# Between darkness and light: can spring habitats provide new perspectives for modern researchers on groundwater biology? (#59853)

First submission

### Guidance from your Editor

Please submit by 2 May 2021 for the benefit of the authors (and your \$200 publishing discount).



#### **Literature Review article**

This is a Literature Review article, so the review criteria are slightly different. Please write your review using the criteria outlined on the 'Structure and Criteria' page.



### **Custom checks**

Make sure you include the custom checks shown below, in your review.



### **Author notes**

Have you read the author notes on the guidance page?



### Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

#### **Files**

Download and review all files from the <u>materials page</u>.

2 Figure file(s)

5 Table file(s)



### Systematic review or meta analysis

- Have you checked our policies?
- Is the topic of the study relevant and meaningful?
- Are the results robust and believable?

## Structure and Criteria



### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. STUDY DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Is the review of broad and cross-disciplinary interest and within the scope of the journal?
- Has the field been reviewed recently? If so, is there a good reason for this review (different point of view, accessible to a different audience, etc.)?
- Does the Introduction adequately introduce the subject and make it clear who the audience is/what the motivation is?

#### STUDY DESIGN

- Article content is within the <u>Aims and Scope</u> of the journal.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.
- Is the Survey Methodology consistent with a comprehensive, unbiased coverage of the subject? If not, what is missing?
- Are sources adequately cited? Quoted or paraphrased as appropriate?
- Is the review organized logically into coherent paragraphs/subsections?

#### **VALIDITY OF THE FINDINGS**

Impact and novelty not assessed.

Negative/inconclusive results accepted.

Meaningful replication encouraged where rationale & benefit to literature is clearly stated.



Speculation is welcome, but should be identified as such.



Is there a well developed and supported argument that meets the goals set out in the Introduction?



Conclusions are well stated, linked to original research question & limited to supporting results.



Does the Conclusion identify unresolved questions / gaps / future directions?

## Standout reviewing tips



The best reviewers use these techniques

| - | n |
|---|---|
|   | N |

## Support criticisms with evidence from the text or from other sources

### Give specific suggestions on how to improve the manuscript

### Comment on language and grammar issues

### Organize by importance of the issues, and number your points

## Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



## Between darkness and light: can spring habitats provide new perspectives for modern researchers on groundwater biology?

Raoul Manenti Corresp., 1, 2, Beatrice Piazza 1

Corresponding Author: Raoul Manenti Email address: raoul.manenti@unimi.it

Springs are interfaces between groundwater and surface habitats and may play an important role in the study of subterranean animals. In this systematic evidence review and meta-analysis, we explore whether observations of stygobionts in springs are relevant and more common than observations of epigean animals in groundwater. We searched the Web of Science database for papers on groundwater fauna and spring fauna. For each paper we found, we recorded whether the paper reported the occurrence of typical stygobionts in springs, of surface animals in groundwater, or of the same taxa in both habitats. If so, we recorded how many such species were reported. We also recorded the scientific discipline of each study and the year of publication. Our search yielded 342 papers. A considerable number of these papers reported stygobionts in springs: 20% of papers dealing with groundwater fauna and 16% of papers dealing with spring fauna reported the occurrence of stygobionts in spring habitats. Both the number of papers that mentioned stygobionts in springs, and the number of stygobiont species that were documented in springs, were higher than equivalent measures for the occurrence of surface fauna underground. We also detected a positive relationship between year of publication and the number of reports of stygofauna in springs. To broaden the insights from biological research on underground environments, we suggest that springs should be considered not only as simple sampling points of stygobionts but also as core stygobiont habitats.

<sup>1</sup> Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Lombardia, Italy

<sup>&</sup>lt;sup>2</sup> Parco Regionale del Monte Barro, Laboratorio di Biologia Sotterranea "Enrico Pezzoli", Galbiate, Italy



| ı        |                                                                                                     |
|----------|-----------------------------------------------------------------------------------------------------|
| 2        | Between darkness and light: can spring habitats                                                     |
| 3        | provide new perspectives for modern researchers on                                                  |
| 4        | groundwater biology?                                                                                |
| 5        |                                                                                                     |
| 6        | Raoul Manenti <sup>1,2</sup> , Beatrice Piazza <sup>1</sup>                                         |
| 7        |                                                                                                     |
| 8        | <sup>1</sup> 1Department of Environmental Science and Policy, Università degli Studi di Milano, via |
| 9        | Celoria, 26, 20133 Milano Italy                                                                     |
| 10       |                                                                                                     |
| 11       | <sup>2</sup> Laboratorio di Biologia Sotterranea "Enrico Pezzoli", Parco Regionale del Monte Barro, |
| 12       | Galbiate, Italy.                                                                                    |
| 13       |                                                                                                     |
| 14<br>15 | Corresponding Author: Raoul Manenti <sup>1</sup>                                                    |
| 15<br>16 |                                                                                                     |
| 16<br>17 | via Celoria, 26, 20133 Milano Italy                                                                 |
| 17<br>18 | Email address: raoul.manenti@unimi.it                                                               |
| 19       |                                                                                                     |
| 20       | Abstract                                                                                            |
| 21       | Springs are interfaces between groundwater and surface habitats and may play an important role      |
| 22       | in the study of subterranean animals. In this systematic evidence review and meta-analysis, we      |
| 23       | explore whether observations of stygobionts in springs are relevant and more common than            |
| 24       | observations of epigean animals in groundwater.                                                     |
| 25       | We searched the Web of Science database for papers on groundwater fauna and spring fauna. For       |
| 26       | each paper we found, we recorded whether the paper reported the occurrence of typical               |
| 27       | stygobionts in springs, of surface animals in groundwater, or of the same taxa in both habitats. If |
| 28       | so, we recorded how many such species were reported. We also recorded the scientific discipline     |
| 29       | of each study and the year of publication.                                                          |
| 30       | Our search yielded 342 papers. A considerable number of these papers reported stygobionts in        |
| 31       | springs: 20% of papers dealing with groundwater fauna and 16% of papers dealing with spring         |
| 32       | fauna reported the occurrence of stygobionts in spring habitats. Both the number of papers that     |
| 33       | mentioned stygobionts in springs, and the number of stygobiont species that were documented in      |
| 34       | springs, were higher than equivalent measures for the occurrence of surface fauna underground.      |
| 35       | We also detected a positive relationship between year of publication and the number of reports of   |
| 36       | stygofauna in springs                                                                               |



To broaden the insights from biological research on underground environments, we suggest that springs should be considered not only as simple sampling points of stygobionts but also as core stygobiont habitats.

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

37

38

39

### Introduction

The zoologist Lazăr Botoșăneanu (1998) defined springs as the "doors on River Styx," the river of the Greek mythological underworld. Other biologists who study subterranean environments and groundwaters similarly consider springs to be openings that allow them to see the inhabitants of an otherwise inaccessible environment (Culver et al. 2012; Pipan et al. 2012). This view of spring habitats as windows into a different environment is particularly true in non-karst areas, where the lack of caves prevents human exploration of the subterranean realm and springs are often the only way to access groundwater organisms (Manenti & Pezzoli 2019). Springs are an interface between groundwater and surface freshwater habitats and are characterized by an interplay of both subterranean and epigean habitat features (Alfaro & Wallace 1994; Cantonati et al. 2006). However, the definition of spring is often approximate, especially in generalist texts. Although springs are widely considered to be ecotones, or soft transitions between surface and subterranean habitats, this transition may also be abrupt; indeed, the magnitude of this transition strongly depends on the morphology of the spring and can be mutable with daylight. Some springs represent an abrupt shift from the subterranean environment to the surface, whereas others, like the natural emitting caves (such as caves from which subterranean streams flow outside) of artificial draining galleries built to collect groundwater), represent extended ecotonal galleries (such as environments (Balland 1992; White 2019). The border between the subterranean and surface environment can be particularly distinct during daytime, when it is strictly demarcated by the sun. Aside from sunlight, the differences that distinguish subterranean and surface environments in a spring, even across the few meters or centimetres that may characterize a spring with a sudden



64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

interface (Fig. 1), include the availability of trophic resources, the density of potential predators, and microclimate conditions (Barzaghi et al. 2017; MacAvoy et al. 2016; Manenti et al. 2013; Von Fumetti & Nagel 2011). Because springs are border habitats, it can be difficult for biological studies to consider springs in their entirety; this difficulty has limited the potential for insights from springs to drive stronger advances in different fields of research. For example, studies that focus on springs often only consider a surface perspective and neglect the role played by groundwater(Manenti & Pezzoli 2019), whereas in karst areas, scientists studying the subterranean environment see springs as "access points" that can be used to sample the groundwater fauna living in different subterranean, underwater environments, such as the phreatic zone of karst aquifers (Malard et al. 2002). This latter view reflects the scarce consideration that is often given to springs and may limit a more general understanding of the ecological role of border habitats. As some studies have already suggested, transition zones are important for regulating ecosystem processes and the flow of dissolved organic material and organisms between surface (epigean) and underground (hypogean) habitats (Moseley 2009; Plenet & Gibert 1995). With this opinion paper based on a systematic review of the recent scientific literature, we aim to stimulate a change in the conception of and in the approach to springs by studies dealing with stygobionts and groundwater fauna. Particularly we want to underline that springs have the potential to reveal general patterns related to the zoology of stygobionts. Stygobionts are obligate groundwater-dwellers; the word "stygobiont" reflects the fact that these species, and stygofauna more broadly, are "of the River Styx." These organisms have evolved adaptations specific to the underground freshwater habitats in which they spend their entire life cycle (Trajano & De Carvalho 2017). Stygobionts often exhibit morphological features associated



87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

with their underground habitat. These characteristics, such as blindness and depigmentation, are commonly referred to as troglomorphisms (Pipan & Culver 2012; Romero 2009), and they limit stygobionts' ability to exploit surface environments. However, during night, the constraints are generally less clear and surface borders (i.e., springs) may become more permeable by stygofauna; for example, some observations of springs have reported the presence of organisms considered to be strict stygobionts (Bressi et al. 1999; Fišer 2019; Manenti & Barzaghi 2020). One such case is that of Stygobromus spp. amphipods, which are believed to regularly leave hypotelminorheic habitats to feed (Culver et al. 2006; Culver & Pipan 2014). Nevertheless, these findings are often viewed as exceptions or accidental events, and the use of springs is rarely mentioned as a trait of stygobiont biology. Observations of surface animals in caves have been similarly overlooked in the past (Sket 2008) and improperly seen as accidental; such "accidental" observations have recently been described for both groundwater and terrestrial subterranean habitats (Ficetola et al. 2018; Lunghi et al. 2014b; Manenti 2014). Stygobionts are the main focus of subterranean biology and are usually studied using two distinct approaches. The first approach includes intense taxonomic investigations focused on the discovery and description of new taxa. The second approach views caves as powerful natural laboratories for evolutionary, ecological and behavioural studies on their inhabitants (Culver & Pipan 2014; Culver & Pipan 2019). The idea of caves as natural laboratories, first postulated by the speleologist Édouard-Alfred Martel (1894), has been espoused for more than one hundred years of subterranean studies (Poulson & White 1969). However, of the relatively large number of caves that were effectively used as laboratories during last century (Vandel 1964), few remain active. In addition, the outcomes of studies on stygofauna in these caves is rarely compared to insights obtained from studies of surface freshwater organisms. This is partially due to the characteristic features of



110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

stygobionts: they are often difficult to sample in deep subterranean environments and, due to their long life cycles and low fertility, they are difficult to raise in an experimental setting. Would including springs and other surface/underground border habitats in studies on subterranean biology increase the understanding of how the constraints of the hypogean environment affect the phenotypic responses and genetic makeup of stygobionts? The rationale of this paper takes origin from this question and is to suggest that a substantial inclusion of springs (and other border habitats between underground and surface) in studies on subterranean biology, can increase the understanding of principles governing exploitation and adaptation to hypogean environments. In this paper, we investigate the perspectives of modern researchers on considering springs not only as simple sampling points, but also as core stygobiont habitats that can broaden the insights obtained from biological studies of underground environments. We specifically performed a systematic review of the recent scientific literature to understand i) the relevance of previous observations of typical stygobionts in springs; ii) if these observations vary according with study discipline and the year of publication; and iii) if these observations are more common than observations of epigean animals (i.e. aquatic surface species) in caves. By demonstrating that typical stygofauna are observed in springs more commonly than usually thought, we propose that, at least in some cases, the exploitation of border habitats be considered a non-negligible aspect of stygofauna ecology.

### Survey methodology

Reviews are routinely performed in scientific studies to understand the current state of knowledge and provide future research perspectives in a given field. However, covering the whole spectrum of literature is almost impossible, especially in traditional disciplines that have a long history and a large amount of what has been improperly called "grey literature." Without a specific and easily repeatable method, such a comprehensive review may lead to biased conclusions.



134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

To avoid bias, many scientific fields have largely started to favour the use of systematic evidence reviews (Acreman et al. 2020). We therefore performed a systematic review to find focused data that addressed our three aims (Table 1). For this review, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page & Moher 2017), and we searched the Web of Science database for peer-reviewed papers on both stygofauna and fauna living in spring habitats. The Web of Science database contains metadata for high-impact scientific articles published since 1965. We used two search strings designed to find all articles in the database that might contain observations of fauna in both caves and springs. Our search was conducted in May 2020 from Milano, Italy, using the keywords "groundwater fauna" (GF) and "spring fauna freshwater" (SFF) and searching them by topics. We initially screened the articles that met our search criteria by discarding articles that were not clearly related to our study aims. We rejected articles about botany, palaeontology, geology, and all their associated subdisciplines (paleoecology, stratigraphy, geomorphology, etc.), as well as articles about subterranean environments or groundwater that did not mention animals. The articles we found using the key words "spring fauna freshwater" were more difficult to screen; for the most part, the authors of these articles did not specify if their study species were part of stygofauna or not. We therefore discarded these articles only if they were not related to our study aims (e.g., papers about estuaries, palaeontology, or related topics) or if the authors provided clear evidence that the study species were not cave-dwellers. We additionally discarded several articles that dealt strictly with agricultural sciences, biogeochemical cycles, the impacts of various pollutants (crude oils, perchlorate, etc.) on groundwater, or other environments strongly connected to groundwater (i.e., all surface water environments), but did not mention the finding of stygofauna or epigean fauna. Articles that



| 156                                                                   | addressed single species or taxa that are not stygofauna or typical spring fauna and have no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 157                                                                   | hypogean representatives (e.g., (Rechulicz 2011) treated <i>Pseudorasbora parva</i> and (Vilenica et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 158                                                                   | 2016) treated mayflies), and articles concerning terrestrial environments, estuaries, swamps,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 159                                                                   | mangroves, streams, rivers, lakes, and all saltwater environments, were similarly discarded. (See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 160                                                                   | Table 1 for more detailed information on the article selection procedure). After this first screening,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 161                                                                   | we performed a second selection procedure in which we removed any articles that were unavailable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 162                                                                   | or were written in a language other than English.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 163                                                                   | From the papers we collected the information listed in Table 1, including the typology of the study,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 164                                                                   | distinguishing between ecology, taxonomy behaviour, conservation and fauna assessment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 165                                                                   | considering that the same paper could belong to multiple categories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 166                                                                   | Statistical analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 167                                                                   | To assess the relationships between features of the selected documents and the occurrence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul><li>167</li><li>168</li></ul>                                     | To assess the relationships between features of the selected documents and the occurrence of stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 168                                                                   | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 168<br>169                                                            | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error distributions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul><li>168</li><li>169</li><li>170</li><li>171</li></ul>             | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error distributions.  First, we assessed if the fact that a paper reported the occurrence of stygobionts in springs, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul><li>168</li><li>169</li><li>170</li><li>171</li></ul>             | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error distributions.  First, we assessed if the fact that a paper reported the occurrence of stygobionts in springs, the occurrence of surface fauna in groundwaters, or the contemporary occurrence of a stygobiont in                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul><li>168</li><li>169</li><li>170</li><li>171</li><li>172</li></ul> | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error distributions.  First, we assessed if the fact that a paper reported the occurrence of stygobionts in springs, the occurrence of surface fauna in groundwaters, or the contemporary occurrence of a stygobiont in both groundwaters and springs, was related to the paper's field of study. Reported occurrences                                                                                                                                                                                                                                                                                      |
| 168<br>169<br>170<br>171<br>172<br>173                                | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error distributions.  First, we assessed if the fact that a paper reported the occurrence of stygobionts in springs, the occurrence of surface fauna in groundwaters, or the contemporary occurrence of a stygobiont in both groundwaters and springs, was related to the paper's field of study. Reported occurrences were used as the dependent variable, and the study disciplines (ecology, taxonomy, faunal                                                                                                                                                                                            |
| 168<br>169<br>170<br>171<br>172<br>173<br>174                         | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error distributions.  First, we assessed if the fact that a paper reported the occurrence of stygobionts in springs, the occurrence of surface fauna in groundwaters, or the contemporary occurrence of a stygobiont in both groundwaters and springs, was related to the paper's field of study. Reported occurrences were used as the dependent variable, and the study disciplines (ecology, taxonomy, faunal assessment, and conservation) were used as fixed factors. We similarly built GLMs with the same                                                                                            |
| 168<br>169<br>170<br>171<br>172<br>173<br>174<br>175                  | stygofauna in springs, we built a series of generalized linear models (GLMs) with binomial error distributions.  First, we assessed if the fact that a paper reported the occurrence of stygobionts in springs, the occurrence of surface fauna in groundwaters, or the contemporary occurrence of a stygobiont in both groundwaters and springs, was related to the paper's field of study. Reported occurrences were used as the dependent variable, and the study disciplines (ecology, taxonomy, faunal assessment, and conservation) were used as fixed factors. We similarly built GLMs with the same dependent variable but with publication year and the search term as independent variables. |



hypotheses were tested only for papers selected with the keyword "groundwater fauna" to avoid biases associated with the fact that studies found using the keyword "spring fauna freshwater" may not have sampled underground habitats. For the first test, we used the number of species mentioned by each paper as a dependent variable, including both stygofauna found in springs and surface fauna found underground. The type of observation (stygofauna in springs vs. surface fauna in groundwater) was used as a fixed factor. For the second test, we defined the dependent variable as whether it was possible to assess the number of species mentioned in a study, including both types of observations (stygofauna in springs and surface fauna in groundwater). The type of observation was used as a fixed factor, as before. To avoid overdispersion bias, we built both models using a type 2 negative binomial error distribution in the package glmmTMB (Brooks et al. 2017).

We used a likelihood ratio test to assess the significance of all the fixed factors included in each GLM (Bolker et al. 2008). All analyses were performed in the R 3.6.3 environment.

### Results

We retrieved 824 potentially relevant papers after removing duplicate articles. After removing articles based on the first selection criteria described above, there were 415 potentially relevant documents. After the second selection procedure, we obtained 342 papers: 275 derived from the search term "groundwater fauna" (GF) and 67 from the search term "spring fauna freshwater" (SFF). Many papers found using the "groundwater fauna" search did not specify the sampling site for the taxa considered, and many papers found using the "spring fauna freshwater" search did not clearly identify if they sampled stygofauna or not. Overall, 57 papers (representing 19% of the papers with information on sampling habitat) reported the occurrence of stygofauna in springs, 37 (11.7%) reported the occurrence of typical surface fauna underground, and 33 (11%) reported the same taxa in both springs and groundwater (Table 2). With respect to our search terms, 20% of



225

papers dealing with GF and 16% of papers dealing with SFF described the occurrence of stygobionts in spring habitats. 203 There were 45,375 species mentioned across all papers we retrieved. Of these, 138 were 204 stygobionts observed/sampled in springs and 46 were surface species observed in subterranean 205 206 habitats. 207 The study disciplines covered by the papers were mainly ecology (196 papers) and faunal assessments (177 papers). Four papers were behavioural studies, and 24 papers addressed 208 conservation concerns. There were 194 papers that encompassed multiple fields of study. 209 210 Our first analysis revealed that faunal assessments are significantly more likely to report the 211 occurrence of surface fauna in groundwater, whereas taxonomic studies are more likely to report 212 the occurrence of the same taxon in both environments (Table 3). We did not detect any 213 relationship between the discipline of a paper (ecology, taxonomy, etc.) and the reported 214 occurrence of stygofauna in springs. However, we did detect a positive relationship between the 215 year of publication and the reports of stygofauna in springs ( $\chi^2=4.53$ , P=0.03). Papers selected using the SFF search term were significantly less likely to report the occurrence of surface taxa in 216 217 groundwaters ( $\chi^2 = 4.09$ , P=0.04). 218 GLMs performed on papers selected using the GF search term revealed that the number of mentions of stygobiont species in springs is higher than the number of mentions of surface fauna 219 underground ( $\chi^2$ =4.19, P=0.04). However, there is also less information available on whether 220 stygofauna have been observed in springs compared to whether surface species have been recorded 221 in groundwaters ( $\chi^2$ = 14.08, P<0.001). 222 Discussion and perspectives 223 224 We retrieved 824 potentially relevant papers after removing duplicate articles. After removing

articles based on the first selection criteria described above, there were 416 potentially relevant



| documents. After the second selection procedure, we obtained 342 papers: 275 derived from the           |
|---------------------------------------------------------------------------------------------------------|
| search term "groundwater fauna" (GF) and 67 from the search term "spring fauna freshwater"              |
| (SFF). Many papers found using the "groundwater fauna" search did not specify the sampling site         |
| for the taxa considered, and many papers found using the "spring fauna freshwater" search did not       |
| clearly identify if they sampled stygofauna or not. Overall, 57 papers (representing 19% of the         |
| papers with information on sampling habitat) reported the occurrence of stygofauna in springs, 37       |
| (11.7%) reported the occurrence of typical surface fauna underground, and 33 (11%) reported the         |
| same taxa in both springs and groundwater (Table 2). With respect to our search terms, 20% of           |
| papers dealing with GF and 16% of papers dealing with SFF described the occurrence of                   |
| stygobionts in spring habitats.                                                                         |
| There were 45,375 species mentioned across all papers we retrieved. Of these, 138 were                  |
| stygobionts observed/sampled in springs and 46 were surface species observed in subterranean            |
| habitats.                                                                                               |
| The study disciplines covered by the papers were mainly ecology (196 papers) and faunal                 |
| assessments (177 papers). Four papers were behavioural studies, and 24 papers addressed                 |
| conservation concerns. There were 194 papers that encompassed multiple fields of study.                 |
| Our first analysis revealed that faunal assessments are significantly more likely to report the         |
| occurrence of surface fauna in groundwater, whereas taxonomic studies are more likely to report         |
| the occurrence of the same taxon in both environments (Table 3). We did not detect any                  |
| relationship between the discipline of a paper (ecology, taxonomy, etc.) and the reported               |
| occurrence of stygofauna in springs. However, we did detect a positive relationship between the         |
| year of publication and the reports of stygofauna in springs ( $\chi^2$ =4.53, P=0.03). Papers selected |



251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

using the SFF search term were significantly less likely to report the occurrence of surface taxa in groundwaters ( $\chi^2$ =4.09, P=0.04).

GLMs performed on papers selected using the GF search term revealed that the number of mentions of stygobiont species in springs is higher than the number of mentions of surface fauna underground ( $\chi^2$ =4.19, P=0.04). However, there is also less information available on whether stygofauna have been observed in springs compared to whether surface species have been recorded in groundwaters ( $\chi^2$ = 14.08, P<0.001).

### Discussion and perspectives

Our systematic review revealed that there are more papers about stygofauna available on Web of Science than there are papers addressing fauna and springs. Because the word "spring" is a homograph with multiple meanings, our initial search retrieved many papers that were ultimately discarded because they did not discuss fauna and spring habitats. Preliminary literature searches performed using synonyms of "spring" and/or terms that define specific spring habitats, such as "sources" or "seepage," resulted in fewer papers. Most of these papers were already included in our analysis; however, the few that were not could be used in future study with a larger set of papers. Someone could disagree as it is likely that our research missed some papers and that further keywords should have been added, for example: stygob\*, ecoton\*, hypogean, subterranean etc, but they would have increased the number of papers dealing with stygofauna without significant increase in the number of papers related to spring fauna. The large difference in the number of papers obtained with the two search terms, GF and SFF, underscores the fact that the fauna of spring habitats have received much less attention not only than the inhabitants of lakes and streams/rivers, as already pointed out by previous studies (Cantonati et al. 2011), but also than stygofauna.



272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

We limited our review to articles archived in Web of Science; this approach was more conservative because it included only relatively recent papers published in indexed, high-impact journals that perform selective peer review. An analogous review could be performed using the Google Scholar database or a more exhaustive search of grey literature in online and physical repositories. It is possible that the older, descriptive papers archived in these databases may have reported stygofauna in springs, but it is also possible that some form of bias could arise from using older literature that has not been rigorously peer reviewed. The effects of database selection should therefore be investigated in the future. Using both GF and SFF as search terms, we found papers that mentioned the occurrence of stygofauna in springs, of typical surface fauna in groundwaters, and of the same taxa in both environments. The number of papers that reported stygofauna in springs, as well as the number of stygobiont species that were documented in springs, represented only a fraction of the total papers and documented species but were nevertheless non-negligible. This pattern was not linked to any specific field of study; though taxonomic studies were non-significantly more likely to report stygofauna in springs. Springs have been recognized as relevant habitats for studying stygobionts since the beginning of the 19th century. Most of the major subterranean biologists devoted at least some of their studies to spring habitats (Culver et al. 2012; Culver et al. 2014; Vandel 1920), and Albert Vandel, the founder of one of the most popular subterranean laboratories in the world (Botosaneanu 1980), stated in 1920 that a systematic study of spring habitats could furnish important insights for solving some of the evolutionary questions posed by cave-dwelling animals (Vandel 1920). However, this concept appears only in Vandel's conclusions and is not further developed; the idea that springs



294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

1920). Stygobionts are known to colonize the mixed assemblages of organisms residing in springs via emigration from groundwaters (Malard et al. 2009; Malard et al. 2002). Typical stygobionts may be more or less permanently detected outside the spring outlet, where they can exploit different microhabitats (Malard et al. 2002; Mathieu et al. 1994). This is especially true when there is a stable supply of immigrants from karst groundwater (Mathieu et al. 1999). Our results revealed that typical stygofauna have been reported in springs more frequently in recent years; this means that, with respect to older studies, researchers are paying more attention when reporting data on sample collection habitats, regardless of their study discipline (ecology, taxonomy, conservation, or faunal assessment). However, in the papers that we collected, the occurrence of stygobionts in springs was often reported as either an effect of the sampling method or an occasional finding. None of the papers assessed patterns in the use of springs by stygobionts. This is true also for some papers that we missed with our search but that are well known in spring literature. As an example (Rouch 1986) defined "the hemorrhage" the flow of stygofauna pushed out from aquifers during high discharge periods through springs, erroneously considering this only as a passive mechanism. In more recent times, some papers were devoted to spring discharge and the passive presence of stygobionts being flushed from "conductive" or "capacitive" aquifers has been (Di Lorenzo et al. 2005); other large-scale ecological surveys of springs demonstrated that in mountain areas, where species richness of stygobionts is usually poor due to the effect of Quaternary Galciations, their occurrence seems low or occasional in springs (Stoch et al. 2011), suggesting that the geographical location of springs matter and could be considered in future systematic reviews dealing with springs. Springs are also being studied with recent and 'modern' approaches like DNA

are just sampling points in non-karst areas largely prevails throughout the rest of the paper (Vandel



317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

springs (Niemiller et al. 2018; Thomsen et al. 2012) and be used in the future to assess the patterns that determine this occurrence. The occurrence of a stygobiont species, or a species that is strictly linked to a hypogean groundwater habitat for its life cycle, in an epigean spring habitat, underlines a contradiction that might reflect the human conceptual limit of understanding borders. The human perception of limits and boundaries may be biased, as humans may recognize or emphasize abrupt distinctions when they do not exist (Pirni 2016; Sturz & Bodily 2016). Our results demonstrate that, at least for some stygobionts, border habitats and adjacent areas are an important part of the range and biology of stygofauna, and a proper consideration of these habitats in subterranean biology studies could provide larger perspectives. For example, stygobiont populations or individuals that exploit springs more or less permanently are exposed to different constraints and advantages than populations or individuals that exploit deeper aguifers. Selective pressures may therefore act differently, at least for the individuals living in springs or at the interface between subterranean and epigean habitats. For example, different species and/or populations of the genus *Niphargus*, which shows typical features of stygobionts including depigmentation and the absence of eyes, have the unique ability to detect light (Fiser et al. 2016). This ability has been associated with the need to distinguish the border between surface and subterranean environments and avoid risky surface habitats (Fišer et al. 2016) where UV rays may be dangerous for a depigmented animal. However, surface habitats may also be advantageous by furnishing higher trophic resources and, at night, they are not exposed to UV light. Several studies have reported *Niphargus* amphipods in border habitats (Fiser et al. 2007; Manenti & Pezzoli 2019; Marković et al. 2018). Is light perception the same between individuals from borders and individuals from deeper aquifers? Are there evolutionary adaptations

metabarcoding techniques and eDNA that can allow to detect the presence of stygobionts in



340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

for exploiting not only deep subterranean habitats but also border habitats at the interface with the surface? These questions are applicable to all stygobionts that are recurrently found in springs. Considering border habitats in addition to deeper subterranean environments therefore has the potential to double the insights obtained from studies of stygobionts. These insights could be used not only to disentangle evolution from the adaptations to the selective pressures of groundwater habitats but also to characterize the physiological responses stimulated by the interaction with different environmental conditions. Our results further demonstrate that stygofauna are reported in springs more frequently than surface fauna are reported in groundwater, in terms of both number of papers and overall numbers of species. In recent years, a growing body of literature has shown that even the occurrence of surface species in caves is often not accidental (Lunghi et al. 2014a; Lunghi et al. 2017), a finding that has important implications for the communities of shallow subterranean habitats (Kozel et al. 2019; Lunghi 2018; Lunghi et al. 2020; Salvidio et al. 2020; Silva et al. 2020). If stygofauna occur in springs and adjacent microhabitats more commonly than surface fauna occur underground, it is likely that, at least for some stygobionts, the use of the surface environment is not accidental. Further systematic reviews and analyses of the literature on spring fauna could be performed to investigate the countries where the largest number of studies on springs were carried out, the most studied taxa and the most studied functional traits. Moreover, marine caves can further support the idea that springs are just an ecotone that should also be studied from an ecological viewpoint (Romero, in litteris). For example, there are sea fish species that enter and exit marine caves playing a significant role in those environments' ecology. That is the case with the cardinal fish Apogon imberbis. This is a small-sized fish distributed along the eastern Atlantic coast from Morocco to the Gulf of Guinea, including the Azores. It can be found as solitary or forming



363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

schools and is common in small crevices to marine caves, where they can be found in large densities. They show no troglomorphisms, yet they play a significant role in transferring organic material to these marine caves as mysid crustaceans do (Romero, in litteris). Like bats, they tend to stay in the shelters during the day and leave the caves at night, presumably for feeding (Bussotti et al. 2003). The occurrence of stygobionts in springs could affect both the dynamics of boundary habitats and, at the level of the whole stygobiont population, the intrinsic traits of the species. There are several different perspectives for how a stronger conceptual inclusion of springs in subterranean research may provide additional insights on subterranean biology. First, springs may favour intraspecific variation that could be assessed by comparative experimental studies, which would benefit studies of intraspecific dynamics between boundaries and deep areas. Second, springs can inform studies of the processes that promote adaptation to and colonization of border habitats, as research on springs could be used to distinguish possible phenotypic plasticity from local adaptations. Third, given the view of springs as useful laboratories, devoting space and infrastructure at the entrance to subterranean environments could provide important experimental opportunities.

### Conclusions

Even if the transitional and ecotonal role of springs is known and studied since several decades, and the term GDE (Groundwater Dependent Ecosystems) applied to springs allows to study the connected network of surface and subterranean ecosystems following the 'holistic' approach suggested by (Linke et al. 2019), these concepts are rarely translated in ecological and evolutionary studies dealing with groundwater animals. The results of our systematic review broadly suggest that springs and other boundaries with surface environments should be considered and investigated as part of subterranean habitats and of the biology of at least some stygobionts. Studies of groundwater environments and stygobiont biology that do not consider springs may furnish only



394

400

401

402

403

404

405

406

407

408

409 410

411

412

413

416

417

418

419

420

421

- a limited perspective on subterranean environments. The study of groundwater-adapted organisms
- in subterranean aquifers has the potential to reveal new insights in several scientific fields (Pipan
- 388 & Culver 2013; Reboleira et al. 2011), but the study of the boundaries of groundwater
- environments, such as springs, is not only equally important, but even necessary to understand the
- 390 zoology ecology and evolution of groundwater fauna.

### Acknowledgements

- 392 We are grateful to Professor David Culver and Prof. Aldemaro romero Jr. for comments and
- 393 suggestions on an early draft of this manuscript.

### References

- Acreman M, Hughes KA, Arthington AH, Tickner D, and Duenas MA. 2020. Protected areas and freshwater biodiversity: a novel systematic review distils eight lessons for effective conservation. *Conservation Letters* 13. 10.1111/conl.12684
- Alfaro C, and Wallace M. 1994. Origin and classification of springs and historical review with current applications. *Environmental Geology* 24:112-124.
  - Balland D. 1992. Les eaux cachées. Études géographiques sur les galleries drainantes souterraines. Paris: Departement de Géographie, Univers Sorbonne.
  - Barzaghi B, Ficetola GF, Pennati R, and Manenti R. 2017. Biphasic predators provide biomass subsidies in small freshwater habitats: A case study of spring and cave pools. Freshwater Biology 62:1637–1644. DOI: 10.1111/fwb.12975
  - Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, and White JS. 2008. Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in Ecology and Evolution* 24:127 135.
  - Botosaneanu L. 1980. KARSTIC ECOSYSTEM 10 YEARS OF HYDROBIOLOGICAL STUDIES AT CNRS UNDERGROUND LABORATORY IN MOULIS (FRANCE). Hydrobiologia 69:21-24. 10.1007/bf00016530
  - Botosaneanu L. 1998. Sources: aux portes du Styx (Springs: gates to and from the Styx). In: Botosaneanu L, ed. *Studies in Crenobiology- The biology of springs and springbooks* Leiden: Bachuys Publishers, 229-250.
- Bressi N, Aljancic M, and Lapini L. 1999. Notes on presence and feeding of Proteus anguinus Laurenti, 1768 outside caves. *Rivista di Idrobiologia* 38:431 435.
  - Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Machler M, and Bolker BM. 2017. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. *R Journal* 9:378-400.
  - Bussotti S, Guidetti P, and Belmonte G. 2003. Distribution patterns of the cardinal fish, Apogon imberbis, in shallow marine caves in southern Apulia (SE Italy). *Italian Journal of Zoology* 70:153-157.
- Cantonati M, Gerecke R, and Bertuzzi E. 2006. Springs of the Alps sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies.

  Hydrobiologia 562:59–96.
- Cantonati M, Gerecke R, Juttner I, and Cox EJ. 2011. Springs: neglected key habitats for biodiversity conservation Introduction to the Special Issue. *Journal of Limnology* 70:1-1.



443

447

448 449

450

451

452

453

454

455 456

457

458

459

460

- Culver D, Pipan T, and Gottstein S. 2006. Hypotelminorheic-a unique freshwater habitat.

  Subterranean Biology 4:1.
- Culver DC, Holsinger JR, and Feller DJ. 2012. The Fauna of Seepage Springs and Other
   Shallow Subterranean Habitats in the Mid-Atlantic Piedmont and Coastal Plain.
   Northeastern Naturalist 19:1-42. 10.1656/045.019.m901
- Culver DC, and Pipan T. 2014. *Shallow Subterranean Habitats: Ecology, Evolution, and Conservation*. New York, NY, USA: Oxford University Press.
- Culver DC, and Pipan T. 2019. *The biology of caves and other subterranean habitats*. New York: Oxford University Press.
- Culver DC, Pipan T, Culver DC, and Pipan T. 2014. Seepage springs and the hypotelminorheic habitat.
- Di Lorenzo T, Cipriani D, Bono P, Rossini L, De Laurentiis P, Fiasca B, Pantani C, and Galassi DMP. 2005. Dynamics of groundwater copepod assemblages from the Mazzoccolo karstic spring (central Italy). *Meiofauna Marina* 14:97-103.
  - Ficetola GF, Lunghi E, Canedoli C, Padoa-Schioppa E, Pennati R, and Manenti R. 2018. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. *Scientific Reports* 8:10575.
- Fišer C. 2019. *Niphargus*—A model system for evolution and ecology. In: White WB, Culver DC, and Pipan T, eds. *Encyclopedia of Caves*. Cambridge, MA, USA: Academic Press, 746-755.
  - Fiser C, Zaksek V, Zagmajster M, and Sket B. 2007. Taxonomy and biogeography of Niphargus steueri (Crustacea: Amphipoda). *Limnology* 8:297-309. 10.1007/s10201-007-0221-5
  - Fišer Z, Novak L, Lustrik R, and Fiser C. 2016. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. *Science of Nature* 103:7. 10.1007/s00114-015-1329-9
  - Kozel P, Pipan T, Mammola S, Culver DC, and Novak T. 2019. Distributional dynamics of a specialized subterranean community oppose the classical understanding of the preferred subterranean habitats. *Invertebrate Biology* 138. 10.1111/ivb.12254
  - Linke S, Turak E, Asmyhr MG, and Hose G. 2019. 3D conservation planning: Including aquifer protection in freshwater plans refines priorities without much additional effort. *Aquatic conservation*.
  - Lunghi E. 2018. Ecology and life history of Meta bourneti (Araneae: Tetragnathidae) from Monte Albo (Sardinia, Italy). *Peerj* 6. 10.7717/peerj.6049
  - Lunghi E, Ficetola GF, Zhao YH, and Manenti R. 2020. Are the Neglected Tipuloidea Crane Flies (Diptera) an Important Component for Subterranean Environments? *Diversity-Basel* 12. 10.3390/d12090333
- Lunghi E, Manenti R, and Ficetola GF. 2014a. Do cave features affect underground habitat exploitation by non-troglobite species? *Acta Oecologica-International Journal of Ecology* 55:29-35. 10.1016/i.actao.2013.11.003
- 466 Lunghi E, Manenti R, and Ficetola GF. 2014b. Do cave features affect underground habitat
   467 exploitation by non-troglobite species? *Acta Oecologica* 55:29 35.
   468 10.1016/j.actao.2013.11.003.
- Lunghi E, Manenti R, and Ficetola GF. 2017. Cave features, seasonality and subterranean distribution of non-obligate cave dwellers. *Peerj* 5:e3169. DOI: 10.7717/peerj.3169
- 471 MacAvoy SE, Braciszewski A, Tengi E, and Fong DW. 2016. Trophic plasticity among spring vs.
  472 cave populations of Gammarus minus: examining functional niches using stable isotopes
  473 and C/N ratios. *Ecological Research* 31:589-595. 10.1007/s11284-016-1359-6
- 474 Malard F, Boutin C, Camacho AI, Ferreira D, Michel G, Sket B, and Stoch F. 2009. Diversity
  475 patterns of stygobiotic crustaceans across multiple spatial scales in Europe. *Freshwater*476 *Biology* 54:756-776.



- 477 Malard F, M D-O, Mathieu J, and Stoch F. 2002. *Sampling Manual for the Assessment of Regional Groundwater Biodiversity*. Lyon: PASCALIS Project.
  - Manenti R. 2014. Role of cave features for aquatic troglobiont fauna occurrence: effects on "accidentals" and troglomorphic organisms distribution. *Acta Zoologica Academiae Scientiarum Hungaricae* 60:257-270.
  - Manenti R, and Barzaghi B. 2020. Is landscape of fear of macroinvertebrate communities a major determinant of mesopredator and prey activity? *Knowledge and Management of Aquatic Ecosystems*. 10.1051/kmae/2019050
  - Manenti R, and Pezzoli E. 2019. Think of what lies below, not only of what is visible above, or: a comprehensive zoological study of invertebrate communities of spring habitats. *The European Zoological Journal*, 86:272-279. 10.1080/24750263.2019.1634769
  - Manenti R, Siesa ME, and Ficetola GF. 2013. Odonata occurence in caves: active or accidentals? A new case study. *Journal of Cave and Karst Studies* 75:205-209. 10.4311/2012LSC0281
  - Marković V, Novaković B, Ilić M, and Nikolić V. 2018. Epigean Niphargids in Serbia: New Records of *Niphargus valachicus* Dobreanu & Manolache, 1933 (Amphipoda: Niphargidae), with Notes on its Ecological Preferences. *Acta Zoologica Bulgarica* 70:45-50.
  - Mathieu J, Essafi K, and Chergui H. 1999. Spatial and temporal variations of stygobite Amphipod populations in interstitial aquatic habitats of karst floodplain interfaces in France and Morocco. *Annales De Limnologie-International Journal of Limnology* 35:133-139. 10.1051/limn/1999018
  - Mathieu J, Essafichergui K, and Jeannerod F. 1994. A gradient of interstitial Niphargus rhenorhodanensis populations in 2 karst floodplain transition zones of the French Jura. *Hydrobiologia* 286:129-137. 10.1007/bf00006244
- 502 Moseley M. 2009. Are all caves ecotones. Cave and Karst Science 36:53-58.
  - Niemiller ML, Porter ML, Keany J, Gilbert H, Fong DW, Culver DC, Hobson CS, Kendall KD, Davis MA, and Taylor SJ. 2018. Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae). *Conservation Genetics Resources* 10:247-257. 10.1007/s12686-017-0785-2
  - Page MJ, and Moher D. 2017. Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: a scoping review. *Systematic Reviews* 6. 10.1186/s13643-017-0663-8
  - Pipan T, and Culver DC. 2012. Convergence and divergence in the subterranean realm: a reassessment. *Biological Journal of the Linnean Society* 107:1-14. DOI 10.1111/j.1095-8312.2012.01964.x
  - Pipan T, and Culver DC. 2013. Forty years of epikarst: what biology have we learned? International Journal of Speleology 42:215-223. 10.5038/1827-806x.42.3.5
  - Pipan T, Fiser C, Novak T, and Culver DC. 2012. Fifty Years of the Hypotelminorheic: What Have We Learned? *Acta Carsologica* 41:275-285.
- 518 Pirni A. 2016. Space and Anthropology of Limit: A Philosophical Perspective. *Frontiers in Astronomy and Space Sciences* 3. 10.3389/fspas.2016.00022
- Plenet S, and Gibert J. 1995. A comparison of surface water/ground water interface zones in fluvial and karstic systems. *Comptes Rendus de l'Académie des sciences* 318:499-509.
- 522 Poulson TL, and White WB. 1969. The cave environment. Science 165:971–981.
- Reboleira A, Borges PAV, Goncalves F, Serrano ARM, and Oromi P. 2011. The subterranean fauna of a biodiversity hotspot region Portugal: an overview and its conservation.
- 525 International Journal of Speleology 40:23-37. 10.5038/1827-806x.40.1.4



534

535

536

537

538

539

540

541

542

543

544 545

546

547

548

549

550

551

552

554

555 556

557

558

- 526 Rechulicz J. 2011. Monitoring of the Topmouth Gudgeon, Pseudorasbora Parva (Actinopterygii: 527 Cypriniformes: Cyprinidae) in a Small Upland Ciemiega River, Poland. *Acta* 528 *Ichthyologica Et Piscatoria* 41:193-199.
- 529 Romero A. 2009. Cave biology. New York: Cambridge University Press.
- Rouch R. 1986. Sur l'écologie des eaux souterraines dans le karst. Stygologia 2:352-398.
- 531 Salvidio S, Costa A, Oneto F, and Pastorino MV. 2020. Variability of A Subterranean Prey-532 Predator Community in Space and Time. *Diversity-Basel* 12. 10.3390/d12010017
  - Silva MS, Iniesta LFM, and Ferreira RL. 2020. Invertebrates diversity in mountain Neotropical quartzite caves: which factors can influence the composition, richness, and distribution of the cave communities? *Subterranean Biology* 33:23-43. 10.3897/subtbiol.33.46444
  - Sket B. 2008. Can we agree on an ecological classification of subterranean animals? *Journal of Natural History* 42:1549-1563. DOI: 10.1080/00222930801995762
  - Stoch F, Gerecke R, Pieri V, Rossetti G, and Sambugar B. 2011. Exploring species distribution of spring meiofauna (Annelida, Acari, Crustacea) in the south-eastern Alps. *Journal of Limnology* 70:65.
  - Sturz BR, and Bodily KD. 2016. Detecting the perception of illusory spatial boundaries: Evidence from distance judgments. *Cognition* 146:371-376. 10.1016/j.cognition.2015.10.015
  - Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, and Willerslev E. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. *Molecular Ecology* 21:2565-2573.
  - Trajano E, and De Carvalho MR. 2017. Towards a biologically meaningful classification of subterranean organisms: a critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. *Subterranean Biology* 22:1–26.
  - Vandel A. 1920. Sur la faune des sources. *Bulletin De La Societe Zoologique De France* 45:177 183.
- Vandel A. 1964. *Biospeleologie: la biologie des animaux cavernicoles*. Paris: Gauthiers-Villars.
  - Vilenica M, Previsic A, Kucinic M, Gattolliat JL, Sartori M, and Mihaljevic Z. 2016. Distribution and Autecology of Mayflies (Insecta, Ephemeroptera) in a Mediterranean River in the Western Balkans. *Entomological News* 126:19-35.
  - Von Fumetti S, and Nagel P. 2011. A first approach to a faunistic crenon typology based on functional feeding groups. *Journal of Limnology* 70:147-154.
- White WB. 2019. Springs. In: White WB, Culver DC, and Pipan T, eds. *Encyclopedia of Caves*. Cambridge, MA, USA: Academic Press, 1031 -1040.



### **Table 1**(on next page)

Table 1

Table 1. Search terms and inclusion/exclusion criteria used to describe published evidence of stygobionts in springs and to answer specific questions.



### Table 1

| Categories                                    | Restrictions applied                                                                                                               |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Number of species mentioned                   | If clearly stated for all taxa considered in the study                                                                             |
| Stygofauna found in springs                   | If clearly stated that the species found in springs are stygobites                                                                 |
| Number of stygofaunal species in springs      | If the number of stygobite species found in springs is clearly stated for all taxa considered in the study                         |
| Surface fauna found underground               | If clearly stated that the species found underground are of epigean origin                                                         |
| Number of surface species found underground   | If the number of epigean species found underground is clearly s tated for all taxa considered in the study                         |
| Species found both in caves and springs       | If clearly stated that the species found both in caves and springs are epigean or stygobites                                       |
| Number of species in both (caves and springs) | If the number of stygobites or epigean species found in both is clearly stated for all taxa                                        |
| Ecology                                       | Yes/no, depending on whether the paper provides original ecological information (habitat of occurrence, environmental drivers etc) |
| Taxonomy                                      | Yes/no, depending on whether the paper provides original taxonomic data                                                            |
| Behavior                                      | Yes/no, depending on whether the paper tests/reports original behavioral information/observations                                  |
| Conservation                                  | Yes/no, depending on whether the paper explores original conservation/restoration problems or actions                              |
| Faunal assessment                             | Yes/no, depending on whether the paper is mainly devoted to assess faunal composition of spring/groundwater habitat                |

Table 1. Search terms and inclusion/exclusion criteria used to describe published evidence of 2 3

stygobionts in springs and to answer specific questions.

4



### Table 2(on next page)

### Table 2

Table 2. Number of papers reporting observations of stygofauna in springs, of surface fauna in groundwaters, and of the same taxa in both environments. Papers are divided based on the key words used for the systematic review: GF, groundwater fauna; SFF, spring freshwater fauna.

### **PeerJ**

1 Table 2

2

|                       |                     | Total | GF  | SFF |
|-----------------------|---------------------|-------|-----|-----|
| G. 6                  | YES                 | 57    | 49  | 8   |
| Stygofauna in springs | NO                  | 235   | 195 | 40  |
|                       | Information missing | 50    | 31  | 19  |
| Surface               | YES                 | 37    | 34  | 3   |
| fauna                 | NO                  | 278   | 220 | 58  |
| underground           | Information missing | 27    | 21  | 6   |
| Same taxa             | YES                 | 33    | 30  | 3   |
| both in springs and   | NO                  | 266   | 214 | 52  |
| groundwaters          | Information missing | 43    | 31  | 12  |

Table 2. Number of papers reporting observations of stygofauna in springs, of surface fauna in

<sup>5</sup> groundwaters, and of the same taxa in both environments. Papers are divided based on the key

<sup>6</sup> words used for the systematic review: GF, groundwater fauna; SFF, spring freshwater fauna.



### **Table 3**(on next page)

### Table 3

Table 3. The reported occurrence of stygofauna in springs, of surface fauna in groundwaters, and of the same taxa in both habitats shown as a function of study discipline. Relationships were assessed using generalized linear models (GLMs) followed by a likelihood ratio test. Significant relationships are reported in bold.



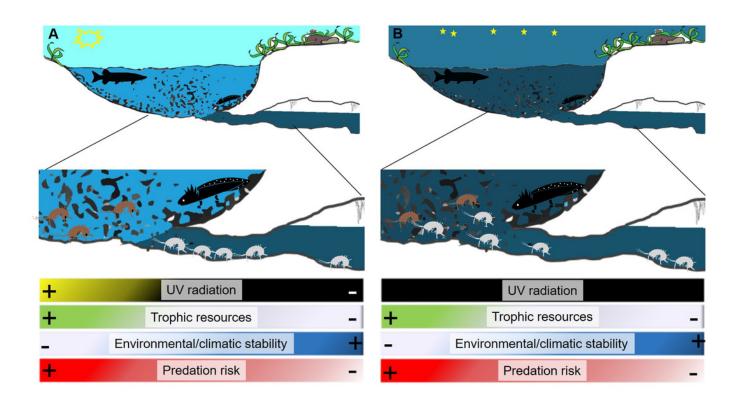
### 1 Table 3

|                                            | Research discipline | Estimate | SE     | LRT  | Р    |
|--------------------------------------------|---------------------|----------|--------|------|------|
|                                            | Ecology             | 0.27     | 0.34   | 0.64 | 0.42 |
|                                            | Taxonomy            | 0.75     | 0.39   | 3.67 | 0.06 |
| Stygofauna in springs                      | Faunal assessment   | 0.24     | 0.35   | 0.48 | 0.49 |
|                                            | Conservation        | 0.67     | 0.53   | 1.50 | 0.22 |
|                                            | Behavior            | -13.84   | 834.76 | 0.98 | 0.32 |
|                                            | Ecology             | 0.02     | 0.41   | 0.00 | 0.96 |
|                                            | Taxonomy            | 0.27     | 0.50   | 0.29 | 0.59 |
| Surface fauna underground                  | Faunal assessment   | 1.09     | 0.45   | 6.62 | 0.01 |
|                                            | Conservation        | 0.51     | 0.59   | 0.68 | 0.41 |
|                                            | Behavior            | 1.30     | 1.20   | 0.94 | 0.33 |
|                                            | Ecology             | 0.09     | 0.43   | 0.04 | 0.84 |
| Come tays both in springs and              | Taxonomy            | 0.91     | 0.45   | 3.96 | 0.04 |
| Same taxa both in springs and groundwaters | Faunal assessment   | 0.06     | 0.44   | 0.02 | 0.89 |
| giounawaters                               | Conservation        | 0.77     | 0.60   | 1.45 | 0.23 |
|                                            | Behavior            | -13.15   | 839.90 | 0.51 | 0.48 |

<sup>2</sup> Table 3. The reported occurrence of stygofauna in springs, of surface fauna in groundwaters, and

6

<sup>3</sup> of the same taxa in both habitats shown as a function of study discipline. Relationships were


<sup>4</sup> assessed using generalized linear models (GLMs) followed by a likelihood ratio test. Significant

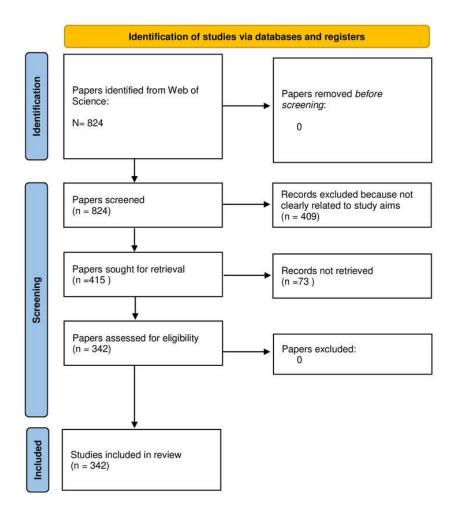
relationships are reported in bold.

### Figure 1

Figure 1

Diagram of a spring showing differences between surface and groundwater habitats during day (A) and night (B). White silhouettes represent stygobionts, black silhouettes represent potential predators (fish and salamanders), and brown silhouettes surface aquatic invertebrates. Drawing is modified from Andrea Melotto and Benedetta Barzaghi (unpublished).






### Figure 2

Figure 2

Figure 2 PRISMA 2020 flow diagram for the systematic reviews which included search of Web of Science database only.



