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Background: Understanding the effects of herd management practices on the prevalence
of multidrug-resistant pathogenic Salmonella and commensals Enterococcus spp. and
Escherichia coli in dairy cattle is key in reducing antibacterial resistant infections in
humans originating from food animals. Our objective was to explore the herd and cow level
features associated with the multi-drug resistant, and resistance phenotype shared
between Salmonella, E. coli, and Enterococcus spp. using machine learning algorithms.
Methods: Randomly collected fecal samples from cull dairy cows from six dairy farms in
central California were tested for multi-drug resistance phenotypes of Salmonella, E. coli,
and Enterococcus spp. Using data on herd management practices collected from a
questionnaire, we built three machine learning algorithms, decision tree classifier, random
forest, and gradient boosting decision trees, to predict the cows shedding multidrug-
resistant Salmonella and commensal bacteria. Results: The decision tree classifier
identified rolling herd average milk production as an important feature for predicting fecal
shedding of multi-drug resistance in Salmonella or commensal bacteria. The number of
culled animals, monthly culling frequency and percentage, herd size, and proportion of
Holstein cows in the herd were found to be influential herd characteristics predicting fecal
shedding of multidrug-resistant phenotypes based on random forest models for Salmonella
and commensal bacteria. Gradient boosting models showed that higher culling frequency
and monthly culling percentages were associated with fecal shedding of multidrug
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resistant Salmonella or commensal bacteria. In contrast, an overall increase in the number
of culled animals on a culling day showed a negative trend with classifying a cow as
shedding multidrug-resistant bacteria. Increasing rolling herd average milk production and
spring season were positively associated with fecal shedding of multidrug- resistant
Salmonella. Only 6 individual cows were detected sharing tetracycline resistance
phenotypes between Salmonella and either of the commensal bacteria. Discussion:
Percent culled and culling rate reflect the increase in culling over time adjusting for herd
size and were associated with shedding multidrug resistant bacteria. In contrast, number
culled was negatively associated with shedding multidrug resistant bacteria which may
reflect economic decisions that prioritize the culling of cows based on milk or beef prices
(with respect to dairy beef) where a producer may elect to cull dairy cows that wouldn’t be
culled otherwise. Using data-driven suite of machine learning algorithms we identified
generalizable and distant associations between antimicrobial resistance in Salmonella and
fecal commensal bacteria, that can help develop a producer-friendly and data-informed
risk assessment tool to reduce shedding of multidrug-resistant bacteria in cull dairy cows.
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27 Abstract 

28 Background: Understanding the effects of herd management practices on the prevalence of 

29 multidrug-resistant pathogenic Salmonella and commensals Enterococcus spp. and Escherichia 

30 coli in dairy cattle is key in reducing antibacterial resistant infections in humans originating from 

31 food animals. Our objective was to explore the herd and cow level features associated with the 

32 multi-drug resistant, and resistance phenotype shared between Salmonella, E. coli, and 

33 Enterococcus spp. using machine learning algorithms.

34 Methods: Randomly collected fecal samples from cull dairy cows from six dairy farms in central 

35 California were tested for multi-drug resistance phenotypes of Salmonella, E. coli, and 

36 Enterococcus spp. Using data on herd management practices collected from a questionnaire, we 

37 built three machine learning algorithms, decision tree classifier, random forest, and gradient 

38 boosting decision trees, to predict the cows shedding multidrug-resistant Salmonella and 

39 commensal bacteria.

40 Results: The decision tree classifier identified rolling herd average milk production as an 

41 important feature for predicting fecal shedding of multi-drug resistance in Salmonella or 

42 commensal bacteria. The number of culled animals, monthly culling frequency and percentage, 

43 herd size, and proportion of Holstein cows in the herd were found to be influential herd 

44 characteristics predicting fecal shedding of multidrug-resistant phenotypes based on random 

45 forest models for Salmonella and commensal bacteria. Gradient boosting models showed that 

46 higher culling frequency and monthly culling percentages were associated with fecal shedding of 

47 multidrug resistant Salmonella or commensal bacteria. In contrast, an overall increase in the 

48 number of culled animals on a culling day showed a negative trend with classifying a cow as 

49 shedding multidrug-resistant bacteria. Increasing rolling herd average milk production and spring 
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50 season were positively associated with fecal shedding of multidrug-resistant Salmonella. Only 6 

51 individual cows were detected sharing tetracycline resistance phenotypes between Salmonella 

52 and either of the commensal bacteria.

53 Discussion: Percent culled and culling rate reflect the increase in culling over time adjusting for 

54 herd size and were associated with shedding multidrug resistant bacteria. In contrast, number 

55 culled was negatively associated with shedding multidrug resistant bacteria which may reflect 

56 economic decisions that prioritize the culling of cows based on milk or beef prices (with respect 

57 to dairy beef) where a producer may elect to cull dairy cows that wouldn’t be culled otherwise.  

58 Using data-driven suite of machine learning algorithms we identified generalizable and distant 

59 associations between antimicrobial resistance in Salmonella and fecal commensal bacteria, that 

60 can help develop a producer-friendly and data-informed risk assessment tool to reduce shedding 

61 of multidrug-resistant bacteria in cull dairy cows. 
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62 Introduction

63 The Centers for Disease Control and Prevention (CDC) estimates that more than 2.8 million 

64 antimicrobial resistant infections occur in the U.S. with more than 35,000 deaths annually 

65 (Control & Prevention 2019). Amongst the resistant bacteria, the CDC classifies nontyphoidal 

66 Salmonella enterica as a serious threat (Control & Prevention 2019). Salmonella is an important 

67 foodborne zoonotic agent in the U.S. (Scallan et al. 2011) and several studies reported on its 

68 prevalence in cull cattle. Troutt et al found that the prevalence of Salmonella in cecal contents of 

69 dairy cattle at slaughter in the Western U.S. ranged between 9.6% and 35.6% in the winter, and 

70 between 32.3% and 93% in the summer (Troutt et al. 2001). More recent studies reported on the 

71 associations between herd management and seasonal differences on the prevalence of Salmonella 

72 in fecal samples of cull dairy cows collected quarterly from seven California dairies with an 

73 overall Salmonella shedding prevalence of 3.42% (95% CI 1.28, 5.56) (Abu Aboud et al. 2016). 

74 Pereira et al. (Pereira et al. 2019) followed six of the same California dairies for a second year 

75 showing an increase in Salmonella shedding prevalence (31%; 95% CI 26.0-35.0). The latter 

76 study explored how the study herd and cow level features were associated with shedding of 

77 antimicrobial resistant Salmonella and although 60% of the isolates were pan-susceptible, the 

78 remaining isolates were found to be resistant to different medically important antimicrobial drugs 

79 (MIAD) defined as antimicrobial drugs (AMD) that are important for therapeutic use in humans, 

80 with 12% of the isolates being multidrug resistance to more than two drug classes. 

81 Fecal commensals such as E. coli and Enterococcus spp. can acquire mobile gene elements that 

82 encode antimicrobial resistance to these species (Aidara-Kane et al. 2018). Given the 

83 documented antimicrobial resistance in Salmonella isolated from cull dairy cows, further 
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84 research on the similarity between resistance patterns of fecal commensals and Salmonella shed 

85 in feces of dairy cattle is needed.

86 Traditional risk factor approaches (mixed-effects modeling) can often have limitations 

87 due to high-dimensional, imbalanced, and non-linear data and can perform poorly in cases of 

88 large number predictive variables. To overcome these, we used a suite of classification tree 

89 models, a group of supervised machine learning models that can handle various types of data and 

90 handle interactions between predictive variables. Classification tree models like Random Forest, 

91 gradient boosting have been found useful in investigating the prevalence and associated risk 

92 factors of bovine viral diarrhea virus (Machado et al. 2015), swine pneumonia (Mollenhorst et al. 

93 2019), and mastitis in dairy cattle (Hyde et al. 2020). In the study reported here, our objective 

94 was to explore the herd and cow level features associated with the multi-drug resistance and 

95 resistance phenotype shared between Salmonella, E. coli, or Enterococcus spp. using machine 

96 learning algorithms.

97 Materials & Methods

98

99 Farms surveys and sampling

100 The study was approved by the University of California, Davis’s Institutional Animal 

101 Care and Use Committee (protocol number 18019). Six dairy farms located in the San Joaquin 

102 Valley of California were reenrolled as a convenience sample and followed up for a second year 

103 after being part of an earlier study (Abu Aboud et al. 2016). Briefly, cull cows were identified for 

104 fecal sampling once during each season between 2015 and 2016, specifically during summer 

105 (July 1–September 30, 2015), fall (October 1–December 31, 2015), winter (January 1–March 31, 

106 2016) and spring (April 1–June 30, 2016). The choice of sampling week to collect fecal samples 

PeerJ reviewing PDF | (2021:01:57027:0:1:NEW 13 Jan 2021)

Manuscript to be reviewed



107 from the cull cows during any of the four seasons was also by convenience. From the list of cows 

108 selected by the dairy farms for culling, 10 cows were randomly selected for fecal sampling on 

109 the day of their removal from the herd using a random number generator (Excel; Microsoft 

110 Corp., Redmond, WA, USA). Several lists of random numbers were prepared in multiples of 10 

111 ranging from 11–20 to 91–100 cows and the respective list was selected depending on the 

112 number of cows presented for culling on the day of sampling. If a producer had less than 11 

113 cows presented for culling, all the cows were sampled. An individual disposable sleeve was used 

114 to manually collect fecal samples from the rectum of each selected cow. The fecal samples were 

115 transported to the Aly Lab (Dairy Epi Lab) on wet ice for processing on the same day.

116 A survey was also completed with the help of the herd manager on the same sampling 

117 day. The survey questions were described in an earlier report (Pereira et al., 2019). Briefly, the 

118 questions targeted management of the herd in the previous 4 months and collected information 

119 on herd size, breed, rolling herd average, cull rate, frequency of culling per month, the proportion 

120 of cows sold for beef (compared to as dairy), proportion and reasons for condemnation of culled 

121 cows. The survey also collected information on the proportion of culled cows that received 

122 injectable medical treatments in the 3 weeks prior to culling, the role of dairy staff allowed to 

123 treat cows on the dairy, practices to avoid drug residue violations (use of specific drug types, 

124 following withdrawal times, milk and/or urine testing prior to the cow being culling, or other 

125 practices), tracking of drug withdrawal intervals, having a drug inventory system in place, and 

126 extra-label drug use (frequency and familiarity). Finally, a backup of the herd record software 

127 was obtained to collect information on the culled cows’ milk production and health events. A 

128 relational database was used to house and merge data from the surveys, dairy records, and test 

129 results (Access; Microsoft Corp., Redmond, WA, USA).
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130

131 Bacteriological culture 

132 The California Animal Health and Food Safety (CAHFS) laboratory conducted all the 

133 study sample testing for Salmonella as described by Adaska et al. (Adaska et al. 2020).  Briefly, 

134 1 gram of feces was inoculated into tetrathionate selective enrichment broth and incubated at 37 

135 ± 2 °C. The next morning a cotton swab was used to inoculate the overnight broth onto XLD and 

136 XLT-4 plates and these were incubated overnight at 37 ± 2 °C. H2S positive, Salmonella suspect 

137 colonies from each set of plates were subcultured onto individual bi-plates (5% sheep blood 

138 agar-MacConkey agar) and incubated overnight at 37 ± 2 °C. One colony from each bi-plate was 

139 used for biochemical testing which included triple sugar iron, urea, motility indole ornithine, 

140 citrate, O-nitrophenyl-beta-D-galactopyranoside, and lysine iron agar slants. Serogrouping and 

141 serotyping were performed, using the White–Kauffmann–Le Minor scheme (Grimont & Weill 

142 2007) on colonies with biochemical test results consistent with Salmonella (Quinn et al. 2002)

143 Fecal samples were also cultured for E. coli and Enterococcus spp. isolation as described 

144 previously (Li et al. 2014). Briefly, a 40 mL solution of buffered peptone water containing 5 g of 

145 feces in a 50 mL polypropylene tube is homogenized using a mechanical shaker for 15 min 

146 before filtering using gauze. 1000, 100, and 10 μl of the filtered solution were then streaked on 

147 CHROMAgar ECC (Chromagar, Paris) and Enterococcus Indoxyl-β-D-Glucoside agar (mEI) 

148 plates (Becton, Dickinson and Company, Franklin Lakes, NJ) both incubated at 37°C for 24 h. 

149 Reference strains ATCC 25922 (E. coli) and ATCC 29212 (Enterococcus faecalis) were plated 

150 on agar plates as positive controls. Two pure colonies were isolated of each species after 

151 presumptive colonies were confirmed using biochemical tests (E. coli were confirmed using 

152 urea, indole, triple sugar iron, Methyl Red–Voges–Proskauer and Simmons citrate; Enterococcus 
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153 were confirmed using bile esculin, brain heart infusion agar, and growth in broth with and 

154 without 6.5% NaCl).  

155

156 Antimicrobial susceptibility testing 

157 Salmonella and E. coli bacterial resistance was evaluated with a broth microdilution 

158 method using a Gram-negative Sensititre plate (CMV2AGNF) and Enterococcus spp. evaluated 

159 on gram-positive Sensititre plate (CMV3AGPF) (Sensititre, Thermo Fisher Scientific, MA, 

160 USA) according to the manufacturer’s instructions and as described in previous studies (Li et al. 

161 2018; Pereira et al. 2019). The MIC values were the lowest concentrations of AMD that inhibited 

162 visible growth of bacteria. Interpretations of antimicrobial resistance were based on breakpoints 

163 recommended by the National Antimicrobial Resistance Monitoring System 

164 (https://www.cdc.gov/narms/antibiotics-tested.html; and 

165 https://www.ars.usda.gov/ARSUserFiles/60400520/NARMS/ABXEntero.pdf) and the Clinical 

166 and Laboratory Standards Institute (CLSI 2014; CLSI 2018). Due to the inherent resistance of 

167 Salmonella to cephalosporins, aminoglycosides, lincosamides, oxazolidinones,  and 

168 glycopeptides were excluded from the antimicrobial resistance analysis. In addition, the 

169 following drug classes to which E. coli is inherently resistant were excluded from the analysis: 

170 lincosamides, oxazolidinones, penicillins, streptogramins, glycopeptides. Similarly, the drug 

171 classes exclude due to the inherent resistance of Enterococcus spp. included cephalosporins, 

172 lincosamides, fluoroquinolones, aminoglycosides, aminocyclitols, sulfonamides, folate pathway 

173 antagonists.  Isolates from any of the three species (Salmonella, E. coli, Enterococcus spp.) were 

174 identified as multi-drug resistant if resistance to at least one AMD in each of three or more drug 

175 classes was observed (Magiorakos et al., 2012).  
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176 Development of classification algorithms

177 For cows that were found positive for Salmonella, classification tree models were 

178 developed to test if herd management practices and features related to dairy cows can predict 

179 multi-drug resistance phenotype in Salmonella and fecal commensal E. coli, and Enterococcus 

180 spp. isolated from the same cows. A cow was considered to shed MDR bacteria if any of its 

181 Salmonella, Enterococcus spp. and/or E. coli isolates showed resistance for three or more 

182 antimicrobial classes (regardless of whether the species with resistance was Salmonella, 

183 Enterococcus spp. and/or E. coli), in which case the cow was labeled as ‘shedding bacteria with 

184 multi-drug resistance (MDR) phenotype’ (numerical label = 2). In contrast, if a cow shed 

185 bacteria that were resistant to only one or two antimicrobial classes (regardless of species) the 

186 bacteria isolated were labeled as ‘shedding bacteria with antimicrobial resistance (AMR) 

187 phenotype’ (numerical label = 1). If the bacteria isolated from a cow did not show any resistance 

188 across all three bacterial species to any AMD, the bacteria were labeled as non-resistant 

189 (numerical label = 0). The mutually exclusive definitions were necessary to develop a single 

190 model that predicts one of three resistance states MDR, AMR, or no resistance. Similarly, cows 

191 were also classified based on resistance phenotypes separately observed in each bacterial species 

192 isolated (three separate classification labels based on resistance phenotypes of Salmonella, 

193 Enterococcus spp. and E. coli isolates). Finally, a fifth classification was generated based on 

194 resistant phenotypes observed in commensal bacteria (Enterococcus spp. and E. coli) shed in 

195 feces collectively. Using features from herd surveys, classification tree models were trained to 

196 predict the MDR phenotype of bacteria shed in the feces of the study cows.   
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197 Three machine learning algorithms, specifically decision tree classifier (DTC), random 

198 forest (RF), and gradient boosting (GB) were developed to explore the risk factors for resistance 

199 phenotypes in the study isolates using herd survey data, specifically to predict the multilabel 

200 outcome based on the resistance phenotype of bacteria shed by cows (non-resistant, AMR, and 

201 MDR). For each algorithm, data from the entire study cohort described by Pereira et al. (238 

202 cows) were used, except models specific to predicting AMR phenotypes in Salmonella were 

203 restricted to the cohort of 58 Salmonella positive cows. Table 1 describes all classification 

204 algorithms trained and developed for various bacteria-specific outcomes. 

205

206 For all three classification algorithms, 25 features related to herd management and 12 

207 features related to individual cows collected from the survey were used as predictive features 

208 (Table 2). The DTC generates an optimum tree based on attributes by recursive selections to split 

209 data into classes and it was only used to visualize the optimum tree and as a contrast to the 

210 remaining classification tree models (RF and GB). The RF and GB algorithms both generate a 

211 series of recursive trees of binary splits for randomly sampled predictor variables. While all tree 

212 classification algorithms handle interaction effects between predictors, within GB, boosting 

213 builds and combines collective models improving the predictive performance of many weak 

214 models substantially, and fits complex nonlinear relationships (Elith et al. 2008). For the 

215 validation of each algorithm, the data was split into training and validation datasets. To identify 

216 the best hyperparameters of the classification algorithms (hyper-tuning), a grid search was 

217 implemented on the training dataset. Grid search is a tuning technique that attempts to compute 

218 the optimum values of model parameters by an exhaustive search performed on a set of 

219 parameter values. Training datasets, composed of 80% of the data, were randomly selected for 
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220 gird search, maintaining the outcome proportional to the original dataset, with three-fold cross-

221 validation (internal validation). Model parameters tested for hyper-tuning of RF and GB are 

222 given in Table 1. The best performing model parameters were chosen based on the accuracy of 

223 the model. For each algorithm, the external validation of the best performing model was done on 

224 the validation dataset (20% remaining random sample of the original dataset) to quantify the 

225 performance of the model on the completely independent validation dataset. The DTC and RF 

226 models were implemented using the Scikit-learn machine learning package (Pedregosa et al. 

227 2011) and GB was implanted using XGBoost in python (Chen & Guestrin 2016). 

228 Validated models were eventually fit on the complete dataset to produce the final 

229 predictions. The relative influence (importance) of features for the random forest model was 

230 estimated using average gini (higher the value more the relative influence of the predictor on 

231 classifying samples), permutation, and feature drop methods. The gradient boosting model with 

232 the XGboost platform was evaluated using Shapely Additive Explanations (SHAP) that assigned 

233 each predictive feature an additive feature unifying six existing methods (Lundberg & Lee 2017). 

234 Partial dependence of gradient boosted model prediction on model features (expected output 

235 response trend as a function of feature) was explored to understand the associations of the herd 

236 and cow-related features with predictions (Friedman 2001). 

237

238 Results

239 Salmonella isolates were detected in the feces of 58 cows (24% ± 2.81 out of 238 cows) 

240 on the six dairy herds. Two herds had no Salmonella positive samples throughout the study 

241 period while for others the prevalence ranged from 12.5% (±5.22, n=40) to 70% (±7.24, n=40). 
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242 The most common reason reported for culling was low milk production (65.12%, ±3.08) 

243 followed by poor reproduction (31.09%, ±3.00). Lameness (10.50%, ±1.98) and mastitis 

244 (10.08%, ±1.95) were the other reasons reported in the survey.  Of the sampled cull cows, 

245 15.54% (±2.34) were reported as having received AMD as part of a treatment protocol for the 

246 condition resulting in their culling decision. In contrast, 58.82% (±1.25) received anti-

247 inflammatory drugs for the condition resulting in their culling decision. 

248 Distribution of antimicrobial resistance 

249 Predominant resistance phenotypes detected

250 The prevalence of AMR and MDR phenotypes in Salmonella was reported previously by 

251 Pereira et al. (Pereira et al. 2019). Briefly, tetracyclines were the most prevalent drug class for 

252 which Salmonella were resistant and 12% of the study isolates tested positive for MDR 

253 Salmonella (Pereira et al. 2019). Within Enterococcus spp. isolates, the most common AMR 

254 phenotype detected was for nitrofuran antimicrobials, (10.83%, ± 2.47). The most common type 

255 of MDR phenotype in Enterococcus spp. isolates was resistance to oxazolidinones, nitrofuran 

256 antibacterials, and macrolides (5.73%, ±1.85). Frequencies of all resistance phenotypes observed 

257 in Enterococcus spp. are presented in Table 3. 

258 Tetracyclines resistance was the most prevalent phenotype in E. coli isolates (30.86%, 

259 ±5.13). E. coli isolates from seven cows (8.64%, ±3.12), showed MDR phenotypes, and only one 

260 MDR phenotype was detected more than once (aminoglycosides, tetracyclines, amphenicols, 

261 2.47%, ±1.72). Frequencies of all resistance phenotypes observed in E. coli are presented in 

262 Table 4.

263 Seasonality of multi-drug resistance
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264 The overall prevalence of shedding MDR bacteria (Salmonella, E. coli, and Enterococcus 

265 spp.) in cows was 30.5%, (±2.97, n = 238). The prevalence of cows shedding bacteria that are 

266 resistant to <=2 antimicrobial drug classes (AMR) was 43.93% (±3.21, n = 238). The highest 

267 prevalence of MDR was seen in the summer (50.00% ±11.18) followed by fall (34.0%, ±4.73). 

268 The highest prevalence of shedding MDR bacteria was seen in herd 4 (52.00%, ± 7.89) and the 

269 lowest was seen in herd 3 (10.00%± 4.74). Herds 1 and 2 each showed the lowest prevalence of 

270 shedding AMR bacteria (37.50% ± 7.65), while herd 4 showed the highest prevalence of 

271 shedding AMR (50.00%, ±7.90). The seasonal prevalence of MDR and AMR resistance across 

272 three bacterial species is presented in Supplementary Figure 1.

273 The annual prevalence of cows shedding MDR Salmonella was 8.62% (±3.65, n = 58). 

274 The highest prevalence for MDR was detected in the winter season (10.5%, ±7.04, n = 19) and 

275 the highest AMR prevalence was detected in fall (42.3%±9.68, n = 26). Salmonella isolated from 

276 cows in the summer season did not show any AMR or MDR phenotypes (Figure 1a). The annual 

277 prevalence for MDR phenotypes within E. coli isolates was 2.92% (±1.09, n = 238). The highest 

278 prevalence for MDR phenotypes in E. coli was detected in winter (4.1%±2.92, n = 49) and the 

279 highest AMR prevalence in E. coli was detected in spring (34.3%±5.67, n = 70, Figure 1b). The 

280 annual prevalence for MDR phenotypes within Enterococcus spp. isolates was 26.35% (±2.84, n 

281 = 238). The highest prevalence for MDR Enterococcus spp. was detected in the summer season 

282 (50.00%±11.18, n = 20) and the highest AMR prevalence in Enterococcus spp. was detected in 

283 the winter season (49.0%±7.14, n =49, Figure 1c). 

284
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285 Antimicrobial resistance phenotype shared between bacterial isolates:

286 Study found no perfectly shared resistance phenotype between the study isolates. However, 6 

287 individual cows were detected sharing only tetracycline resistance phenotypes between 

288 Salmonella and commensal bacteria (E. coli or Enterococcus spp.). Out of these, three cows 

289 were from a single herd (herd 4) and shed MDR bacteria (Table 5). Within the commensal 

290 bacteria (E. coli or Enterococcus spp.), resistance to tetracycline was the most prevalent (11 

291 cows), while shared resistance to each of the drugs kanamycin, streptomycin, and 

292 chloramphenicol was observed once. 

293

294 Model performance and tuning results: Grid search of model parameters with 3-fold cross-

295 validation yielded satisfactory results in classifying MDR cows based on herd management 

296 practices and cow-related features. The sensitivity of models ranged from 0.47 to 0.74 with 

297 precision ranging from 0.46 to 0.66. Details related to hyperparameters, best performing decision 

298 tree classifiers, random forest, and XGboost models and the performance of the selected models 

299 are given in Table 1. 

300

301 Association between herd management practices and cow-related features with shedding 

302 multi-drug resistant bacteria

303 Decision tree classification models: 

304 For all DTC models, the impurity, a measure of the heterogeneity of the outcome in a 

305 subset of samples resulting from a split in a decision tree, was reduced in samples the most (gini 

306 or entropy) by the rolling herd average milk production, denoting its highest position in decision 

307 trees generated by all five models. Other management features that formed nodes showing high 
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308 measures of split quality (gini or entropy) including the proportion of Jersey cows in the herd, 

309 administration of tetracyclines, monthly culling percentage, culling frequency, and the number of 

310 culled individuals. Of the five DCT models, all but the model for overall resistance across 

311 Salmonella and commensal bacterial species were able to generate nodes that classify cows 

312 based on their fecal shedding of bacteria to a single class of AMD, or not resistant 

313 (Supplementary figures 2-5) with 100% purity (homogenous subsets). While only the DCT 

314 model for commensal bacteria, resulted in pure nodes for MDR cows, none of the other models 

315 were able to classify cows into pure MDR nodes (Supplementary figures 2). Figure 2 shows the 

316 optimum decision tree for classifying cows into MDR, AMR, or not resistant based on 

317 phenotypes of all bacteria (Salmonella, Enterococcus spp., E. coli). 

318 Random forest models:

319 Results of random forest models indicated common herd management practices that 

320 influence the shedding of MDR and AMR phenotypes of Salmonella, Enterococcus spp., and E. 

321 coli separately, as well as individually (Figure 3). The number of culled animals, monthly culling 

322 frequency and percentage, herd size, and proportion of Holstein cows in the herd were found to 

323 be influential herd characteristics (top ten features by relative influence) predicting MDR 

324 phenotypes in all algorithms. Random forest algorithms for predicting AMR phenotype in 

325 Enterococcus spp., commensal bacterial species combined, and in all bacterial species showed 

326 the same top ten most influential herd management features. Individual-level features such as 

327 culling due to milk production, mastitis, reproductive and other reasons appeared important for 

328 predicting resistance phenotypes in Salmonella.  The use of the chalk method for withdrawal 

329 determination was in the top ten most influential features and exclusive only for the E. coli 

330 model.
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331

332 Gradient boosting classification models:

333 Herd characteristics that showed higher variable importance in SHAP values for 

334 predicting cows shedding MDR resistance bacteria based on all bacterial species were herd size, 

335 the proportion of Jersey cows, sampling season, the frequency of extra-label drug use, rolling 

336 herd average, and culling related features. These features also showed high marginal 

337 contributions in predicting AMR phenotypes. For predicting AMR phenotypes, features such as 

338 the number of monthly veterinary treatments, antibiotic dose tracking, and the proportion of 

339 Holstein cows also showed higher SHAP values (Figure 4). 

340

341   

342 Partial dependence of gradient boosting model prediction on important features showed the 

343 possible relationships of these herd and cow-related features in predicting the AMR of their fecal 

344 bacteria as MDR.  Higher culling frequency and monthly culling percentages were associated 

345 with cows with MDR phenotypes from all bacteria, whereas an overall increase in the number of 

346 culled animals from the herd showed a negative trend with classifying a cow as shedding MDR 

347 bacteria. Winter season was negatively associated with MDR phenotype bacteria shed by cows 

348 compared to cows sampled in Spring. Similarly, herds with more than 10,432 kgs of rolling 

349 average milk production showed a positive trend with MDR positive cows. Cows from herds 

350 with a higher proportion of Jersey cows were negatively associated with being classified as 

351 shedding MDR bacteria by the gradient boosting algorithm (Figure 5). Within other herd 

352 characteristics that were identified as important, herd size showed a varying trend with 
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353 classifying cows shedding MDR bacteria, with some herd sizes showing a positive association of 

354 classifying cows as shedding MDR bacteria (Figure 5).

355 For predicting MDR phenotypes in Salmonella shed by cows, rolling herd average milk 

356 production, sampling season, chalk methods for tracking withdrawal, monthly culling frequency, 

357 and Salmonella vaccine were found to be important predictive features with high SHAP values 

358 (Figure 6). The exploration into partial dependence of these features gave insights into 

359 relationships of feature values with classifying a cow as shedding MDR phenotype Salmonella 

360 (Figure 7). Increasing rolling herd average milk production and monthly culling percentage was 

361 positively associated with MDR phenotypic Salmonella in cow feces. Similarly, cows sampled in 

362 spring were more likely to be classified as shedding MDR Salmonella. 

363   

364 Models predicting phenotypes in commensals E. coli, and Enterococcus spp.; the number 

365 of culled animals in the previous year was always in the top ten most important features to 

366 classify cows as shedding MDR bacteria (Figure S5- S8). Rolling herd average milk production 

367 features describing culling practices, and herd size, consistently featured as important in 

368 classifying cows as shedding MDR phenotypic bacteria for all the other three models 

369 (Commensals, E. coli, and Enterococcus spp.). The frequency of extra-label drug use was an 

370 important feature for models separately predicting MDR in Enterococcus spp. (figure S7) and E. 

371 coli shed by cows. 

372

373 Discussion

374 The current study investigated antimicrobial resistance phenotypes between bacteria shed in 

375 dairy cattle using decision tree classification algorithms. A simple decision tree model does tend 
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376 to find the best fit for the training data, but the splitting process rarely is generalizable to other 

377 data. A random forest model, which is bagging of decision trees, and a boosting classification 

378 model, which is boosting decision trees, tend to perform better on testing data and can help us 

379 identify the generalizable conclusion. In this analysis we explored these models step by step 

380 from a simple decision tree to generalized boosting trees to find important management-related 

381 factors that might affect the distribution of multidrug resistance in dairy cattle herds.  

382 A unique aspect of the current study is use of the aforementioned algorithms to distinguish 

383 between the resistance profiles (no resistance, antimicrobial resistance and multidrug resistance) 

384 of a pathogenic bacteria, Salmonella, and commensal bacteria (E. coli and Enterococcus spp.) 

385 isolates from feces of cull dairy cows. Previous investigations were restricted to understanding 

386 herd and cow level characteristics with the resistant phenotypes in Salmonella shed by cull dairy 

387 cows (Pereira et al. 2019). We explored if considering the resistance phenotypes for these three 

388 bacteria together, and separately, reveal any associations between herd management practices 

389 and prevalence of AMR phenotypes. Although, none of the isolates had shared phenotype 

390 resistance the six cows that had tetracycline resistance in at least two of the three bacteria studies 

391 should be explored further with whole genome sequencing and follow up studies that employ 

392 metagenomic analyses on the microbiome. 

393 Algorithms indicated that the overall distribution of three bacterial resistance phenotypes 

394 classified in this study as MDR, AMR, or no resistance was mainly governed by resistance in 

395 Enterococcus spp., which showed the highest prevalence of MDR and AMR phenotypes 

396 compared to Salmonella and E. coli. The latter may be explained by Enterococcus spp. that are 

397 known to have frequent MDR phenotypes such as E. faecium. Comparative feature importance 

398 plots for all random forest models developed for these bacterial groups indicated the same, where 
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399 similar features are found to be important for the model predicting MDR in all bacteria together, 

400 in commensals together, and in Enterococcus spp.. 

401 Herd size has been already identified as associated with higher odds of detecting Salmonella 

402 resistant to tetracycline (Pereira et al. 2019). In the current study, we showed that herd size was 

403 also positively associated with detecting MDR phenotypes in Salmonella as well as the 

404 commensal bacteria E. coli and Enterococcus spp. Salmonellosis is known to be associated with 

405 poor production and reproduction and hence increased risk for diseases, such as mastitis and 

406 infertility, and AMD treatments which may explain the 12% MDR in Salmonella isolates from 

407 the study cows (Lanzas et al. 2010). Similarly, Salmonella has been associated with clinical 

408 disease in both adult and young dairy cattle and beef cows (Divers & Peek 2007; Pender 2003; 

409 Roy et al. 2001; Smith 2014). Percent cull and rate would reflect the increase in culling due to 

410 diseases better than actual numbers culled, this is evident from the importance of all three in the 

411 Random forest model for Salmonella MDR phenotypes. In contrast, the number culled on any 

412 day may reflect economic decisions that prioritize the culling of cows based on milk or beef 

413 prices (with respect to dairy beef) where a producer may elect to cull dairy cows if the price of 

414 dairy beef is favorable. It is worthy to note that the random forest algorithm identified diseases of 

415 relative importance for MDR in Salmonella but not commensals. However, caution should be 

416 exercised with interpreting findings from this specific analysis due to the inability to ascertain 

417 that such diseases preceded the Salmonella shedding and specifically MDR status. The combined 

418 analysis of all 3 species MDR random forest however did not show diseases as correlated with 

419 MDR, which may be due to the overall effect of the commensals in the dataset.

420 SHAP values ranked variables by importance for classifying resistance type (either MDR, AMR, 

421 or no resistance), however, in the case of RHA prediction of resistance, type for Salmonella and 
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422 Enterococcus was fully allocated to either MDR or AMR only with zero importance in 

423 predicting no resistance. The RHA is hence more important in terms of identifying any resistance 

424 type (MDR or AMR) versus no resistance. In contrast, for E. coli, RHA was important in 

425 identifying all resistance classifications (AMR, MDR, no resistance).

426 XGBoost results show that season was correlated with MDR in all 3 species. Specifically, that 

427 Spring and Fall had a greater correlation with MDR compared to Summer and Winter, with 

428 Winter being the least correlated. Similar findings have been observed with a risk of disease in 

429 calves in Spring and Fall with bovine respiratory disease (Cummings et al. 2019; Dubrovsky et 

430 al. 2019; Maier et al. 2019). 

431

432 Conclusions

433 The current study characterized dairy cattle herd management practices that were associated with 

434 fecal shedding of multi-drug resistant bacteria. We identified generalizable and distant 

435 associations between pathogenic Salmonella and commensal bacteria. The data-driven suite of 

436 machine learning algorithms used here can help develop data-informed tools for better decision 

437 making, and risk assessment related to antibacterial resistant shedding by cows.
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Figure 1
Seasonal variation in the prevalence of multidrug antimicrobial resistance

Seasonal variation in the prevalence of multidrug antimicrobial resistance (MDR; resistance
to 3 or more drug classes), and antimicrobial resistance (AMR; resistance to 1 or 2 drug
classes only) in Salmonella (a), E. coli (b), and Enterococcus spp. (c) isolates from six
California dairy herds. Orange and green dashed lines show the annual average prevalence
of MDR and AMR in all six herds respectively. The proportion of cows that did not show any
resistance are the inverse of the sum of MDR and AMR proportions and not shown in the
figure. Point estimates and single standard error deviation are represented by circles and
whiskers respectively.
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Figure 2
Optimum decision tree to classify cows shedding multi-drug resistant (MDR),
antimicrobial-resistant (AMR), and non-resistant Salmonella, Enterococcus spp., E. coli
based on management practices observed in Californian dairy herds.

Node boxes describe the decision point based on management features, followed by Gini
impurity at the node, and the number of samples being classified at the node into three
classes (value). Left arrows indicate true for the Boolean condition while the right arrow
indicates false for the Boolean condition. Factor acronym definitions are described in Table 2.
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Figure 3
Top ten herd management practices based on variable importance (Gini coefficient) in
classifying cows shedding multi-drug resistant (MDR), antimicrobial-resistant (AMR), and
non-resistant for Salmonella, Enterococcus spp., E. coli in Cal

Factor acronym definitions described in Table 2.
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Figure 4
Mean SHAP values depicting the impact of herd management practices on predicting
multi-drug resistant phenotype in either Salmonella, Enterococcus spp., and E. coli shed
in dairy cows for Gradient boosting classification (XGboost) model.

Factor acronym definitions described in Table 2.
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Figure 5
Partial dependence indicating the association of top ten predictive herd management
practices in classifying cows as multi-drug resistant phenotype in either Salmonella,
Enterococcus spp. and E. coli shed in dairy cows for Gradient boost

Partial dependence plots are generated for values presented in the data resulting in the non-
linear x-axis.
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Figure 6
Mean SHAP values depicting the impact of herd management practices on predicting
multi-drug resistant phenotype in Salmonella shed in dairy cows for Gradient boosting
classification (XGboost) model.

Factor acronym definitions described in Table 2.
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Figure 7
Partial dependence indicating the association of top-six predictive herd management
practices in classifying cows as multi-drug resistant phenotype in Salmonella shed in
dairy cows for Gradient boosting classification (XGboost) model.

Partial dependence plots are generated for values presented in the data resulting in the non-
linear x-axis.
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Table 1(on next page)

Hypertuning of model parameters and validation

Classification algorithms trained and tested to predict multidrug resistance phenotypes from
bacterial isolates for bacterial species and groups of bacteria. Parenthesis (n) sample size of
the number of cows for each model. For each bacterial and bacterial group model, hyper-
tuning of the decision tree classifier, random forest, and XGBoost models is presented. The
table shows parameters tuned, values tested for tuning models, best model parameters, and
the performance of the selected model in terms of precision, recall and f1-score for the
holdout dataset.
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1 Table 1: Classification algorithms trained and tested to predict multidrug resistance phenotypes from bacterial isolates for bacterial species and groups of bacteria. 

2 Parenthesis (n) sample size of the number of cows for each model. For each bacterial and bacterial group model, hyper-tuning of the decision tree classifier, 

3 random forest, and XGBoost models is presented. The table shows parameters tuned, values tested for tuning models, best model parameters, and the 

4 performance of the selected model in terms of precision, recall and f1-score for the holdout dataset.    

Output definition based on resistance for number 

of antimicrobial classes

Salmonella 

 (n=58)

E. coli 

 (n=238)

Enterococcus spp. 

 (n=238)

Combined resistance 

in E. coli and 

Enterococcus spp. 

(n=238)

Resistance in 

antimicrobial classes in 

either Salmonella or E. 

coli or Enterococcus spp.

(n=238)

Model parameters

Parameter explanation Parameter 

values tested

Best performing model parameters

Decision tree classifier

Criterion The function to measure the 

quality of a split

gini, entropy gini entropy entropy gini gini

Splitter The strategy used to choose the 

split at each node. 

best, random best best best random random

Maximum depth The maximum depth of the tree 10, 20, 30, 40, 

45, 50, 70

10 45 50 45 10

Minimum split The minimum number of samples 

required to split an internal node

2, 3, 4, 6 6 6 6 3 3

Maximum features The number of features to 

consider when looking for the 

best split

auto, sqrt auto auto auto sqrt sqrt

Minimum leaf The minimum number of samples 

required to be at a leaf node

1, 3, 4, 6, 7, 8 4 4 6 1 7

                                 Model performance for holdout dataset

n number of samples in holdout 

dataset

19 73 73 73 73

Precision positive predictive value 0.72 0.65 0.51 0.44 0.47

Recall sensitivity 0.79 0.68 0.52 0.44 0.47

F1-score harmonic mean of PPV and 0.75 0.66 0.50 0.44 0.47

PeerJ reviewing PDF | (2021:01:57027:0:1:NEW 13 Jan 2021)

Manuscript to be reviewed



sensitivity

Random forest

Bootstrap Whether bootstrap samples are 

used when building trees

True, False FALSE TRUE TRUE TRUE TRUE

Criterion The function to measure the 

quality of a split

gini, entropy gini entropy entropy entropy entropy

Maximum depth The maximum depth of the tree 10, 20, 30, 40, 

45, 50, 70

30 50 30 40 10

Maximum features The number of features to 

consider when looking for the 

best split

auto, sqrt sqrt sqrt sqrt auto auto

Minimum leaf The minimum number of samples 

required to be at a leaf node

1, 3, 4, 6, 7, 8 1 8 4 8 8

Minimum split The minimum number of samples 

required to split an internal node

2, 3, 4, 6 3 3 2 4 4

Number of 

estimators

The number of trees in the forest 100, 200, 300, 

500

200 100 100 100 100

Model performance for holdout dataset

n number of samples in holdout 

dataset

 19 73 73 73 73

Precision positive predictive value  0.66 0.62 0.46 0.47 0.41

Recall sensitivity  0.74 0.67 0.47 0.48 0.41

F1-score harmonic mean of PPV and 

sensitivity

 0.69 0.61 0.46 0.47 0.38

Gradient boosting (XGBoost framework)

Column sample Subsample ratio of columns when 

constructing each tree

0.2, 0.1,0.15, 0.4, 

0.7

0.1 0.2 0.2 0.4 0.1

Gamma Minimum loss reduction required 

to make a further partition on a 

leaf node of the tree

0.0, 0.1, 0.2, 0.4, 

0.45, 0.5, 0.6, 0.7

0.1 0.1 0.2 0.6 0.5

Learning rate Boosting learning rate 0.001, 0.002, 

0.005, 0.008, 

0.01, 0.02, 0.05, 

0.10, 0.25, 0.5

0.25 0.5 0.008 0.5 0.05

Maximum depth Maximum tree depth for base 

learners

3, 4, 7, 8, 9, 10, 

15, 20

3 8 8 7 7

Minimum child 

weight

Minimum sum of instance weight 

(hessian) needed in a child

1, 3, 5, 7 3 1 1 1 7

Number of 

estimators

Number of boosting rounds 3, 5, 10, 30, 40, 

50, 100

5 30 10 3 30

PeerJ reviewing PDF | (2021:01:57027:0:1:NEW 13 Jan 2021)

Manuscript to be reviewed



Objective Learning task, binary, multiple, 

etc.

multi:softprob multi:soft

prob

multi:softprob multi:softprob multi:softprob multi:softprob

Model performance for holdout dataset

n number of samples in holdout 

dataset

 19 73 73 73 73

Precision positive predictive value  0.61 0.59 0.51 0.49 0.46

Recall sensitivity  0.68 0.6 0.51 0.48 0.44

F1-score harmonic mean of PPV and 

sensitivity

 0.65 0.59 0.51 0.48 0.38

5
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Table 2(on next page)

Predictive features

Dairy cattle and herd related features used as predictors in classification models.
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1 Table 1: Dairy cattle and herd related features used as predictors in classification models

Cow related features Herd related features

Low milk production cull (LowMilkCull) Milking herd size (HerdSize)

Reproduction cull (ReproCull) Milk production level (RollingHerdAvg)

Lameness cull (LameCull) Holstein Breed (Holstein)

Mastitis cull (MastitisCull) Jersey Breed (Jersey)

Other reasons cull (OtherCull) Percent culled monthly (CullPctMonth)

Antimicrobial Drug Use for cull condition (AMD) Times culled monthly (CullTimesMonth)

Anti-inflammatory treatment for condition (Ani-Inf) Main cull reason disease

No-Treatment for condition (No-Treatment) Percent culled sold for beef (PctCullBeef)

Other treatment for condition (Other) Percent carcasses condemned (PctCullCondemned)

Percent culled injected within 2 ~ 3 weeks (PctInject)

Veterinarian gives sick cow treatments (VetTreats)

Dairy manager gives sick cow treatments (ManagerTreats)

Staff gives sick cow treatments (StaffTreats)

Prevent Residue by avoiding specific drugs (ResiduePrevent) 

Chalk on cows to track drug withdrawal (Chalk4Withdrawal)

Keep drug inventory (Inventory)

Penicillin

Ceftiofur

Tetracycline

Antibiotics used separately (SeparateUse)

Antibiotics combinations used (CombinationUse)

Track antibiotic dose used (TrackAntibioticDose)

Track antibiotic route used (TrackAntibioticRoute)

Familiarity with ELDU (FamiliarELDU)

Frequency of ELDU (FreqELDU)

No ELDU (NoELDU)

Number of cull cows culled today (NumberCulled)

Use of Salmonella vaccine (SalmonellaVaccine)

Sampling Season

2

3
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Table 3(on next page)

Resistance phenotypes detected in Enterococcus spp. isolates.
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1 Table 1: Resistance phenotypes detected in Enterococcus spp. isolates.

Resistance Phenotypes observed in Enterococcus spp. (Antimicrobial class) Number of Cows 

(Total N = 157)

The proportion 

of cows (%)

95%CI

Nitrofuran antibacterial 17 10.83 5.967-15.689

Macrolides 15 9.55 4.956-14.152

Nitrofuran antibacterial, Macrolides 15 9.55 4.956-14.152

Oxazolidinones, Nitrofuran antibacterial, Macrolides✝ 9 5.73 2.096-9.369

Oxazolidinones, Nitrofuran antibacterial 8 5.1 1.656-8.535

Tetracyclines 7 4.46 1.23-7.687

Oxazolidinones 6 3.82 0.823-6.821

Tetracyclines, Nitrofuran antibacterial 6 3.82 0.823-6.821

Tetracyclines, Nitrofuran antibacterial, Macrolides✝ 5 3.18 0.438-5.931

Streptogramin, Oxazolidinones, Nitrofuran antibacterial, Macrolides✝ 4 2.55 0.083-5.013

Tetracyclines, Amphenicols, Oxazolidinones, Nitrofuran antibacterial✝ 4 2.55 0.083-5.013

Streptogramin, Nitrofuran antibacterial 4 2.55 0.083-5.013

Tetracyclines, Amphenicols, Nitrofuran antibacterial, Macrolides✝ 3 1.91 0.0-4.052

Amphenicols, Oxazolidinones, Nitrofuran antibacterial, Macrolides✝ 3 1.91 0.0-4.052
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Tetracyclines, Macrolides 3 1.91 0.0-4.052

Amphenicols, Oxazolidinones, Nitrofuran antibacterial✝ 3 1.91 0.0-4.052

Oxazolidinones, Macrolides 3 1.91 0.0-4.052

Amphenicols, Streptogramin, Oxazolidinones, Nitrofuran antibacterial, Macrolides✝ 3 1.91 0.0-4.052

Streptogramin 2 1.27 0.0-3.028

Tetracyclines, Oxazolidinones 2 1.27 0.0-3.028

Tetracyclines, Amphenicols, Nitrofuran antibacterial✝ 2 1.27 0.0-3.028

Tetracyclines, Amphenicols, Macrolides, Streptogramin, Oxazolidinones, 

Nitrofuran antibacterial, Macrolides✝ 2 1.27 0.0-3.028

Amphenicols, Streptogramin, Oxazolidinones, Nitrofuran antibacterial✝ 2 1.27 0.0-3.028

Tetracyclines,Oxazolidinones, Nitrofuran antibacterial, Macrolides✝ 2 1.27 0.0-3.028

Other single isolates of MDR phenotypes** 23 14.72 9.118-20.180

Other single isolates of AMR phenotypes* 4 2.55 0.083-5.013

2 ✝Represents phenotypes that are multi-drug resistant. **Other single isolates of MDR phenotypes from Enterococcus spp. isolates: 1) 

3 tetracyclines, amphenicols, oxazolidinones, nitrofuran antibacterial, macrolides 2) oxazolidinones, nitrofuran antibacterial, macrolides, 

4 glycopeptides 3) tetracyclines, amphenicols, oxazolidinones, macrolides 4) streptogramin, oxazolidinones, nitrofuran antibacterial 5) tetracyclines, 

5 streptogramin, nitrofuran antibacterial, macrolides 6) tetracyclines, amphenicols, streptogramin, oxazolidinones, nitrofuran antibacterial, 
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6 macrolides 7) tetracyclines, amphenicols, macrolides, streptogramin, oxazolidinones, macrolides 8)  amphenicols, macrolides, streptogramin, 

7 oxazolidinones, nitrofuran antibacterial 9) macrolides, streptogramin, oxazolidinones,  nitrofuran antibacterials, macrolides 10) amphenicols, 

8 nitrofuran antibacterial, macrolides 11) oxazolidinones, nitrofuran antibacterial, glycopeptides 12) amphenicols, oxazolidinones, macrolides 13) 

9 tetracyclines, macrolides, oxazolidinones, nitrofuran antibacterial, macrolides 14)  tetracyclines, streptogramin, nitrofuran antibacterial 15) 

10 tetracyclines, macrolides, nitrofuran antibacterial, macrolides 16) amphenicols, streptogramin, macrolides 17) tetracyclines, streptogramin, 

11 oxazolidinones 18)  streptogramin, nitrofuran antibacterial, macrolides 19) tetracyclines, macrolides, oxazolidinones, nitrofuran antibacterial 20) 

12 tetracyclines, oxazolidinones, nitrofuran antibacterial 21) tetracyclines, amphenicols, macrolides, oxazolidinones, nitrofuran antibacterial 22) 

13 tetracyclines, amphenicols, macrolides, nitrofuran antibacterial 23) amphenicols, macrolides, nitrofuran antibacterial. *other single isolates of amr 

14 phenotypes from enterococcus sp. isolates: 1) amphenicols, nitrofuran antibacterial 2) streptogramin, oxazolidinones 3) amphenicols, macrolides 

15 4) macrolides, oxazolidinone
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Table 4(on next page)

Resistant phenotypes detected in E. coli isolates.
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1 Table 1: Resistant phenotypes detected in E. coli isolates.

Resistant Phenotypes observed in E. coli (Antimicrobial class) Number of Cows 

(Total N = 81)

The proportion 

of cows (%)

95%CI

Tetracyclines 25 30.86 20.805-40.924

Aminoglycosides 11 13.58 6.12-21.041

Cephalosporins 9 11.11 4.267-17.955

Aminoglycosides, Tetracyclines 7 8.64 2.523-14.761

Folate pathway antagonist 5 6.17 0.932-11.414

Amphenicols 5 6.17 0.932-11.414

Tetracyclines, Cephalosporins 2 2.47 0.0-5.849

Aminoglycosides, Tetracyclines, Amphenicols✝ 2 2.47 0.0-5.849

Other single isolates of AMR phenotypes* 5 6.17 0.932-11.374

Other single isolates of MDR phenotypes** 5 6.17 0.932-11.414

2 ✝Represents phenotypes that are multi-drug resistant. *Other single isolates of AMR phenotypes from E. coli: 1) quinolones, aminoglycosides 2) amphenicols, 

3 tetracyclines 3) tetracyclines, folate pathway antagonist 6) cephalosporins, fluoroquinolones 7) amphenicols, folate pathway antagonist. ** other single isolates 

4 of mdr phenotypes from e. coli: 1) amphenicols, folate pathway antagonist, aminoglycosides 2) amphenicols, tetracyclines, cephalosporins, aminoglycosides 3) 

5 amphenicols, tetracyclines, folate pathway antagonist 4) amphenicols, tetracyclines, folate pathway antagonist, aminoglycosides 5) tetracyclines, cephalosporins, 

6 fluoroquinolones, quinolones, aminoglycosides
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Table 5(on next page)

Tetracycline antimicrobial resistance phenotype shared (highlighted in grey) between
commensal bacteria (Enterococcus spp., E. coli) and Salmonella.

Each row represents bacterial resistance phenotypes of bacterial isolates from a single culled
dairy cow.
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1 Table 1: Antimicrobial resistance phenotype shared (highlighted in grey) between commensal bacteria (Enterococcus spp., E. coli) and Salmonella. Each row 

2 represents bacterial resistance phenotypes of bacterial isolates from a single culled dairy cow. 

Resistance Phenotypes observed

Salmonella Enterococcus spp. E. coli Herd ID Resistance

Tetracyclines Nitrofuran antibacterial Aminoglycosides, Tetracyclines 4 AMR

Tetracyclines Macrolides, Oxazolidinones, Nitrofuran 

antibacterial✝

Tetracyclines, Amphenicols 4 MDR

Tetracyclines, Penicillins Macrolides, Nitrofuran antibacterial Aminoglycosides, Tetracyclines, Folate 

pathway antagonist, Amphenicols✝

4 MDR

Tetracyclines, Folate 

pathway antagonist

Macrolides, Amphenicols Tetracyclines 4 AMR

Tetracyclines Tetracyclines, Nitrofuran antibacterial Tetracyclines, Folate pathway antagonist, 

Amphenicols✝

4 MDR

Tetracyclines Streptogramin, Oxazolidinones Tetracyclines 6 AMR

3 ✝Represents phenotypes that are multi-drug phenotypes
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