ys) (5)

where j indicates the following j-th frame from the unmatched source point.245

Bridging trajectory gaps for miss-detected and occluded organisms246

Individual tracking trajectories for each organism are obtained through connecting the matched points247

with the same identities after the initial assignment process frame-by-frame over a video sequence.248

However, the tracking trajectories obtained from the initial assignment process are usually trajectory249

fragments, separated when organisms are miss-detected or overlapped to result in segmentation errors. In250

the proposed MSBOTS approach, these trajectory gaps are bridged by adding the location points of these251

miss-detected or overlapped organisms as estimated and described in the previous section.252

To connect trajectory fragments, the points stored in the unmatched source matrix are mapped to253

the points in the unmatched target matrix, and the positions of the missed points between the newly254

unmatched-source to unmatched-target are also calculated during this searching process. For example, as255

shown in Fig. 3, the unmatched source Oi(t) as the end point of its trajectory fragment is connected to256

the unmatched target point Oi(t +2), which is the start point of its trajectory fragment, and their middle257

point shown by the red dot is added between points Oi(t) and Oi(t +2) as the theoretical position of the258

overlapped point Oi(t +1).259
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Locomotion characteristic analysis260

After obtaining the individual tracking trajectories for each organism in video sequences, the movement261

characteristics of these organisms can be analysed based on the tracking results. The calculation of262

three movement parameters are presented in this work: movement velocity, acceleration and direction as263

represented by Equ. (6-8), respectively.264

velocity =

√

(xt+1(i)− xt(i))2 +(yt+1(i)− yt(i))2

dt
(6)

acceleration =
d(velocity)

d2t
(7)

direction = atan2
yt+1(i)− yt(i)

xt+1(i)− xt(i)
(8)

where dt = 1\ f s and f s is the video frame rate. xt(i) and yt(i) are the Cartesian coordination of organism265

i (i is the signed organism identity) in the frame t.266

RESULTS AND DISCUSSION267
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Figure 4. Tracking results evaluation among the comparison methods using videos of three types of

small biological organisms.

To evaluate the proposed MSBOTS system, microscopic videos of three types of small biological268

organisms (zebrafish, Artemia and Daphnia) were tested, where the initial system test using zebrafish was269

presented in our previous work Wang et al. (2018). Evaluated on a set of single and multiple larvae and270

adult zebrafish, Artemia and Daphnia videos, a wide variety of (complex) video conditions were tested,271

including shadowing, labels, and background artefacts (such as water impurities, subject feces and water272

bubbles with different sizes). No chemical stimuli were tested on the studied organisms, so their behaviour273

response does not correspond to any specific chemical stimuli. In addition to the tracking accuracy274

evaluation, the natural locomotive characteristics as described by movement velocity, acceleration and275

direction are also analysed on the video dataset to test the dynamic behaviour analysis capability of the276

proposed system.277

Small biological organism datasets278

Microscopic time-lapse videos of three types of small organism models: zebrafish, daphnia and drasophila279

were applied to evaluate the proposed MSBOTS approach. Low frame rate videos were recorded with a280

Dino-Lite AD7013MT microscope at frame rates of 14 or 15 fps. High frame-rate videos were captured by281

an Imaging Development Systems (IDS) UI-3360CP-C-HQ microscope, with a high resolution 12.5mm282

focal lens.283

Wild zebrafish embryos (Danio rerio) were incubated at 28◦C in a petri dish filled with an E3 medium.284

Any debris and unfertilised embryos were manually removed three hours post-fertilization (hpf). Five285

days post-fertilization, the larvae were obtained from hatched zebrafish embryos. For data acquisition,286
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(a) (b) (c)

Figure 5. Microscopic video frame examples of (a) zebrafish larvae, (b) Artemia franciscana, and (c)

Daphnia magna.

zebrafish larvae were transferred to poly (methyl methacrylate) (PMMA) housing wells. The zebrafish287

dataset consists of 10 video sequences with 3056 frames in total, of various durations and imaging288

conditions (a microscopic video frame example of zebrafish larvae is shown in Fig. 5a); details about the289

zebrafish dataset and its generation can be found in our previous work Wang et al. (2017a). The dataset290

was presented in the order that the first sequence has clearest background and the 10th (last) sequence has291

the most complex background.292

Cysts of the marine crustacean Artemia franciscana and freshwater Daphnia magna were hatched293

and cultured according to the Artoxkit-M and Daphtoxkit-F (MicroBioTests Inc., Belgium) standard294

operating protocols. Artemia franciscana were hatched in a petri dish filled with sea water (pH 8.0±0.5)295

at 24±0.5◦C under exposure to 3000-4000 lux light source for 30 hours. Artemia were placed into a296

group of 10 in a miniaturised Lab-on-a-Chip (LOC) chamber Solis et al. (2015) when shooting videos297

with microfluidics infused at a flow rate of 5.25 mL/h. Five Daphnia magna neonates were randomly298

selected and transferred into a petri dish monitored temperature at 20.0±0.5◦C. The Artemia franciscana299

and Daphnia magna dataset consists of 5 video sequences each with 4802 frames and 4804 frames in300

total, respectively.301

• Artemia franciscana microscopic videos containing 5 organisms and artifacts (bubbles of different302

sizes, seqs. 1-5), with Fig. 5b a microscopic video frame examples of Artemia franciscana.303

• Daphnia magna microscopic videos containing 10 organisms and artifacts (bubbles and impurities304

of different sizes, seqs. 1-5), with Fig. 5c a microscopic video frame examples of Daphnia magna.305

Tracking evaluation metrics306

To enable the objective and quantitative evaluation of the tracking performance from the proposed

MSBOTS approach, this paper employs the widely utilised standard Multiple Object Tracking (MOT)

metric: Classification of Events, Activities and Relationships (CLEAR MOT) Bernardin and Stiefelhagen

(2008). CLEAR MOT consists of two metrics: Multiple Object Tracking Precision (MOTP), which

estimates the location precision of all detected objects compared to that of the manually labelled object

positions in each frame (known as ground truth); and, Multiple Object Tracking Accuracy (MOTA), which

measures the accuracy in tracking object trajectories (producing exactly one trajectory per object), and

the ability to consistently label objects over time. Mathematically, the MOTP and MOTA metrics are

represented as:

MOT P =
∑i,t |Di,t −GTi,t |

∑t Nt

(9)

MOTA = 1−
∑t(mt + f pt +mmet)

∑t gt

(10)

where |Di,t −GTi,t | indicates the Euclidian distance between the pair-wise matched position of the i-th307

segmented object in frame t Di,t and the position of this object in the ground truth (GTi,t), averaged by the308

total number of matches in the entire video sequence.309

In the MOTA metric, mt , f pt , and mmet for each frame t indicate the number of missed detections,310

false positive segmentation (i.e., image noise fragment detected as object), and the swapping of identities311

of individual objects, respectively. gt represents the total number of objects present in frame t.312
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Figure 6. Organism movement speed acceleration over time.
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(a) Movement speed analysis of individual organism.
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(b) Movement direction analysis of individual organism.

Figure 7. Analysis of organism locomotion characteristics across video sequences.

Tracking accuracy evaluation313

To evaluate the proposed tracking system, the overall tracking accuracy over a video sequence is compared314

with well-known multiple object tracking approach idTracker Pérez-Escudero et al. (2014), SimpleTracker315

Bourgeois and Lassalle (1971) (using the Kuhn-Munkres tracking algorithm for initial association and the316

nearest neighbourhood to directly connect trajectory fragments, without considering missed objects), and317

the widely used commercial LoliTrack system Závorka et al. (2017). Fig. 4 shows the tracking accuracy318

results measured by the MOTP and MOTA, with Fig. 4a showing results from zebrafish videos, Fig. 4b319

Artemia videos and Fig. 4c Daphnia videos.320

It can be seen from Fig. 4a that the positions of detected organisms using adult and larvae zebrafish321

videos consistently exhibit the smallest distance differences with the manually labelled ground truth322

positions amongst all the methods tested. The proposed MSBOTS approach resulted in overall smaller323

MOTP values of 0.92, 25.59, and 44.48 pixels (71.59% increased) compared to SimpleTracker, idTracker,324

and LoliTrack, respectively (see Supplementary Table S1 for more detail). The general improved organism325

position detection results demonstrated the efficiency of the theoretical position estimation based on the326

organism detection and segmentation results using the adaptive GMM model and post-processing in the327

proposed MSBOTS system.328

All of the methods performed well for position accuracy of the detected organisms when the videos329

had a clear background as shown by seqs. 1-6. However, the location errors measured by MOTP for the330

detected organisms in the zebrafish videos compared to the ground-truth did not decrease as dramatically331
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as LoliTrack or idTracker with increasingly complex video backgrounds, as shown by the MOTP values332

in seqs. 7-10 in Fig. 4a. Accordingly, the proposed MSBOTS method still out-performed the existing333

approaches when taking into account miss-detection, false positive segmentation and identity swapping,334

with 31.20%, 63.01%, and 24.61% higher MOTA values than SimpleTracker, idTracker, and LoliTrack,335

respectively. This was mainly achieved by the ability to estimate the positions of the missdetected or336

overlapped organisms using their neighbour position knowledge from the segmentation results in the337

proposed MSBOTS. In addition, the trajectory fragments bridging strategy of MSBOTS using the extended338

Hungarian assignment algorithm Bourgeois and Lassalle (1971) when there are multiple unmatched339

trajectory fragment pairs based on unmatched source-target points decreased the possibility of individual340

identity swapping occurrence, compared with SimpleTracker, which only used distance metric by nearest341

neighbour algorithm, and further in turn can generate identity swapping during the gap bridging process.342

In addition, Fig. 4b and Fig. 4c shows the tracking accuracy evaluation using Artemia franciscana343

and freshwater Daphnia magna videos, respectively, to test the application of the proposed MSBOTS344

system on other small organisms with variant movement characteristics with zebrafish larvae (Artemia345

displays flexible movement and varies according to surrounding fluidics Tyson (1974); Williams (1994),346

and Daphnia with short, jerky hopping movement in water Rottmann et al. (1992)). The overall tracking347

accuracy performance of the proposed MSBOTS method is consistent for the tested videos on these two348

organism types, while the tracking accuracy measured by MOTP and MOTA values vary among these349

videos (see Supplementary Table S2 $ S3 for more detail).350

As can be seen in MOTP values for Artemia videos in Fig. 4b, the proposed method exhibits 47.68351

pixels smaller standard deviation than the idTraker system, which illustrated the usability of the proposed352

system on Artemia microscopic videos and the enhancement ability on improving the tracking accuracy.353

Though idTracker can produce smaller organism position estimation errors (MOTP) as shown by the354

seqs. 3-5 in Fig. 4b, the mean MOTA value is 7.07%, and 6.44% less than the proposed method and355

LoliTrack, respectively, which illustrates that the similar organism detection problem with zebrafish356

larvae detection (detected organism as background and impurities as organism due to their small size357

differentiation and similar movement character some time, especially when the organism stops moving or358

the water impurities stirred up by organism movement), which further cause identities confusion due to359

these detection errors).360

Fig. 4c shows the overall tracking accuracy of the proposed MSBOTS system and idTracker con-361

sistently out-perform the comparing systems, measured by MOTP and MOTA. While the mean MOTA362

value of the proposed MSBOTS system is still 5.48% higher than idTracker. The tracking efficiency and363

accuracy of the proposed MSBOTS system illustrated its application ability on Daphnia with short, jerky364

hopping movement characteristics compared with these exiting systems.365

Analysis of organism movement characteristics366

To explore the capability of the proposed MSBOTS approach to be applied to organism movement367

characteristic analysis due to the improved accuracy organism tracking trajectories, velocity, acceleration368

and movement direction were calculated for the zebrafish videos as an example.This paper also presents369

the basic zebrafish movement characteristics after obtaining individual tracking trajectories370

Fig. 6 shows the movementacceleration analysis for each zebrafish video using the resultant tracking371

trajectories generated by the proposed MSBOTS method. It was found that in Hinz and de Polavieja372

(2017) the interaction and movement of zebrafish larvae was very close to zero by 7 dpf. As shown in Fig.373

6, in general the variation in the zebrafish acceleration values that is obviously visually perceptible to the374

human eye occurred only at approximately 10 seconds in the 10 adult and larvae zebrafish videos tested,375

due to the anxiety response from the zebrafish when turning on the imaging camera Peng et al. (2016)).376

The zebrafish speed are more subtle from this point on, which is consistent with the zebrafish movement377

characteristics found in Peng et al. (2016) Hinz and de Polavieja (2017).378

As organism movement speed and changes in movement direction can provide insight into the379

interaction rules Hinz and de Polavieja (2017),Fig. 7 shows an example of the acceleration and movement380

direction results for each zebrafish video, respectively. The number of boxes show that each zebrafish381

larvae was successfully assigned with one identity (which also illustrated the one-to-one organism mapping382

guarantee of the association method in the proposed MSBOTS system), and the median velocity (labelled383

by the red line inside each box) of each larvae indicates the consistent movement characteristic within the384

same housing well. Mean, minimum and maximum velocity values and quartiles can be easily obtained385
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and analysed through the visual box plot representation shown in Fig. 7.386

CONCLUSIONS387

Accurate automatic tracking for multiple small biological organisms provides efficient approach to many388

biomedical and ecotoxicity applications. However, organism miss-detection and occluded organisms are389

inevitable problems when detecting and segmenting these small biological organisms from time-lapse390

microscopic videos (the detection and segmentation difficulty level rises when tracking small biological391

aquatic organisms compared with general objects), which in turn affects the subsequent organism tracking392

processes. To improve the tracking accuracy based on the non-ideal organism detection and segmentation393

results, extended upon and improved our previous work, this paper presents a Multiple Small Biological394

Organism Tracking System (MSBOTS), combining multiple object association algorithm for linking395

detected objects frame-by-frame and tracking trajectory adjustment techniques. To address segmentation396

errors due to miss-detected or occluded organisms, the proposed MSBOTS approach estimated positions397

of organisms in interim frames using corresponding points in neighbouring frames. Finally, the calculated398

points are applied to connect and adjust the tracking trajectory fragments from the initial association based399

on an extended Kuhn-Munkres algorithm. The proposed system was tested on three different types of small400

organism with variant movement characteristics using 20 videos in total. The resulted tracking accuracy of401

the proposed system outperforms three existing (state-of-the-art/commercial) tracking systems. Moreover,402

this system also provides locomotive characteristic analysis module using the generated individual tracking403

trajectories to facilitate small organism behaviour analysis research. Behavioural rules and new medicine404

or chemical effect on the dynamic behaviour of organisms can be further summarised using the provided405

movement analysis module to facilitate specified experiments.406
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Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., and De Polavieja, G. G. (2014). idtracker:462

tracking individuals in a group by automatic identification of unmarked animals. Nature Methods,463

11(7):743–748.464

Pilgrim, R. A. (2017). Munkres’ assignment algorithm, modified for rectangular matrices. Course notes,465

Murray State University.466

Pnevmatikakis, A. and Polymenakos, L. (2006). Robust estimation of background for fixed cameras. In467

Computing, CIC06. 15th International Conference on, pages 37–42. IEEE.468

Poynton, H. C., Varshavsky, J. R., Chang, B., et al. (2007). Daphnia magna ecotoxicogenomics provides469

mechanistic insights into metal toxicity. Environmental Science & Technology, 41(3):1044–1050.470

Rashid, M. T., Frasca, M., Ali, A. A., Ali, R. S., et al. (2012). Artemia swarm dynamics and path tracking.471

Nonlinear Dynamics, 68(4):555–563.472

Rottmann, R. W., Graves, J. S., Watson, C., and Yanong, R. E. (1992). Culture Techniques of Moina: The473

ideal Daphnia for feeding freshwater fish fry. Florida Cooperative Extension Service, Institute of Food474

and Agricultural Sciences, University of Florida.475

Solis, J., Huang, Y. S., Wlodkovic, D., and Reyes, C. (2015). Microfluidic environment and tracking476

analysis for the observation of artemia franciscana. Proceedings of sthe 26th British Machine Vision477

Conference.478

Tyson, G. E. (1974). Ultrastructure of a spirochete found in tissues of the brine shrimp, artemia salina.479

Archives of Microbiology, 99(1):281–294.480

Usami, M. (2004). An ultra-small rfid chip:/spl mu/-chip. In Advanced System Integrated Circuits.481

Proceedings of 2004 IEEE Asia-Pacific Conference on, pages 2–5. IEEE.482

Wang, X. Y., Cheng, E., Burnett, I. S., et al. (2017a). Crowdsourced generation of annotated video483

datasets: a zebrafish larvae dataset for video segmentation and tracking ealuation. In 2017 IEEE Life484

Sciences Conference (LSC), pages 274–277. IEEE.485

Wang, X. Y., Cheng, E., Burnett, I. S., Huang, Y. S., and Wlodkowic, D. (2017b). Automatic multiple486

zebrafish larvae tracking in unconstrained microscopic video conditions. Scientific Reports, 7(1):1–8.487

Wang, X. Y., Cheng, E., Burnett, I. S., Wilkinson, R., and Lech, M. (2018). Automatic tracking of488

multiple zebrafish larvae with resilience against segmentation errors. In 2018 IEEE 15th International489

Symposium on Biomedical Imaging (ISBI 2018), pages 1157–1160. IEEE.490

Williams, T. A. (1994). A model of rowing propulsion and the ontogeny of locomotion in artemia larvae.491

12/13PeerJ reviewing PDF | (2020:11:55756:0:0:NEW 25 Nov 2020)

Manuscript to be reviewed



The Biological Bulletin, 187(2):164–173.492

Zhiping, X. and Cheng, X. E. (2017). Zebrafish tracking using convolutional neural networks. Scientific493

Reports, 7.494

Zhou, Y. Z., Cattley, R. T., Cario, C. L., Bai, Q., and Burton, E. A. (2014). Quantification of larval495

zebrafish motor function in multi-well plates using open-source matlab® applications. Nature Protocols,496

9(7):1533– 1548.497

Zivkovic, Z. and Heijden, V. D. F. (2006). Efficient adaptive density estimation per image pixel for the498

task of background subtraction. Pattern Recognition Letters, 27(7):773–780.499

Zivkovic, Z. and Van Der Heijden, F. (2004). Recursive unsupervised learning of finite mixture models.500

IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):651–656.501

Závorka, L., Koeck, B., Cucherousset, J., Brijs, J., Näslund, J., Aldvén, D., Höjesjö, J., Fleming, I. A.,502
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