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ABSTRACT
Background: Understanding the effects of herd management practices on the
prevalence of multidrug-resistant pathogenic Salmonella and commensals
Enterococcus spp. and Escherichia coli in dairy cattle is key in reducing antibacterial
resistant infections in humans originating from food animals. Our objective was
to explore the herd and cow level features associated with the multi-drug resistant,
and resistance phenotypes shared between Salmonella, E. coli and Enterococcus spp.
using machine learning algorithms.
Methods: Randomly collected fecal samples from cull dairy cows from six dairy
farms in central California were tested for multi-drug resistance phenotypes of
Salmonella, E. coli and Enterococcus spp. Using data on herd management practices
collected from a questionnaire, we built three machine learning algorithms (decision
tree classifier, random forest, and gradient boosting decision trees) to predict the
cows shedding multidrug-resistant Salmonella and commensal bacteria.
Results: The decision tree classifier identified rolling herd average milk production as
an important feature for predicting fecal shedding of multi-drug resistance in
Salmonella or commensal bacteria. The number of culled animals, monthly culling
frequency and percentage, herd size, and proportion of Holstein cows in the herd
were found to be influential herd characteristics predicting fecal shedding of
multidrug-resistant phenotypes based on random forest models for Salmonella
and commensal bacteria. Gradient boosting models showed that higher culling
frequency and monthly culling percentages were associated with fecal shedding of
multidrug resistant Salmonella or commensal bacteria. In contrast, an overall
increase in the number of culled animals on a culling day showed a negative trend
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with classifying a cow as shedding multidrug-resistant bacteria. Increasing rolling
herd average milk production and spring season were positively associated with fecal
shedding of multidrug- resistant Salmonella. Only six individual cows were detected
sharing tetracycline resistance phenotypes between Salmonella and either of the
commensal bacteria.
Discussion: Percent culled and culling rate reflect the increase in culling over time
adjusting for herd size and were associated with shedding multidrug resistant
bacteria. In contrast, number culled was negatively associated with shedding
multidrug resistant bacteria which may reflect producer decisions to prioritize the
culling of otherwise healthy but low-producing cows based on milk or beef prices
(with respect to dairy beef), amongst other factors. Using a data-driven suite of
machine learning algorithms we identified generalizable and distant associations
between antimicrobial resistance in Salmonella and fecal commensal bacteria, that
can help develop a producer-friendly and data-informed risk assessment tool to
reduce shedding of multidrug-resistant bacteria in cull dairy cows.

Subjects Microbiology, Veterinary Medicine, Epidemiology, Data Mining and Machine Learning
Keywords Dairy cattle, Cull cows, Antimicrobial resistance, Random forest, Gradient boosting,
Decision tree classification, Salmonella, Enterococcus, Escherichia coli

INTRODUCTION
The Centers for Disease Control and Prevention (CDC) estimates that more than 2.8
million antimicrobial resistant infections occur in the U.S. with more than 35,000 deaths
annually (Control CfD, & Prevention, 2019). Amongst the resistant bacteria, the CDC
classifies nontyphoidal Salmonella enterica as a serious public health threat (Control
CfD, & Prevention, 2019). Salmonella is an important foodborne zoonotic agent in the U.S.
(Scallan et al., 2011) and several studies reported on its prevalence in cull cattle. Troutt
et al. found that the prevalence of Salmonella in cecal contents of dairy cattle at slaughter
in the Western U.S. ranged between 9.6% and 35.6% in the winter, and between 32.3%
and 93% in the summer (Troutt et al., 2001). More recent studies reported on the
associations between herd management and seasonal differences on the prevalence of
Salmonella in fecal samples of cull dairy cows collected quarterly from seven California
dairies with an overall Salmonella shedding prevalence of 3.42% (95% CI [1.28–5.56])
(Abu Aboud et al., 2016). Pereira et al. (2019) followed six of the same California dairies for
a second year showing an increase in Salmonella shedding prevalence (30.6%; 95% CI
[262–350]). The increase in the prevalence was speculated to be due to increased rainfall
and drier summer season and herd changes that occurred during the latter study
(Adaska et al., 2020). The latter study explored how the study herd and cow level features
were associated with shedding of antimicrobial resistant Salmonella and although 60% of
the isolates were pan-susceptible, the remaining isolates were found to be resistant to
different medically important antimicrobial drugs (MIAD) defined as antimicrobial drugs
(AMD) that are important for therapeutic use in humans, with 12% of the isolates being
multidrug resistance to more than two drug classes.
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Fecal commensals such as E. coli and Enterococcus spp. can acquire mobile gene
elements that encode antimicrobial resistance to these species (Aidara-Kane et al., 2018).
Given the documented antimicrobial resistance in Salmonella isolated from cull dairy
cows, further research on the similarity between resistance patterns of fecal commensals
and Salmonella shed in feces of dairy cattle is needed.

Traditional risk factor approaches (mixed-effects modeling) can often have limitations
due to high-dimensional, imbalanced, and non-linear data and can perform poorly in
cases of large number predictive variables. To overcome these, we used a suite of
classification tree models, a group of supervised machine learning models that can handle
various types of data and handle interactions between predictive variables. Classification
tree models like random forest, gradient boosting have been found useful in investigating
the prevalence and associated risk factors of bovine viral diarrhea virus (Machado,
Mendoza & Corbellini, 2015), swine pneumonia (Mollenhorst et al., 2019), and mastitis in
dairy cattle (Hyde et al., 2020). In the study reported here, our objective was to explore
the herd and cow level features associated with the multi-drug resistance and resistance
phenotype shared between Salmonella, E. coli, or Enterococcus spp. using machine
learning algorithms.

MATERIALS & METHODS
Farms surveys and sampling
The study was approved by the University of California, Davis’s Institutional Animal Care
and Use Committee (protocol number 18019). Six dairy farms located in the San Joaquin
Valley of California were reenrolled as a convenience sample and followed up for a
second year after being part of an earlier study (Abu Aboud et al., 2016). Briefly, cull cows
were identified for fecal sampling once during each season between 2015 and 2016,
specifically during summer (July 1–September 30, 2015), fall (October 1–December 31,
2015), winter (January 1–March 31, 2016) and spring (April 1–June 30, 2016). The choice
of sampling week to collect fecal samples from the cull cows during any of the four
seasons was also by convenience. From the list of cows selected by the dairy farms for
culling, 10 cows were randomly selected for fecal sampling on the day of their removal
from the herd using a random number generator (Excel; Microsoft Corp., Redmond, WA,
USA). Several lists of random numbers were prepared in multiples of 10 ranging from
11–20 to 91–100 cows and the respective list was selected depending on the number of
cows presented for culling on the day of sampling. If a producer had less than 11 cows
presented for culling, all the cows were sampled. An individual disposable sleeve was
used to manually collect fecal samples from the rectum of each selected cow. The fecal
samples were transported to the Aly Lab (Dairy Epi Lab) on wet ice for processing on the
same day.

A survey was also completed with the help of the herd manager on the same sampling
day. The survey questions were described in an earlier report (Pereira et al., 2019).
Briefly, the questions targeted management of the herd in the previous 4 months and
collected information on herd size, breed, rolling herd average, cull rate, frequency of
culling per month, the proportion of cows sold for beef (compared to as dairy), proportion
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and reasons for condemnation of culled cows. The survey also collected information on the
proportion of culled cows that received injectable medical treatments in the 3 weeks prior
to culling, the role of dairy staff allowed to treat cows on the dairy, practices to avoid
drug residue violations (use of specific drug types, following withdrawal times, milk and/or
urine testing prior to the cow being culling, or other practices), tracking of drug withdrawal
intervals, having a drug inventory system in place, and extra-label drug use (ELDU,
frequency and familiarity). Finally, a backup of the herd record software was obtained to
collect information on the culled cows’ milk production and health events. A relational
database was used to house and merge data from the surveys, dairy records, and test results
(Access; Microsoft Corp., Redmond, WA, USA).

Bacteriological culture
The California Animal Health and Food Safety (CAHFS) laboratory conducted all the
study sample testing for Salmonella as described by Adaska et al. (2020). Briefly, 1 g of feces
was inoculated into tetrathionate selective enrichment broth and incubated at 37 ± 2 �C.
The next morning a cotton swab was used to inoculate the overnight broth onto XLD
and XLT-4 plates and these were incubated overnight at 37 ± 2 �C. H2S positive,
Salmonella suspect colonies from each set of plates were subcultured onto individual
bi-plates (5% sheep blood agar-MacConkey agar) and incubated overnight at 37 ± 2 �C.
One colony from each bi-plate was used for biochemical testing which included triple sugar
iron, urea, motility indole ornithine, citrate, O-nitrophenyl-beta-D-galactopyranoside,
and lysine iron agar slants. Serogrouping and serotyping were performed, using the
White–Kauffmann–LeMinor scheme (Grimont &Weill, 2007) on colonies with biochemical
test results consistent with Salmonella (Quinn et al., 2002).

Fecal samples were also cultured for E. coli and Enterococcus spp. isolation as described
previously (Li et al., 2014). Briefly, a 40 mL solution of buffered peptone water containing
5 g of feces in a 50 mL polypropylene tube was homogenized using a mechanical shaker
for 15 min before filtering using gauze. A total of 1000, 100 and 10 ml of the filtered
solution were then streaked on CHROMAgar ECC (Chromagar, Paris) and Enterococcus
Indoxyl-β-D-Glucoside agar (mEI) plates (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA) both incubated at 37 �C for 24 h. Reference strains ATCC 25922 (E. coli)
and ATCC 29212 (Enterococcus faecalis) were plated on agar plates as positive controls.
Two pure colonies were isolated of each species after presumptive colonies were
confirmed using biochemical tests (E. coli were confirmed using urea, indole, triple sugar
iron, Methyl Red–Voges–Proskauer and Simmons citrate; Enterococcus were confirmed
using bile esculin, brain heart infusion agar, and growth in broth with and without
6.5% NaCl).

Antimicrobial susceptibility testing
Salmonella and E. coli bacterial resistance was evaluated with a broth microdilution
method using a Gram-negative Sensititre plate (CMV2AGNF) and Enterococcus spp.
evaluated on gram-positive Sensititre plate (CMV3AGPF) (Sensititre, Thermo Fisher
Scientific, MA, USA) according to the manufacturer’s instructions and as described in
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previous studies (Li et al., 2018; Pereira et al., 2019). The minimum inhibitory
concentration (MIC) values were the lowest concentrations of AMD that inhibited
visible growth of bacteria. Interpretations of antimicrobial resistance were based on
breakpoints recommended by the National Antimicrobial Resistance Monitoring System
(https://www.cdc.gov/narms/antibiotics-tested.html; and https://www.ars.usda.gov/
ARSUserFiles/60400520/NARMS/ABXEntero.pdf) and the Clinical and Laboratory
Standards Institute (CLSI, 2014; CLSI, 2018). Due to the inherent resistance of
Salmonella to cephalosporins, aminoglycosides, lincosamides, oxazolidinones and
glycopeptides, drugs from these classes were excluded from the antimicrobial
resistance analysis. In addition, the following drug classes to which E. coli is inherently
resistant were excluded from the analysis: lincosamides, oxazolidinones, penicillins,
streptogramins, glycopeptides. Similarly, the drug classes exclude due to the inherent
resistance of Enterococcus spp. included cephalosporins, lincosamides, fluoroquinolones,
aminoglycosides, aminocyclitols, sulfonamides, folate pathway antagonists. Isolates from
any of the three species (Salmonella, E. coli, Enterococcus spp.) were identified as
multi-drug resistant if resistance to at least one AMD in each of three or more drug
classes was observed (Magiorakos et al., 2012).

Development of classification algorithms
Classification tree models were developed to test if herd management practices and
features related to dairy cows can predict multi-drug resistance phenotype in Salmonella
and fecal commensal E. coli, and Enterococcus spp. isolated from the same cows. A cow
was considered to shed MDR bacteria if any of its Salmonella, Enterococcus spp. and/or
E. coli isolates showed resistance for three or more antimicrobial classes (regardless of
whether the species with resistance was Salmonella, Enterococcus spp. and/or E. coli), in
which case the cow was labeled as ‘shedding bacteria with multi-drug resistance (MDR)
phenotype’ (numerical label = 2). In contrast, if a cow shed bacteria that were resistant to
only one or two antimicrobial classes (regardless of species) the bacteria isolated were
labeled as ‘shedding bacteria with antimicrobial resistance (AMR) phenotype’ (numerical
label = 1). If the bacteria isolated from a cow did not show any resistance across all three
bacterial species to any AMD, the bacteria were labeled as non-resistant (numerical
label = 0). The mutually exclusive definitions were necessary to develop a single model
that predicts one of three resistance states MDR, AMR, or no resistance. Similarly, cows
were also classified based on resistance phenotypes separately observed in each bacterial
species isolated (three separate classification labels based on resistance phenotypes of
Salmonella, Enterococcus spp. and E. coli isolates). Finally, classification labels were also
generated based on resistant phenotypes observed in either commensal bacteria
(Enterococcus spp. and E. coli) shed in feces collectively. Using features from herd surveys,
classification tree models were trained to predict the MDR phenotype of bacteria shed in
the feces of the study cows.

Three machine learning algorithms, specifically decision tree classifier (DTC), random
forest (RF) and gradient boosting (GB) were developed to explore the risk factors for
resistance phenotypes in the study isolates using herd survey data, specifically to predict
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the multilabel outcome based on the resistance phenotype of bacteria shed by cows
(non-resistant, AMR, and MDR). For each algorithm, data from the entire study cohort
described by Pereira et al. (238 cows) were used, except models specific to predicting AMR
phenotypes in Salmonella were restricted to the cohort of 58 Salmonella positive cows.
Table 1 describes all classification algorithms trained and developed for various
bacteria-specific outcomes.

For all three classification algorithms, 25 features related to herd management and
12 features related to individual cows collected from the survey were used as predictive
features (Table 2). The DTC generates an optimum tree based on attributes by recursive
selections to split data into classes and it was only used to visualize the optimum tree
and as a contrast to the remaining classification tree models (RF and GB) that prevent
overfitting, unlike DTC. The RF and GB algorithms both generate a series of recursive trees
of binary splits for randomly sampled predictor variables. While all tree classification
algorithms handle interaction effects between predictors, within GB, boosting builds and
combines collective models improving the predictive performance of many weak
models substantially, and fits complex nonlinear relationships (Elith, Leathwick & Hastie,
2008). For the validation of each algorithm, the data was split into training and
validation datasets. To identify the best hyperparameters of the classification algorithms
(hyper-tuning), a grid search was implemented on the training dataset. Grid search is a
tuning technique that computes optimum values of model parameters automatically by an
exhaustive search performed on a set of parameter values. Training datasets, composed
of 80% of the data, were randomly selected for gird search, maintaining the outcome
proportional to the original dataset, with three-fold cross-validation (internal validation).
Model parameters tested for hyper-tuning of DTC, RF, and GB are given in Table 1.
The best performing model parameters were chosen based on the accuracy of the model.
For each algorithm, the external validation of the best performing model was done on
the validation dataset (20% remaining random sample of the original dataset) to quantify the
performance of the model on the completely independent validation dataset. The DTC and
RF models were implemented using the Scikit-learn machine learning package (Pedregosa
et al., 2011) and GB was implanted using XGBoost in python (Chen & Guestrin, 2016).

Validated models were eventually fit on the complete dataset to produce the final
predictions. The relative influence (importance) of features for the random forest model
was estimated using average gini importance, permutation, and feature drop methods.
The gini importance for a feature is defined as the sum over the number of splits (across all
tress) that include the feature, proportionally to the number of samples it splits (Breiman,
2001). The gradient boosting model with the XGboost platform was evaluated using
Shapely Additive Explanations (SHAP) that assigned each predictive feature an additive
feature unifying six existing methods (Lundberg & Lee, 2017). Partial dependence of
gradient boosted model prediction on model features (expected output response trend as a
function of feature) was explored to understand the associations of the herd and
cow-related features with predictions (Friedman, 2001). The Python code used for
pre-processing the data, training and validating models and generating figures can be
found here in the Zenodo repository: DOI 10.5281/zenodo.4387017.
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Table 1 Hypertuning of model parameters and validation.

Model parameters Output definition based on resistance
for number of antimicrobial classes

Salmonella
(n = 58)

E. coli
(n = 238)

Enterococcus
spp.
(n = 238)

Combined
resistance in
E. coli and
Enterococcus
spp. (n = 238)

Resistance in
antimicrobial
classes in
either
Salmonella or
E. coli or
Enterococcus
spp.
(n = 238)

Parameter
explanation

Parameter
values tested

Best performing model parameters

Decision tree classifier

Criterion The function to
measure the quality
of a split

gini, entropy gini entropy entropy gini gini

Splitter The strategy used to
choose the split at
each node.

best, random best best best random random

Maximum depth The maximum depth
of the tree

10, 20, 30, 40, 45,
50, 70

10 45 50 45 10

Minimum split The minimum
number of samples
required to split an
internal node

2, 3, 4, 6 6 6 6 3 3

Maximum features The number of
features to consider
when looking for
the best split

auto, sqrt auto auto auto sqrt sqrt

Minimum leaf The minimum
number of samples
required to be at a
leaf node

1, 3, 4, 6, 7, 8 4 4 6 1 7

Model performance for holdout dataset

n Number of samples
in holdout dataset

19 73 73 73 73

Precision Positive predictive
value

0.72 0.65 0.51 0.44 0.47

Recall Sensitivity 0.79 0.68 0.52 0.44 0.47

F1-score Harmonic mean of
PPV and sensitivity

0.75 0.66 0.50 0.44 0.47

Random forest

Bootstrap Whether bootstrap
samples are used
when building trees

True, False FALSE TRUE TRUE TRUE TRUE

Criterion The function to
measure the quality
of a split

gini, entropy gini entropy entropy entropy entropy

Maximum depth The maximum depth
of the tree

10, 20, 30, 40, 45,
50, 70

30 50 30 40 10

(Continued)
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Table 1 (continued)

Model parameters Output definition based on resistance
for number of antimicrobial classes

Salmonella
(n = 58)

E. coli
(n = 238)

Enterococcus
spp.
(n = 238)

Combined
resistance in
E. coli and
Enterococcus
spp. (n = 238)

Resistance in
antimicrobial
classes in
either
Salmonella or
E. coli or
Enterococcus
spp.
(n = 238)

Parameter
explanation

Parameter
values tested

Best performing model parameters

Maximum features The number of
features to consider
when looking for
the best split

auto, sqrt sqrt sqrt sqrt auto auto

Minimum leaf The minimum
number of samples
required to be at a
leaf node

1, 3, 4, 6, 7, 8 1 8 4 8 8

Minimum split The minimum
number of samples
required to split an
internal node

2, 3, 4, 6 3 3 2 4 4

Number of estimators The number of trees
in the forest

100, 200, 300, 500 200 100 100 100 100

Model performance for holdout dataset

n Number of samples
in holdout dataset

19 73 73 73 73

Precision Positive predictive
value

0.66 0.62 0.46 0.47 0.41

Recall Sensitivity 0.74 0.67 0.47 0.48 0.41

F1-score Harmonic mean of
PPV and sensitivity

0.69 0.61 0.46 0.47 0.38

Gradient boosting (XGBoost framework)

Column sample Subsample ratio of
columns when
constructing each
tree

0.2, 0.1,0.15, 0.4,
0.7

0.1 0.2 0.2 0.4 0.1

Gamma Minimum loss
reduction required
to make a further
partition on a leaf
node of the tree

0.0, 0.1, 0.2, 0.4,
0.45, 0.5, 0.6,
0.7

0.1 0.1 0.2 0.6 0.5

Learning rate Boosting learning
rate

0.001, 0.002,
0.005, 0.008,
0.01, 0.02, 0.05,
0.10, 0.25, 0.5

0.25 0.5 0.008 0.5 0.05

Maximum depth Maximum tree depth
for base learners

3, 4, 7, 8, 9, 10, 15,
20

3 8 8 7 7

Minimum child weight Minimum sum of
instance weight
(hessian) needed in
a child

1, 3, 5, 7 3 1 1 1 7
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RESULTS
From the six dairy herds, Salmonella isolates were detected in the feces of 58 cows
(24.4% ± 2.8 out of 238 cows). Two herds had no Salmonella positive samples throughout
the study period while for others the prevalence ranged from 12.5% (±5.2, n = 40) to 70.0%
(±7.2, n = 40).

The most common reason reported for culling was low milk production (65.1%, ±3.1)
followed by poor reproduction (31.1%, ±3.0). Lameness (10.5%, ±1.9) and mastitis
(10.1%, ±1.9) were the other reasons reported in the survey. Of the sampled cull cows,
15.5% (±2.3) were reported as having received AMD as part of a treatment protocol
for the condition resulting in their culling decision. In contrast, 5.9% (±1.5) received
anti-inflammatory drugs for the condition resulting in their culling decision.

Distribution of antimicrobial resistance
Predominant resistance phenotypes detected
The prevalence of AMR and MDR phenotypes in Salmonella was reported previously
by Pereira et al. (2019). Briefly, tetracyclines were the most prevalent drug class for
which Salmonella were resistant and 12% of the study isolates tested positive for
MDR Salmonella (Pereira et al., 2019). Within Enterococcus spp. isolates, the most

Table 1 (continued)

Model parameters Output definition based on resistance
for number of antimicrobial classes

Salmonella
(n = 58)

E. coli
(n = 238)

Enterococcus
spp.
(n = 238)

Combined
resistance in
E. coli and
Enterococcus
spp. (n = 238)

Resistance in
antimicrobial
classes in
either
Salmonella or
E. coli or
Enterococcus
spp.
(n = 238)

Parameter
explanation

Parameter
values tested

Best performing model parameters

Number of estimators Number of boosting
rounds

3, 5, 10, 30, 40,
50, 100

5 30 10 3 30

Objective Learning task,
binary, multiple,
etc.

multi:softprob multi:softprob multi:softprob multi:softprob multi:softprob multi:softprob

Model performance for holdout dataset

n Number of samples
in holdout dataset

19 73 73 73 73

Precision Positive predictive
value

0.61 0.59 0.51 0.49 0.46

Recall Sensitivity 0.68 0.6 0.51 0.48 0.44

F1-score Harmonic mean of
PPV and sensitivity

0.65 0.59 0.51 0.48 0.38

Note:
Classification algorithms trained and tested to predict multidrug resistance phenotypes from bacterial isolates for bacterial species and groups of bacteria. Parenthesis (n)
sample size of the number of cows for each model. For each bacterial and bacterial group model, hyper-tuning of the decision tree classifier, random forest, and XGBoost
models is presented. The table shows parameters tuned, values tested for tuning models, best model parameters, and the performance of the selected model in terms of
precision, recall and F1-score for the holdout dataset.
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common AMR phenotype detected was for nitrofuran antimicrobials, (10.83%, ± 2.47).
The most common type of MDR phenotype in Enterococcus spp. isolates was resistance to
oxazolidinones, nitrofuran antibacterials, and macrolides (5.73%, ±1.85). Frequencies of
all resistance phenotypes observed in Enterococcus spp. are presented in Table 3.

Tetracyclines resistance was themost prevalent phenotype in E. coli isolates (30.86%, ±5.13).
E. coli isolates from seven cows (8.64%, ±3.12), showed MDR phenotypes, and only
one MDR phenotype was detected more than once (aminoglycosides, tetracyclines,
amphenicols, 2.47%, ±1.72). Frequencies of all resistance phenotypes observed in E. coli are
presented in Table 4.

Table 2 Predictive features.

Cow related features Herd related features

Low milk production cull (LowMilkCull) Milking herd size (HerdSize)

Reproduction cull (ReproCull) Milk production level (RollingHerdAvg)

Lameness cull (LameCull) Holstein Breed (Holstein)

Mastitis cull (MastitisCull) Jersey Breed (Jersey)

Other reasons cull (OtherCull) Percent culled monthly (CullPctMonth)

Antimicrobial Drug Use for cull condition (AMD) Times culled monthly (CullTimesMonth)

Anti-inflammatory treatment for condition (Ani-Inf) Main cull reason disease

No-Treatment for condition (No-Treatment) Percent culled sold for beef (PctCullBeef)

Other treatment for condition (Other) Percent carcasses condemned (PctCullCondemned)

Percent culled injected within 2~3 weeks (PctInject)

Veterinarian gives sick cow treatments (VetTreats)

Dairy manager gives sick cow treatments (ManagerTreats)

Staff gives sick cow treatments (StaffTreats)

Prevent Residue by avoiding specific drugs (ResiduePrevent)

Chalk on cows to track drug withdrawal (Chalk4Withdrawal)

Keep drug inventory (Inventory)

Penicillin

Ceftiofur

Tetracycline

Antibiotics used separately (SeparateUse)

Antibiotics combinations used (CombinationUse)

Track antibiotic dose used (TrackAntibioticDose)

Track antibiotic route used (TrackAntibioticRoute)

Familiarity with ELDU (FamiliarELDU)

Frequency of ELDU (FreqELDU)

No ELDU (NoELDU)

Number of cull cows culled today (NumberCulled)

Use of Salmonella vaccine (SalmonellaVaccine)

Sampling Season

Note:
Dairy cattle and herd related features used as predictors in classification models.
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Seasonality of multi-drug resistance
The overall prevalence of shedding MDR bacteria (Salmonella, E. coli, and Enterococcus
spp.) in cows was 30.54%, (±2.97, n = 238). The prevalence of cows shedding bacteria that
are resistant to <=2 antimicrobial drug classes (AMR) was 43.93% (±3.21, n = 238).

Table 3 Resistance phenotypes detected in Enterococcus spp. isolates.

Resistance phenotypes observed in Enterococcus spp. (Antimicrobial class) Number of cows (total
N = 157)

The proportion of
cows (%)

95% CI

Nitrofuran antibacterial 17 10.83 [5.967–15.689]

Macrolides 15 9.55 [4.956–14.152]

Nitrofuran antibacterial, Macrolides 15 9.55 [4.956–14.152]

Oxazolidinones, Nitrofuran antibacterial, Macrolides† 9 5.73 [2.096–9.369]

Oxazolidinones, Nitrofuran antibacterial 8 5.1 [1.656–8.535]

Tetracyclines 7 4.46 [1.23–7.687]

Oxazolidinones 6 3.82 [0.823–6.821]

Tetracyclines, Nitrofuran antibacterial 6 3.82 [0.823–6.821]

Tetracyclines, Nitrofuran antibacterial, Macrolides† 5 3.18 [0.438–5.931]

Streptogramin, Oxazolidinones, Nitrofuran antibacterial, Macrolides† 4 2.55 [0.083–5.013]

Tetracyclines, Amphenicols, Oxazolidinones, Nitrofuran antibacterial† 4 2.55 [0.083–5.013]

Streptogramin, Nitrofuran antibacterial 4 2.55 [0.083–5.013]

Tetracyclines, Amphenicols, Nitrofuran antibacterial, Macrolides† 3 1.91 [0.0–4.052]

Amphenicols, Oxazolidinones, Nitrofuran antibacterial, Macrolides† 3 1.91 [0.0–4.052]

Tetracyclines, Macrolides 3 1.91 [0.0–4.052]

Amphenicols, Oxazolidinones, Nitrofuran antibacterial† 3 1.91 [0.0–4.052]

Oxazolidinones, Macrolides 3 1.91 [0.0–4.052]

Amphenicols, Streptogramin, Oxazolidinones, Nitrofuran antibacterial,
Macrolides†

3 1.91 [0.0–4.052]

Streptogramin 2 1.27 [0.0–3.028]

Tetracyclines, Oxazolidinones 2 1.27 [0.0–3.028]

Tetracyclines, Amphenicols, Nitrofuran antibacterial† 2 1.27 [0.0–3.028]

Tetracyclines, Amphenicols, Macrolides, Streptogramin, Oxazolidinones,
Nitrofuran antibacterial, Macrolides†

2 1.27 [0.0–3.028]

Amphenicols, Streptogramin, Oxazolidinones, Nitrofuran antibacterial† 2 1.27 [0.0–3.028]

Tetracyclines,Oxazolidinones, Nitrofuran antibacterial, Macrolides† 2 1.27 [0.0–3.028]

Other single isolates of MDR phenotypes** 23 14.72 [9.118–20.180]

Other single isolates of AMR phenotypes* 4 2.55 [0.083–5.013]

Notes:
* Other single isolates of amr phenotypes from Enterococcus sp. isolates: (1) amphenicols, nitrofuran antibacterial (2) streptogramin, oxazolidinones (3) amphenicols,
macrolides (4) macrolides, oxazolidinone.

** Other single isolates of MDR phenotypes from Enterococcus spp. isolates: (1) tetracyclines, amphenicols, oxazolidinones, nitrofuran antibacterial, macrolides (2)
oxazolidinones, nitrofuran antibacterial, macrolides, glycopeptides (3) tetracyclines, amphenicols, oxazolidinones, macrolides (4) streptogramin, oxazolidinones,
nitrofuran antibacterial (5) tetracyclines, streptogramin, nitrofuran antibacterial, macrolides (6) tetracyclines, amphenicols, streptogramin, oxazolidinones, nitrofuran
antibacterial, macrolides (7) tetracyclines, amphenicols, macrolides, streptogramin, oxazolidinones, macrolides (8) amphenicols, macrolides, streptogramin,
oxazolidinones, nitrofuran antibacterial (9) macrolides, streptogramin, oxazolidinones, nitrofuran antibacterials, macrolides (10) amphenicols, nitrofuran antibacterial,
macrolides (11) oxazolidinones, nitrofuran antibacterial, glycopeptides (12) amphenicols, oxazolidinones, macrolides (13) tetracyclines, macrolides, oxazolidinones,
nitrofuran antibacterial, macrolides (14) tetracyclines, streptogramin, nitrofuran antibacterial (15) tetracyclines, macrolides, nitrofuran antibacterial, macrolides (16)
amphenicols, streptogramin, macrolides (17) tetracyclines, streptogramin, oxazolidinones (18) streptogramin, nitrofuran antibacterial, macrolides (19) tetracyclines,
macrolides, oxazolidinones, nitrofuran antibacterial (20) tetracyclines, oxazolidinones, nitrofuran antibacterial (21) tetracyclines, amphenicols, macrolides,
oxazolidinones, nitrofuran antibacterial (22) tetracyclines, amphenicols, macrolides, nitrofuran antibacterial (23) amphenicols, macrolides, nitrofuran antibacterial.

† Phenotypes that are multi-drug resistant.
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The highest prevalence of MDR was seen in the summer (50.00% ± 11.18) followed by fall
(34.00%, ±4.73). The highest prevalence of shedding MDR bacteria was seen in herd
4 (52.00%, ±7.89) and the lowest was seen in herd 3 (10.00% ± 4.74). Herds 1 and 2 each
showed the lowest prevalence of shedding AMR bacteria (37.50% ± 7.65), while herd
4 showed the highest prevalence of shedding AMR (50.00%, ±7.90). The seasonal
prevalence of MDR and AMR resistance across three bacterial species is presented in
Fig. S1.

The annual prevalence of cows shedding MDR Salmonella was 8.62% (±3.65, n = 58).
The highest prevalence for MDR was detected in the winter season (10.53%, ±7.04, n = 19)
and the highest AMR prevalence was detected in fall (42.31% ± 9.68, n = 26). Salmonella
isolated from cows in the summer season did not show any AMR or MDR phenotypes
(Fig. 1A). The annual prevalence for MDR phenotypes within E. coli isolates was 2.92%
(±1.09, n = 238). The highest prevalence for MDR phenotypes in E. coli was detected in
winter (4.08% ± 2.82, n = 49) and the highest AMR prevalence in E. coli was detected
in spring (34.28% ± 5.67, n = 70, Fig. 1B). The annual prevalence for MDR phenotypes
within Enterococcus spp. isolates was 26.35% (±2.84, n = 238). The highest prevalence for
MDR Enterococcus spp. was detected in the summer season (50.00% ± 11.18, n = 20)
and the highest AMR prevalence in Enterococcus spp. was detected in the winter season
(48.97% ± 7.14, n = 49, Fig. 1C).

Antimicrobial resistance phenotype shared between bacterial isolates
Study found no perfectly shared resistance phenotype between the study isolates. Within
the commensal bacteria (E. coli or Enterococcus spp.), resistance to tetracycline was the
most prevalent (11 cows), while shared resistance to each of the drugs kanamycin,
streptomycin, and chloramphenicol was observed once. However, six individual cows were

Table 4 Resistant phenotypes detected in E. coli isolates.

Resistant phenotypes observed in E. coli (Antimicrobial class) Number of cows (total N = 81) The proportion of cows (%) 95% CI

Tetracyclines 25 30.86 [20.805–40.924]

Aminoglycosides 11 13.58 [6.12–21.041]

Cephalosporins 9 11.11 [4.267–17.955]

Aminoglycosides, Tetracyclines 7 8.64 [2.523–14.761]

Folate pathway antagonist 5 6.17 [0.932–11.414]

Amphenicols 5 6.17 [0.932–11.414]

Tetracyclines, Cephalosporins 2 2.47 [0.0–5.849]

Aminoglycosides, Tetracyclines, Amphenicols† 2 2.47 [0.0–5.849]

Other single isolates of AMR phenotypes* 5 6.17 [0.932–11.374]

Other single isolates of MDR phenotypes** 5 6.17 [0.932–11.414]

Notes:
* Other single isolates of AMR phenotypes from E. coli: (1) quinolones, aminoglycosides (2) amphenicols, tetracyclines (3) tetracyclines, folate pathway antagonist (6)
cephalosporins, fluoroquinolones (7) amphenicols, folate pathway antagonist.

** Other single isolates of mdr phenotypes from E. coli: (1) amphenicols, folate pathway antagonist, aminoglycosides (2) amphenicols, tetracyclines, cephalosporins,
aminoglycosides (3) amphenicols, tetracyclines, folate pathway antagonist (4) amphenicols, tetracyclines, folate pathway antagonist, aminoglycosides (5) tetracyclines,
cephalosporins, fluoroquinolones, quinolones, aminoglycosides.

† Phenotypes that are multi-drug resistant.
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detected sharing tetracycline resistance phenotypes between Salmonella and one or
both commensal bacteria (E. coli or Enterococcus spp.). Of the six cows, five were from a
single herd (herd 4) and three shed MDR bacteria (Table 5). However, Salmonella, and
one or both commensal species, were found to share resistance to only one drug,
tetracycline, in six cows across the study. Of the six cows, only three had bacterial species
with MDR phenotypes detected and in two of these cows the MDR profile included
tetracycline.

Figure 1 Seasonal variation in the prevalence of multidrug antimicrobial resistance. Seasonal var-
iation in the prevalence of multidrug antimicrobial resistance (MDR; resistance to three or more drug
classes), and antimicrobial resistance (AMR; resistance to one or two drug classes only) in Salmonella
(A), E. coli (B) and Enterococcus spp. (C) isolates from six California dairy herds. Orange and green
dashed lines show the annual average prevalence of MDR and AMR in all six herds respectively.
The proportion of cows that did not show any resistance are the inverse of the sum of MDR and AMR
proportions and not shown in the figure. Point estimates and single standard error deviation are
represented by circles and whiskers respectively. Full-size DOI: 10.7717/peerj.11732/fig-1
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Model performance and tuning results
Grid search of model parameters with 3-fold cross-validation yielded satisfactory results in
classifying MDR cows based on herd management practices and cow-related features.
The sensitivity of models ranged from 0.47 to 0.74 with precision ranging from 0.46 to
0.66. Details related to hyperparameters, best performing decision tree classifiers, random
forest, and XGboost models and the performance of the selected models are given in
Table 1.

Association between herd management practices and cow-related
features with shedding multi-drug resistant bacteria
Decision tree classification models

For all DTCmodels, the impurity (gini), a measure of the heterogeneity of the outcome in a
subset of samples resulting from a split in a decision tree, was reduced in samples the
most by the rolling herd average milk production, denoting its highest position in decision
trees generated by all five models (Fig. 1, Figs. S2–S5). Other management features that
formed nodes showing high measures of split quality (gini) including the proportion of
Jersey cows in the herd, administration of tetracyclines, monthly culling percentage,
culling frequency, and the number of culled individuals. Of the five DCT models, all
but the model for overall resistance across Salmonella and commensal bacterial species
were able to generate nodes that classify cows based on their fecal shedding of bacteria to a
single class of AMD, or not resistant (Figs. S2–S5) with 100% purity (homogenous
subsets). While only the DCT model for commensal bacteria, resulted in pure nodes for
MDR cows, none of the other models were able to classify cows into pure MDR nodes
(Fig. S2). Figure 2 shows the optimum decision tree for classifying cows into MDR, AMR,
or not resistant based on phenotypes of all bacteria (Salmonella, Enterococcus spp., E. coli).

Table 5 Tetracycline antimicrobial resistance phenotype shared (highlighted in grey) between commensal bacteria (Enterococcus spp., E. coli)
and Salmonella.

Resistance Phenotypes observed

Salmonella Enterococcus spp. E. coli Herd
ID

Resistance

Tetracyclines Nitrofuran antibacterial Aminoglycosides, Tetracyclines 4 AMR

Tetracyclines Macrolides, Oxazolidinones,
Nitrofuran antibacterial†

Tetracyclines, Amphenicols 4 MDR

Tetracyclines, Penicillins Macrolides, Nitrofuran antibacterial Aminoglycosides, Tetracyclines, Folate pathway
antagonist, Amphenicols†

4 MDR

Tetracyclines, Folate pathway
antagonist

Macrolides, Amphenicols Tetracyclines 4 AMR

Tetracyclines Tetracyclines, Nitrofuran antibacterial Tetracyclines, Folate pathway antagonist,
Amphenicols†

4 MDR

Tetracyclines Streptogramin, Oxazolidinones Tetracyclines 6 AMR

Notes:
† Phenotypes that are multi-drug phenotypes.
Each row represents bacterial resistance phenotypes of bacterial isolates from a single culled dairy cow.
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Random forest models
Results of random forest models indicated common herd management practices that
influence the shedding of MDR and AMR phenotypes of Salmonella, Enterococcus spp.,
and E. coli collectively, as well as individually (Fig. 3). The number of culled animals,

lower than greater than

Figure 2 Optimum decision tree to classify cows shedding multi-drug resistant (MDR), antimicrobial-resistant (AMR), and non-resistant
Salmonella, Enterococcus spp., E. coli based on management practices observed in Californian dairy herds. Nodes are represented by stacked
histograms depicting distribution samples in the data (AMR, MDR, no resistance), followed by optimum decision point (pointer on the x-axis).
Arrows on the left and right indicate lesser and greater than the decision point respectively. Final nodes are represented by pie chart with distribution
of samples. Factor acronym definitions are described in Table 2. Full-size DOI: 10.7717/peerj.11732/fig-2
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monthly culling frequency and percentage, herd size, and proportion of Holstein cows in
the herd were found to be influential herd characteristics (top ten features by relative
influence) predicting MDR phenotypes in all algorithms. Random forest algorithms for
predicting AMR phenotype in Enterococcus spp., commensal bacterial species combined,
and in all bacterial species showed the same top ten most influential herd management
features. Individual-level features such as culling due to milk production, mastitis,
reproductive and other reasons appeared important for predicting resistance phenotypes
in Salmonella. The use of the chalk method for withdrawal determination was in the top
ten most influential features and for the E. coli and Salmonella models.

Gradient boosting classification models
Herd characteristics that showed higher variable importance in SHAP values for predicting
cows shedding MDR resistance bacteria based on all bacterial species were herd size, the
proportion of Jersey cows, sampling season, the frequency of extra-label drug use, rolling
herd average, and culling related features. These features also showed high marginal
contributions in predicting AMR phenotypes. For predicting AMR phenotypes, features
such as the number of monthly veterinary treatments, antibiotic dose tracking, and the
proportion of Holstein cows also showed higher SHAP values (Fig. 4).

Partial dependence of gradient boosting model prediction on important features
showed the possible relationships of these herd and cow-related features in predicting the
AMR of their fecal bacteria as MDR. Higher culling frequency and monthly culling
percentages were associated with cows with MDR phenotypes from all bacteria, whereas an
overall increase in the number of culled animals from the herd showed a negative trend
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Figure 3 Top ten herd management practices based on variable importance (Gini coefficient) in
classifying cows shedding multi-drug resistant (MDR), antimicrobial-resistant (AMR), and
non-resistant for Salmonella, Enterococcus spp., E. coli in Cal. Factor acronym definitions described
in Table 2. Full-size DOI: 10.7717/peerj.11732/fig-3
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with classifying a cow as shedding MDR bacteria. Winter season was negatively associated
with MDR phenotype bacteria shed by cows compared to cows sampled in Spring.
Similarly, herds with more than 10,432 kgs of rolling average milk production showed a
positive trend with MDR positive cows. Cows from herds with a higher proportion of
Jersey cows were negatively associated with being classified as shedding MDR bacteria by
the gradient boosting algorithm (Fig. 5). Within other herd characteristics that were
identified as important, herd size showed a varying trend with classifying cows shedding
MDR bacteria, with some herd sizes showing a positive association of classifying cows as
shedding MDR bacteria (Fig. 5).

For predicting MDR phenotypes in Salmonella shed by cows, rolling herd average milk
production, sampling season, chalk methods for tracking withdrawal, monthly culling

Figure 4 Mean SHAP values depicting the impact of herd management practices on predicting
multi-drug resistant phenotype in either Salmonella, Enterococcus spp., and E. coli shed in dairy
cows for Gradient boosting classification (XGboost) model. Factor acronym definitions described in
Table 2. Full-size DOI: 10.7717/peerj.11732/fig-4

Pandit et al. (2021), PeerJ, DOI 10.7717/peerj.11732 17/25

http://dx.doi.org/10.7717/peerj.11732/fig-4
http://dx.doi.org/10.7717/peerj.11732
https://peerj.com/


frequency, and Salmonella vaccine were found to be important predictive features with
high SHAP values (Fig. 6). The exploration into partial dependence of these features gave
insights into relationships of feature values with classifying a cow as shedding MDR
phenotype Salmonella (Fig. 7). Increasing rolling herd average milk production and
monthly culling percentage was positively associated with MDR phenotypic Salmonella in
cow feces. Similarly, cows sampled in spring were more likely to be classified as shedding
MDR Salmonella.

Models predicting phenotypes in commensals E. coli, and Enterococcus spp.; the
number of culled animals in the previous year was always in the top ten most important
features to classify cows as shedding MDR bacteria (Figs. S5–S8). Rolling herd average
milk production features describing culling practices, and herd size, consistently featured
as important in classifying cows as shedding MDR phenotypic bacteria for all the other
three models (Commensals, E. coli and Enterococcus spp.). The frequency of extra-label
drug use was an important feature for models separately predicting MDR in Enterococcus
spp. (Fig. S7) and E. coli shed by cows.

DISCUSSION
The current study investigated antimicrobial resistance phenotypes between bacteria shed
in dairy cattle using decision tree classification algorithms. A simple decision tree model
does tend to find the best fit for the training data, but the splitting process rarely is

Figure 5 Partial dependence indicating the association of top six predictive herd management practices in classifying cows as multi-drug
resistant phenotype in either Salmonella, Enterococcus spp. and E. coli shed in dairy cows for Gradient boost. Partial dependence plots are
generated for values presented in the data resulting in the non-linear x-axis. Blue shaded region and error bars represents standard deviation of
partial dependence (n = 238). Full-size DOI: 10.7717/peerj.11732/fig-5
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generalizable to other data. A random forest model, which is bagging of decision trees, and
a boosting classification model, which is boosting decision trees, tend to perform better on
testing data and can help us identify the generalizable conclusion. In this analysis we
explored these models step by step from a simple decision tree to generalized boosting trees
to find important management-related factors that might affect the distribution of
multidrug resistance in dairy cattle herds.

A unique aspect of the current study is use of the aforementioned algorithms to
distinguish between the resistance profiles (no resistance, antimicrobial resistance and
multidrug resistance) of a pathogenic bacteria, Salmonella, and commensal bacteria (E. coli
and Enterococcus spp.) isolates from feces of cull dairy cows. Previous investigations were
restricted to understanding herd and cow level characteristics with the resistant

Figure 6 Mean SHAP values depicting the impact of herd management practices on predicting
multi-drug resistant phenotype in Salmonella shed in dairy cows for Gradient boosting
classification (XGboost) model. Factor acronym definitions described in Table 2.

Full-size DOI: 10.7717/peerj.11732/fig-6
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phenotypes in Salmonella shed by cull dairy cows (Pereira et al., 2019). We explored
weather considering the resistance phenotypes for these three bacterial species together,
and separately, to identify associations between herd management practices and
prevalence of resistance phenotypes. Although, none of the isolates had shared phenotype
resistance, the six cows that had tetracycline resistance in at least two of the three bacteria
studied should be explored further with whole genome sequencing and follow up studies
that employ metagenomic analyses on the microbiome.

The three machine learning algorithms tested in this study indicated that the overall
distributions of three resistance phenotypes classified in this study as MDR, AMR, or no
resistance were mainly governed by resistance in Enterococcus spp., which showed the
highest prevalence of MDR and AMR phenotypes compared to Salmonella and E. coli.
The latter may be explained by Enterococcus spp. that are known to have frequent MDR
phenotypes such as E. faecium. Comparative feature importance plots for all random forest
models developed for these bacterial groups indicated the same, where similar features are
found to be important for the model predicting MDR in all bacteria together, in
commensals together, and in Enterococcus spp..

Herd size has been already identified as associated with higher odds of detecting
Salmonella resistant to tetracycline (Pereira et al., 2019). In the current study, we showed
that herd size was also positively associated with detecting MDR phenotypes in Salmonella
as well as the commensal bacteria E. coli and Enterococcus spp. Salmonellosis is known to

Figure 7 Partial dependence indicating the association of top-six predictive herd management practices in classifying cows as multi-drug
resistant phenotype in Salmonella shed in dairy cows for Gradient boosting classification (XGboost) model. Partial dependence plots are
generated for values presented in the data resulting in the non-linear x-axis. Blue shaded region and error bars represent the standard deviation of
partial dependence (n = 58). Full-size DOI: 10.7717/peerj.11732/fig-7
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be associated with poor milk production and reproduction and hence increased risk for
diseases, such as mastitis and infertility, and AMD treatments which may explain the 12%
MDR in Salmonella isolates from the study cows (Lanzas et al., 2010). Similarly,
Salmonella has been associated with clinical disease in both adult and young dairy cattle
and beef cows (Divers & Peek, 2007; Pender, 2003; Roy et al., 2001; Smith, 2014). Percent
cull and rate would reflect the increase in culling due to diseases better than actual
numbers culled. This is evident from the importance of all three in the random forest
model for Salmonella MDR phenotypes. In contrast, the total number culled was
negatively associated with shedding multidrug resistant bacteria which may reflect
producer decisions to prioritize the culling of otherwise healthy but low-producing cows
based on milk or beef market value (with respect to dairy beef), amongst other factors.
Other than market dynamics including milk or beef demand, underlying herd health or
management reasons may explain the opposing trends of both percent and number culled,
and the outcome MDR in cull cow fecal bacteria. Herds with MDR in their cull cow
fecal bacteria hence need to be explored further to identify mechanisms that eventually
increase culling rates. It is worthy to note that the random forest algorithm identified
diseases of relative importance for MDR in Salmonella but not commensals. However,
caution should be exercised with interpreting findings from this specific analysis due to the
inability to ascertain that such diseases preceded the Salmonella shedding and specifically
MDR status. The combined random forest model for all 3 species however did not
show diseases as correlated with MDR, which may be due to the overall effect of the
commensals in the dataset.

SHAP values ranked variables by importance for classifying resistance type (either
MDR, AMR, or no resistance). However, in the case of rolling herd average milk
production (RHA), SHAP values were allocated only for predicting MDR or AMR in
models for Salmonella and Enterococcus and commensals, showing zero importance in
predicting absence of any resistance. The RHA is hence more important in terms of
identifying any resistance type (MDR or AMR) versus no resistance. All three algorithms
(DCT, RF and XGboost) indicated a high importance of RHA in predicting MDR in
fecal bacteria of cull cows. RHA is a dairy performance indicator affected by multiple
herd characteristics such as age and breed structure. Studies have indicated stress related
to higher production which may increase the chance of certain health conditions
subsequently increasing the risk of antimicrobial drug use and hence bacterial resistance
(Robbins et al., 2016). In addition, the association between RHA and MDR presented
by all the models here is conditioned upon other features that follow the splits further
down the classification tree. In contrast, for E. coli, RHA was important in identifying all
resistance classifications (AMR, MDR, no resistance).

XGBoost results show that season was correlated with MDR in all 3 species. Specifically,
Spring and Fall had a greater correlation with MDR compared to Summer and Winter,
with Winter being the least correlated. Similar findings have been observed with a risk of
disease in calves in Spring and Fall with bovine respiratory disease (Cummings et al., 2019;
Dubrovsky et al., 2019;Maier et al., 2019). The current study’s bacterial species, specifically
Salmonella, E. coli and Enterococcus spp., shared no specific MDR profiles; however, shared
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tetracycline resistance was detected. Further studies employing whole genome sequencing
and metagenomics on the microbiome may explore factors that explain such shared
resistance.

CONCLUSIONS
The current study characterized dairy cattle herd management practices that were
associated with fecal shedding of multi-drug resistant bacteria. We identified generalizable
and distant associations between pathogenic Salmonella and commensal bacteria.
The data-driven suite of machine learning algorithms used here can help develop
data-informed tools for better decision making, and risk assessment related to antibacterial
resistant shedding by cows.
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