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ABSTRACT
Objective. This study aims to explore a three-dimensional planting mode in orchards
and provide theoretical basis for the efficient peach-Morchella planting and soil
management afterMorchella cultivation.
Methods. Next-generation sequencing was performed to investigate the variations in
soil physicochemical properties, enzyme activities and fungal compositionunder peach-
Morchella intercropping for one year and two years, by using the soil without peach-
Morchella intercropping as the control group.
Results. Peach-Morchella intercropping decreased the soil bulk density, and signifi-
cantly increased the maximum field capacity, non-capillary porosity and total porosity,
organic matter, available potassium and available zinc, which together improved soil
structure and soil fertility. Besides, the intercropping mode obviously enhanced soil
enzyme activities and mineral absorption and transformation in peach orchard soils.
The intercropping also resulted in a decline of soil fungal diversity, and the 2-year soil
samples were of higher abundance of Zygomycota. More importantly, peach-Morchella
intercropping elevated the yields of both peach andMorchella, bringing about obviously
higher economic benefits.
Conclusion. Continuous peach-Morchella intercropping improves the soil structure
and fertility while decreases soil fungal diversity, which can contribute to greater eco-
nomic benefits of the peach orchard. Our findings shed new light on the intercropping-
fungus-soil relationship, andmay facilitate the further development of peach-Morchella
intercropping.

Subjects Agricultural Science, Mycology, Plant Science, Soil Science, Biosphere Interactions
Keywords Peach orchard, Intercropping,Morchella, Fungual diversity, Soil physicochemical
property, Enzyme activity

INTRODUCTION
The Longquanyi District of ChengduCity has a long history of peach planting. However, the
management of peach orchards is largely neglected during the slack season, which causes
a serious waste of orchard soils (Liu & Zhu, 2009). With the accelerated urbanization,
the farmland in China is sharply decreasing. Thus, it is extremely urgent to improve the
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efficiency of land use (Liu, 2013), for which proper intercropping may be an effective and
feasible way (Zhang et al., 2017; Jiang et al., 2017). It has been suggested that monoculture
of fruit tree tend to cause some serious problems such as soil erosion, frequent pest and
disease occurrence. (Nong, 2017). For these reasons, orchard intercropping, a sustainable
development practice that integrates the advantages of agriculture and forestry, has become
a popular mode in ecological agriculture. As reported, orchard intercropping can improve
soil fertility, water and soil conservation, ecological environment and fruit yield and quality
(Zeng, 2009). In recent years, the peach industry in Longquanyi has been declining due
to some problems such as cultivar aging and degradation, resulting in lower income of
fruit farmers. Fruit-vegetable or fruit-mushroom intercropping in orchards during the
slack season are considered to improve the land use efficiency and farmers’ income in this
region.

As a valuable edible and medicinal fungus, Morchella is rich in proteins, amino acids,
peptides, vitamins and other nutritious components with anti-cancer, anti-fatigue and
immunoregulatory activities (Royse & May, 1990; Dai & Yang, 2008; Li, 2018). Currently,
the techniques of Morchella cultivation have been relatively well developed, and orchard
intercropping of Morchella has been realized. It has been reported that the fruit body of
Morchella cultivatedwith orchard intercroppingmode has a higher total amino acid content
than that cultivated with conventional field planting (Wei et al., 2020). Fruit-mushroom
orchard intercropping has recently become a research topic of great concerns. Chen et al.
(2012) conducted intercropping of Pleurotus ostreatus and pear tree, which was found to
obviously increase the microbial community in 0–20 cm soil layer, as well as significantly
improve the soil fertility and fruit quality. Intercropping patterns would significantly affect
soil fungal diversity, changing soil health status, especially for mushroom cultivation (Shen
et al., 2009). To promote fruit body occurrence, mushrooms become the dominant fungus
in the soil, and compete with other fungal communities, creating a suitable environment.
Zhang et al. (2015) and Nong (2017) studied citrus-Stropharia mushroom intercropping
system and observed significant increases in soil carbon and nitrogen content, further
proving that Stropharia mushroom could promote the formation and mineralization of
active organic carbon and various nitrogen sources. In addition, the kiwifruit orchard
intercropping pattern was reported to improve the soil permeability and soil aggregate
structure, contributing to loose soils and better growth and development of kiwifruit (Lai
et al., 2019). Besides, intercropping of edible fungi including Auricularia sp. and Volvariella
volvacea in kiwifruit orchards could improve the yield and quality of fruit, bringing about
high ecological and economic benefits (Tian & Peng, 1993; Su & Liu, 2014). However, there
has been no report on peach-Morchella intercropping yet. In this study, peach-Morchella
intercropping was carried out in the peach-planting base of Longquanyi, Chengdu since
2015, and the soil physicochemical properties, enzyme activities and fungal composition
were analyzed to investigate the three-dimensional planting mode in orchards and provide
theoretical basis for better peach-Morchella intercropping and soil management after
Morchella cultivation.
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MATERIALS AND METHODS
Morchella cultivation
The Morchella cultivar Chuan Yangdujun No. 1 was provided by Soil and Fertilizer
Institute, Sichuan Academy of Agricultural Sciences. The mushrooms were cultivated in
the peach-planting base of Changsong specialized cooperatives in Longquanyi, Chengdu
(N30◦31′44.55′′, E104◦17′49.46′′) with the soil-covering mode. The base was built in 2012
with a subtropical humid climate and Wanhujing as the main peach cultivar. The peach
trees were planted with tree distance of 2.5 m and row distance of 5 m. Morchella was
cultivated in the idle fields between peach trees. The seeds were sown in November with
the amount of 300–500 g per m−2, and covered with 2–3 cm thick soil for heat and water
preservation. Afterwards, a shelter with arched plastic and shading net was constructed to
supply a suitable environment for Morchella growth. About 2 weeks later when the hypha
grew out of the soil, the transformation bags were placed in the field with a density of five
bags per m−2 for nutrition supply. Then, Morchella form fruit bodies at appropriate time.
The harvest time was in February to late March of the next year. After the harvest, the
transformation bags were cut and dried for a month, and then the remaining materials
inside were poured into the peach-Morchella intercropping fields.

Soil sample collection
A total of three soil treatments were conducted, including one-year peach-Morchella
intercropping, two-year peach-Morchella intercropping and the control group without
peach-Morchella intercropping (the monoculture peach), and the corresponding soil
samples were designated as PM-1, PM-2 and PM-CK, respectively. The PM-2 soil samples
were collected from the field whereMorchella was intercropped in the peach orchard from
2015 to 2016, while the PM-1 soil samples were collected from the peach orchard with
Morchella intercropping just in 2016. Each treatment included three replicates, with each
replicate comprising 10 peach trees in a field area of about 150 m2. The distance between
each treatment was more than 5 m. After the harvest of Morchella in April, 2017, three
sampling sites were randomly selected along a S-shaped curve in each treatment area.
Each sampling point was more than 1 m away from the peach tree trunk, and the distance
between any two adjacent sampling points was no less than 5 m. Soil samples at the depth
of 0–20 cmwere collected after the removal of surface litter layer. The physical properties of
the soil were measured with samples collected by ring knife and aluminum box sampling.
Additional samples were then taken at each point for chemical properties and molecular
biological analysis and soil fungal diversity.

Physicochemical determination of soil samples
Soil samples from different treatments were collected and the physicochemical properties
were determined, including soil bulk density, maximum field capacity, capillary capacity,
noncapillary porosity, capillary porosity, total porosity, moisture content, soil specific
gravity, pH value, organic matter, total nitrogen, total phosphorus, available nitrogen,
available phosphorus, available potassium and available zinc. Determination of soil
bulk density, maximum field capacity, capillary capacity, noncapillary porosity, capillary
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porosity, total porosity, moisture content and soil specific gravity was performed by
referring to NYT 1121.4-2006 (Measurement method from the popularized agricultural
standards). pH value was tested using a pH510 table acidometer (EUTECH) based on
NYT 1377-2007. Organic matter, total nitrogen, total phosphorus, available nitrogen,
available phosphorus, available potassium and available zinc were determined according
to the methods reported by Ji (2005), Tang et al. (2009), Zhang (2008), Wang (2008) and
Gawryluk, Wyupek & Pawe (2020).

Soil enzyme activity determination
Potassium permanganate ultraviolet spectrophotometry was used to determine the catalase
activity (Yang et al., 2011). About 2.00 g soil was weighed and put into a 100 mL triangle
flask, which was added with 40 mL of distilled water and then 5 mL of 0.3% H2O2,
followed by shaking for 20 min. The samples were then added with 1 mL of saturated
alum, immediately filtered and put to a triangle flask containing five mL of 3 N sulfuric
acid. After draining, 25 mL of filtrate was absorbed and titrated to purple with 0.1 N
potassium permanganate solution. At the same time, a soilless control was performed.
DNS colorimetry was used to determine the sucrase and cellulase activity (Li & Zheng,
2016). About 2.00 g of fresh soil was put into a 50 mL triangle flask and injected with 15
mL 8% sucrose solution, 5 mL pH 5.5 phosphate buffer and 0.25 mL toluene. The sample
was shaken fully and put into an incubator, cultured at 37 ◦C for 24 h, and then taken
and filtered quickly. Then, 1 mL of filtrate was taken and put into a 50-mL capacity flask,
followed by the addition of 3 mL DNS solution and heating in a water bath with boiling
water for 5 min. Then, the volumetric flask was moved to tap water and cooled for 3 min.
The solution was orange yellow due to the formation of 3-amino-5-nitrosalicylic acid, and
was diluted to 50 mL with distilled water. Colorimetric measurement was then performed
on a spectrophotometer at 508 nm wavelength. In order to eliminate the errors caused by
the original sucrose and glucose in the soil, a control without substrate (without sucrose)
should be performed for each soil sample, and a control without soil should be conducted
for the whole experiment. For cellulase activity, about 10 g of soil was put into a 50 mL
triangle flask, which was added with 1.5 mL toluene, shaken well and allowed to stand for
15 min, followed by the addition of 5 mL 1% carboxymethyl cellulose solution and 5 mL
pH 5.5 acetate buffer, and then culturing in a 37 ◦C incubator for 72 h. After culturing,
the sample was filtered and 1 mL of filtrate was taken for colorimetric measurement with
the standard curve. In order to eliminate the errors caused by the original sucrose and
glucose in the soil, a control without matrix should be performed for each soil sample, and
a control without soil should be conducted for the whole experiment. The urease activity
was investigated by indophenol blue colorimetry following the descriptions ofHuang, Li &
Zhang (2012). About 5 g of soil was weighed and put into a 50-mL triangle flask, followed
by the addition of 1 mL toluene and shaking, and then addition of 10mL 10% urea solution
and 20 mL citrate buffer solution (pH 6.7) after 15 min. The mixture was well shaken and
incubated in a 37 ◦C incubator for 24 h. After culturing, the mixture was filtered, and
then 1 mL of filtrate was taken and added to a 50-mL volumetric flask, followed by the
addition of four mL sodium phenol solution and three mL sodium hypochlorite solution
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and shaking. After 20 min, the color was developed and the volume was fixed. Colorimetric
measurement was conducted at 578 nm wavelength of the spectrophotometer within
1 h. Then, excel and SPSS13.0 were used for statistical analysis, and the least significant
difference method (P < 0.05) was used for difference analysis.

DNA extraction, PCR amplification and MiSeq sequencing
More than 500 mg of soils for each sample was for DNA extraction with three biological
replications in each treatment for the sake of methodological reproducibility. The
cetyltrimethyl ammonium bromide method (CTAB) was employed to isolate total DNA
from the soil samples by referring to Li et al. (2017), and a UV spectrophotometer from
Eppendorf, Bio. Photometer was used tomeasure the DNA purity and concentration. Then,
an appropriate amount of available sample was taken into the centrifuge tube and diluted to
1 ng /µL with sterile water. The diluted genomic DNAwas used as the template, and specific
primers with barcode were used for PCR amplification according to the sequencing region.
The fungal gene-specific primers were ITS5-1737F (GGAAGTAAAAGTCGTAACAAGG)
and ITS2-2043R (GCTGCGTTCTTCATCGATGC). To ensure the efficiency and accuracy
of PCR amplification, buffer and high fidelity enzyme (New England Biolabs) were used.
The PCR amplification was performed by Beijing Novogene Biotechnology Co., Ltd
(Beijing, China) with the conditions described byOros-Sichler & Kornelia (2013). The PCR
products were fully and equally mixed based on each concentration, and then detected
by electrophoresis with 2% agarose gel. The target product was recovered with the gel
recycling kit provided by Qiagen Co., Ltd. Afterwards, the library was constructed with
TruSeq R©DNA PCR-Free Sample Preparation Kit, which was subsequently quantified by
Qubit and Q-PCR. The quantified library was sequenced on HiSeq2500 PE250 (Novogene,
Beijing, China).

Sequence and statistical analysis
A sequence alignment tool with QIIME pipeline version 1.7.0 was applied to cluster
high-quality sequences with ≥ 97% similarity into OTUs (Edgar, 2010; Caporaso et al.,
2010). In this process, the most abundant sequence of each OTU was chosen to as the
representative sequence and the relative abundance of the OTUs was calculated. The OTUs
would be removed if they had a <0.001% relative abundance of the total sequences across
all samples (Bokulich & Mills, 2013). The OTU relative abundance data were subjected
to multivariate statistical analysis in R environment (R Core Team, 2016). To visualize
the distribution of fungal communities in each treatment, an unconstrained ordination
(non-metric multidimensional scaling NMDS) was used based on weighted UniFrac
distance using the R vegan package (McArdle & Anderson, 2001; Oksanen et al., 2010). The
R VennDiagram package was used to present the numbers of shared OTUs with a Venn
diagram (Chen & Boutros, 2011). Besides, a heatmap was drawn to hierarchically cluster
and analyze changes (the amount by which each genus deviated in a specific sample from
the genus average across all samples) of the 35 most abundant genera using R heatmap
package (Kolde, 2015). Two fungal alpha diversity indices including observed OTUs and
Shannon were rarefied and calculated based on the smallest library size of the samples.
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Table 1 Soil physicochemical property changes of soil in peach orchard.

NO. Soil bulk
density
(g/cm2)

Maximum
field capacity
(%)

Capillary
capacity (%)

Noncapillary
porosity (%)

Capillary
porosity (%)

Total
porosity (%)

Moisture
content (%)

Soil specific
gravity

PM-CK 1.47 Aa 29.43 Bb 28.00 Aa 2.55 Bb 40.10 Aa 42.65 Bb 20.98 Aa 2.80 Aa
PM-1 1.25 Bb 39.97 Aa 27.15 Aa 16.40 Aa 37.50 Ab 51.20 Aa 18.59 Ab 2.54 Ab
PM-2 1.29 Bb 43.56 Aa 30.25 Aa 16.40 Aa 37.60 Ab 54.00 Aa 20.29 Aa 2.61 Aab
NO. pH Organic

matter
g/kg

Total
nitrogen
g/kg

Total
phosphorus
g/kg

Available
nitrogen
mg/kg

Available
phosphorus
mg/kg

Available
potassium
mg/kg

Available zinc
mg/kg

PM-CK 7.94 Aa 18.20 Bb 1.35 Bb 0.56 Bb 100.00 Ac 19.70 Bb 165.00 Bc 0.25 Bb
PM-1 7.88 Aa 24.80 Aa 1.51 Bb 0.68 Bb 115.00 Ab 28.20 Bb 255.00 Ab 0.73 Aa
PM-2 7.72 Ab 36.37Aa 2.44 Aa 1.21 Aa 134.67 Aa 74.50 Aa 447.67 Aa 1.04 Aa

Notes.
Excel and SPSS13.0 were used for statistical analysis. Different capital letters showed significant difference at P < 0.01, and different lowercase letters showed significant differ-
ence at P < 0.05 between different treatments by the LSD method of a one-way ANOVA. PM-1 the soil of peach-Morchella intercropping for 1 year; PM-2 the soil of peach-
Morchella intercropping for 2 years; PM-CK the control group without peach-Morchella intercropping.

RESULTS
Variations of soil physicochemical properties in peach orchard
Peach-Morchella intercropping greatly influenced the physicochemical properties of peach
orchard soils (Table 1). Among the eight tested soil physical properties, half of them
exhibited extremely significant differences compared with those in the control group,
while the other four were not obviously different. Specifically, one-year and two-year
peach-Morchella intercropping obviously decreased soil bulk density, while significantly
increased the maximum field capacity, non-capillary porosity and total porosity compared
with the control group. However, capillary capacity was not obviously affected by peach-
Morchella intercropping. In addition, all the tested soil chemical properties showed
increases in values with the duration of peach-Morchella intercropping except for the pH
value. Peach-Morchella intercropping very significantly enhanced organic matter, available
potassium and available zinc, particularly two-year intercropping. In addition, two-year
peach-Morchella intercropping resulted in extremely significantly higher total nitrogen,
total phosphorus and available phosphorus in soils compared with one-year intercropping
and the control. Generally, peach-Morchella intercropping evidently improved soil fertility
and soil structure with loosened texture and enhanced water holding capacity, but the
duration of the intercropping showed no significant effect on the soil physical properties.

Soil enzyme activities in peach orchard
To further explore the variations in soil fertility, we determined the activities of four
soil-related enzymes, including catalase, sucrase, cellulase and urease (Table 2). As a result,
the activities of all these tested enzymes increased with the duration of peach-Morchella
intercropping. Peach-Morchella intercropping resulted in significant increases in the activity
of catalase and cellulase in soils, particularly the two-year intercropping, which increased
activity of cellulase to 3.6 folds as compared with the control. In addition, the sucrase
and urease activities in two-year intercropping soils were significantly higher than those
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Table 2 Soil enzyme activities in peach orchard.

NO. Catalase (U/g) Sucrase (U/g) Cellulase (U/g) Urease (U/g)

PM-CK 7.69 Bb 1.10 Bb 0.05 Bc 0.73 Ab
PM-1 9.25 Aa 1.20 Bb 0.09 Ab 0.82 Aab
PM-2 9.14 Aa 2.17 Aa 0.18 Aa 0.92 Aa

in the control; however, no significant differences were observed between the one-year
intercropping soil and the control. Overall, continuous peach-Morchella intercropping
could obviously improve soil enzyme activities and facilitate mineral absorption and
transformation in peach orchard soils.

Taxonomy-based analysis of fungal community
The soil samples were sequenced and the sequences were clustered into OTUs. As a result,
the soil samples fromone-year peach-Morchella intercroppingwere of the largest number of
OTUs with an average of 870. However, the soil samples from two-year intercropping had
an average of 583OTUs, whichwas obviously smaller than that of other two groups. Besides,
a total of 273 common fungal OTUs were found in the soils among the three groups (Fig. 1).
Among the OTUs classified at the phylum level, Ascomycota and Zygomycota were detected
in all groups. As shown in Fig. 2, the most abundant phylum was Ascomycota, accounting
for 70.81% of the total fungal sequences on average, followed by Zygomycota (26.13%
on average). The relatively less dominant phyla included Basidiomycota, Chytridiomycota,
Glomeromycota andNeocallimastigomycota. It is noteworthy that the two-year intercropping
soil samples had lower abundance of Ascomycota and higher abundance of Zygomycota
relative to other two groups.

To reveal the fungal diversity of different soil samples at the genus level, the dominant
genera were clustered in a heatmap (Fig. S1). As a result, 35 genera were clustered and
they belonged to the phyla of Ascomycota, Zygomycota and Basidiomycota, accounting for
80.00%, 11.43% and 8.57%, respectively. These genera included Acremonium, Cercophora,
Aspergillus, Cladosporium and Tuber. In addition, the differences in dominant genera in
different soil samples were investigated. As a result, each group had its specific fungal
genera. In particular, one-year intercropping soils had higher abundance of 12 genera
such as Acremonium, Cercophora, Aspergillus, Lophodermium and Staphylotrichum, while
two-year intercropping soils had higher abundance of eight genera such as Gilbertella,
Morchella, Scytalidium andMortierella. Nevertheless, Trichoderma and Verticillium showed
dominance in none of the three soil samples. Hence, it can be inferred that the duration of
peach-Morchella intercropping affected the fungal composition in soils to some extent.

Fungal diversity
Two fungal alpha diversity indices were investigated between the soil samples including
observed species and Shannon value (Fig. 3). The largest number (423) of observed species
was found in the control group, which was similar to that in the one-year intercropping
soils but apparently larger than that in two-year intercropping soil samples (301). Similarly,
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Figure 1 Venn diagram showing the number of shared OTUs between different soil samples of peach-
Morchella intercropping.

Full-size DOI: 10.7717/peerj.11705/fig-1

Figure 2 OTU average relative abundances of the major fungal phyla in the soil samples of peach-
Morchella intercropping.

Full-size DOI: 10.7717/peerj.11705/fig-2
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Figure 3 Boxplot showing fungal alpha diversity indices.
Full-size DOI: 10.7717/peerj.11705/fig-3

Table 3 Economic benefit investigation of peach orchard with peach-Morchella intercropping.

NO. Peach yield
(kg/mu)

Unit price
(yuan/kg)

FreshMorchella
yield (kg/mu)

Unit price
(yuan/kg)

Fertilizer cost
(yuan/mu)

Other costs
(yuan/mu)

Net income
(yuan/mu)

PM-CK 1630 7.5 0 150 1150 300 10775
PM-1 1650 7.5 240 150 1150 9110 38115
PM-2 1650 7.5 220 150 1150 7100 37125

Notes.
Mu, a unit of area (=0.0667 hectares);Other costs included cost of labor, materials and culture ofMorchella, etc.

the control group had the greatest Shannon value (5.01), followed by the one-year and two-
year intercropping soils. Moreover, the fungal beta diversity was evaluated by nonmetric
multidimensional scaling ordination (Fig. S2). The three soil samples were obviously
separated in different quadrants. The control and one-year intercropping soil samples
were closer on the first axis, while the one-year and two-year intercropping soils were
closer on the second axis, indicating their similar fungal communities. Through the whole
fungal diversity analysis above, it was further confirmed that continuous peach-Morchella
intercropping would result in a decline of soil fungal diversity.

Economic benefits
To reveal the effects of continuous peach-Morchella intercropping on the economic benefits
of the peach orchards, some relevant economic indices were investigated, including peach
yield, fresh Morchella yield, cost and net income (Table 3). Specifically, peach-Morchella
intercropping was bound to greatly increase the costs like labor, materials and Morchella
culture. However, the harvested Morchella fruit bodies brought about higher economic
benefits, and the net income of peach orchards with peach-Morchella intercropping was
more than three folds that of the control. Furthermore, a shorter duration of intercropping
would more significantly increase the yield ofMorchella.
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DISCUSSION
Variations in soil physicochemical property contribute to soil
structure and fertility improvement
The present study reveals that Peach-Morchella intercropping has great effects on the soil
physicochemical properties in peach orchards. The soil bulk density was detected to be
obviously decreased. Soil bulk density and porosity are generally regarded as important
indicators to evaluate soil quality, both of which play certain roles in determining the status
of water, gas, heat and biology in the soil, and affect the nutrient supply for crops (Gu et
al., 2010). Consistent with the present study, Wang et al. intercropped edible fungi in pear
orchards and observed an obvious decline in soil bulk density, which is conducive to the
formation of soil aggregates and increase of soil porosity (Wang et al., 2014). In addition,
the maximum field capacity, noncapillary porosity and total porosity were significantly
elevated by peach-Morchella intercropping, particularly noncapillary porosity, which was
6.43 folds that of the control. Similarly, the substrates of planted Stropharia mushroom
increased the total porosity of orchard soils, which effectively elevated the soil permeability
in the study of Duan et al. (2019). Therefore, orchard intercropping can promote soil
aggregate formation and effective porosity, which will further improve soil water storage
capacity (Zuazo et al., 2009).

Soil physical and chemical properties are closely related to each other. For example, soil
type and particle size have great influence on the alkali-hydro nitrogen content (Nong,
2017). In addition, the dynamic soil nitrogen cycle is affected by soil texture, soil depth
and precipitation (Kebeney et al., 2014). Our study revealed an extremely significantly
higher content of total nitrogen in two-year peach-Morchella intercropping soils. It was
previously found that fruit-mushroom intercropping could facilitate the formation and
accumulation of active organic nitrogen in soils (Yong, 2020; Coser et al., 2012; Suman
et al., 2006), which may be attributed to the mushroom substrates. The waste substrates
contain rich carbon and nitrogen nutrients, and small-molecular organic and short-chain
fatty acids are released in the process of substrate decomposition, which can stimulate soil
microorganism activity to enhance soil nitrogen fixation. Besides, the substrate nitrogen
mostly exists in an organic form, which can efficiently alleviate the nitrogen loss in the soil
(Lu et al., 2011; Dai, 2009; Tosti et al., 2012). Besides, the organic matter, total phosphorus,
available phosphorus and available potassium in soils were significantly enhanced by
peach-Morchella intercropping in the present study. Phosphorus is an indispensable
nutrient for crop growth and development, and is involved in the synthesis of many
important compounds. It can improve the resistance of crops against drought, cold and
diseases, and potassium deficiency is likely to cause disorders in metabolism during crop
growth (Yang et al., 2012). Generally, the increase in available potassium and available
phosphorus in this study provided favorable conditions for the growth of peach. Mu
and Duan found obvious increases in soil nutrients including organic matter, available
phosphorus and available potassium in mushroom-cultivated soils (Mu, 2019; Duan et
al., 2019). Furthermore, Gong (2017) also revealed an increase in soil nutrients under
an intercropping mode in a time dependent manner, which is similar to the results in
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the present study. However, the soil pH value decreased with the intercropping in this
study, which is inconsistent with the previous report (Jonathan et al., 2013). In general, soil
chemical properties such as organic matter, available nitrogen and available phosphorus
can represent the soil fertility to some extent (Zhu et al., 2018). The peach-Morchella
intercropping in this study provided better growth conditions for peach growth due to
greatly enhanced soil fertility by changing the soil physicochemical properties.

Enhancement of soil enzyme activities affects soil fertility
Soil enzymes participate in the regulation of soil nutrient cycling and organic matter
degradation and mineralization. Their activities can reflect soil carbon cycling capacity as
well as the soil property and fertility level (Li et al., 2012). In the present study, continuous
peach-Morchella intercropping enhanced the activities of all the tested soil enzymes,
including catalase, sucrase, cellulase and urease. As is reported, catalase is widely present
in soils with the capability of relieving the toxic effect of hydrogen peroxide (Yang et al.,
2015). Sucrase affects the carbon transformation in soils (Guo & Zhao, 2010), while urease
is capable of increasing available nitrogen content in soils by catalyzing and decomposing
urea into carbon dioxide, water and ammonia, and the decomposed substances supply
available nitrogen nutrients for fruit trees (Dennis, Miller & Hirsch, 2010; Guo et al., 2013).
This study applied substrates from the Morchella transformation bag into the soil, which
provided a certain amount of organic matter. Organic matter has a great effect on soil
enzyme activities (e.g., urease) (Dai & Chen, 1995). As a result, soil enzyme activity is
elevated due to stable enzyme formation through the combination of organic matter with
free enzymes (He, 2012). The intercropping pattern in the study of Lai et al. resulted
in enhanced activities of urease, sucrase and phosphatase, which would accelerate soil
maturation (Lai et al., 2019). Furthermore, secretion from mushrooms may increase the
species and amount of soil microorganisms and enzymes, promoting soil acidity and
nitrogen accumulation in orchard soils (Coelho et al., 2012; Basilikoa et al., 2012; Phillips
et al., 2012). Hence, there is an interactive relationship between soil enzyme activity and
organic matter. As a result, peach-Morchella intercropping enhanced soil enzyme activities
to improve the soil nutrition (e.g., available nitrogen), which finally contributed to higher
fertility of orchard soils in the present study.

Continuous peach-Morchella intercropping decreases soil fungal
diversity
Continuous peach-Morchella intercropping was found to decrease soil fungal diversity
in the present study. It has been demonstrated that different systems of land use are of
distinctive fungal taxon (Plassart et al., 2019). Shen et al. (2009) reported that Morchella
cultivation could significantly affect the Discomycetes community structure in soils, and
the fungal abundance decreased with Morchella cultivation, which is in accordance with
our results. It was speculated thatMorchella becomes the dominant fungus in the soil, and
competitively inhibits other fungal communities. However, some other studies revealed
an increase in bacterial and fungal diversity during mushroom intercropping (Yang, 2019;
Lai et al., 2019). It is worth noting that the two-year intercropping soil samples in our
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study had lower abundance of Ascomycota and higher abundance of Zygomycota. The
Discomycetes in Ascomycotina and Heterobasidiomycetes in Basidiomycetes were found to be
the dominant fungi in Morchella-cultivated soils in the study of Shen et al. (2009). Zhang
et al. (2018) detected 53 fungi from theMorchella-cultivated soil, with Pezizomycetes being
the dominant class. Moreover, Ascomycota was identified as the predominant phylum,
followed by Mortierellomycota and Basidiomycota in the research of Mu (2019). Besides,
the abundance of Ascomycota and Basidiomycota was observed to be significantly changed
by Ganoderma lucidum cultivation, as reported by Ren et al. (2020). It can be seen that the
variations of fungal communities in mushroom-cultivated soils depend on multiple factors
such as cultivation environment and species type. Meanwhile, research on the bacterial
community in mushroom-cultivated soils revealed that Pseudomonas is an important
bacterial genus, which can promote the occurrence of Agaricus bisporus fruit bodies and
plays a significant role in Morchella sclerotium formation (Hayes, Randle & Last, 2010).
Furthermore, Xiong et al. analyzed the bacterial community structure in Morchella-
cultivated soils, and demonstrated that rich bacterial community structure is conducive to
Morchella occurrence (Xiong et al., 2015). Hence, research on bacterial community should
be carried out to explore more potential advantages of the peach-Morchella intercropping
mode. Soil microbial diversity has a direct impact on soil enzyme activities, thus affecting
soil nutrient metabolism and soil fertility (Kumar et al., 2016; Klimek et al., 2016). The
intercropping system can enhance interspecific interactions of the underground biota,
contributing to the improvement of soil nitrogen supply capacity and increase in total
nitrogen content (Li et al., 2018; Dai et al., 2015). To further explain how continuous
peach-Morchella intercropping affected fungal community and soil propertie, RDA analysis
was done including catalase activity (CaA), urease activity (UA), available nitrogen (AN),
total potassium (TK), pH value, and differently-treated soil samples with the top 10 fungal
genera in abundance (Fig. S3). Results showed that the fungal communities of 1 and 2-year
soil samples with peach-Morchella intercropping were significantly affected by available
nitrogen, while that of control was affected by total potassium and pH value. Moreover,
the abundances ofMorchella, Fusarium, Gibberella and Volutella were positively correlated
with soil urease activity and available nitrogen, while Chaetomium and Thermomyces
were in a positive relationship with catalase activity and pH value, respectively. Hence,
continuous peach-Morchella intercropping promoted the changes of soil fungal community
and properties, contributing to a higher fertility of peach orchard soils.

Fruit-mushroom intercropping is of ecological and economic
significance
Long-term monoculture tends to cause soil degradation, while intercropping can improve
soil micro-ecosystem and physicochemical properties in the farmland (Kou et al., 2010;
Pariz et al., 2016). In the present study, the oxygen and root exudates from peach trees
helped Morchella to decompose substrates and promoted its mycelial growth. In addition,
the carbon dioxide released during Morchella growth could increase the carbon source
storage for peach trees, and the enzymes and waste substrates produced by Morchella
supplied nutrients for peach trees. Thus, a small but friendly biosphere would be formed.
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Besides, it has been demonstrated that peach sawdust could accelerate the mycelial growth
ofHericium erinaceus andAuricularia cornea. Therefore, it can be speculated that substances
produced by peach trees could facilitate the growth and development of Morchella (Shen
et al., 2020). The present study revealed higher economic benefits of the peach-Morchella
intercropping mode. Similarly, intercropping of Stropharia mushrooms or Dictyophora in
grape orchards contributed to higher yields of mushrooms and better soil physicochemical
properties.More importantly, the yield and quality of grapeswere also improved.Moreover,
the edible fungi (e.g., Pleurotus ostreatus) planted under the trees were demonstrated to
be of higher nutrition in fruit bodies (Huang et al., 2019). Obviously, the mode can realize
coordinated development of fruit and mushroom (Yang et al., 2020). To sum up, the
fruit-mushroom intercropping mode such as peach-Morchella intercropping will be an
important direction for future fruit and mushroom production.

CONCLUSION
In the present study, peach-Morchella intercropping was conducted in Longquanyi district
of Chengdu city. As a result, most of the soil physicochemical properties changed for better,
including the soil bulk density, maximum field capacity, non-capillary porosity, total
porosity, organic matter, available potassium and available zinc. In addition, continuous
peach-Morchella intercropping improved soil enzyme activities but decreased soil fungal
diversity. Finally, the soil structure and fertility of the studied peach orchards were
significantly improved, which possibly contributed to the yield increase of peach and
Morchella. The findings provide a theoretical basis for the efficient peach-Morchella
intercropping mode and soil management afterMorchella cultivation.
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