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ABSTRACT
Pharmacological challenge imaging has mapped, but rarely quantified, the sensitivity
of a biological system to a given drug. We describe a novel method called rapid
quantitative pharmacodynamic imaging. This method combines pharmacokinetic-
pharmacodynamic modeling, repeated small doses of a challenge drug over a short
time scale, and functional imaging to rapidly provide quantitative estimates of drug
sensitivity including EC50 (the concentration of drug that produces half the max-
imum possible effect). We first test the method with simulated data, assuming a
typical sigmoidal dose-response curve and assuming imperfect imaging that includes
artifactual baseline signal drift and random error. With these few assumptions, rapid
quantitative pharmacodynamic imaging reliably estimates EC50 from the simulated
data, except when noise overwhelms the drug effect or when the effect occurs only at
high doses. In preliminary fMRI studies of primate brain using a dopamine agonist,
the observed noise level is modest compared with observed drug effects, and a quan-
titative EC50 can be obtained from some regional time-signal curves. Taken together,
these results suggest that research and clinical applications for rapid quantitative
pharmacodynamic imaging are realistic.

Subjects Neuroscience, Neurology, Pharmacology, Psychiatry and Psychology, Radiology and
Medical Imaging
Keywords Pharmacodynamics, Neuroimaging, fMRI, Pharmacokinetic-pharmacodynamic
modeling, Drug development, Dose-finding, EC50, phMRI, Pharmacological fMRI, ED50

INTRODUCTION
Many important biological problems involve measuring sensitivity to a specific drug. The

answers are of interest to scientists, the pharmaceutical industry, patients and clinicians. A

variety of approaches have been employed. Pharmacological imaging methods, the focus

of this communication, can be grouped as addressing drug sensitivity via one of two broad,

nonexclusive strategies: mapping (localizing) regions of the body or of an organ that are

most sensitive to drug, or measuring (quantifying) sensitivity to drug.

For many questions of interest, mapping is all that is required. One scientific example

would be to identify in what part of the brain dopamine loss begins in Parkinson disease.

Finding an occult cancer is a clinical example. Many methods have been employed

for pharmacological mapping. Within the brain, for instance, investigators have used
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Figure 1 Illustration of EC50 and Emax.

autopsy studies, positron emission tomography (PET), or EEG to regionally map receptor

binding or drug-induced changes in neuronal field potentials or neurotransmitter release.

Pharmacological challenge functional MRI (dubbed phMRI) maps responses to a single

dose of drug, usually with nonquantitative imaging methods.

Some pharmacological questions, however, do require quantification. Comparisons

between groups or over time are scientific examples, and drug dose determination

is a clinical and industry example. The traditional approach is to measure biological

responses to different doses of drug. Standard methods to quantify receptor (or enzyme)

sensitivity were derived from ex vivo assays such as displacing a radiolabeled ligand

with varying doses of “cold” drug. Receptor binding often produces a sigmoid-shaped

dose-response curve when plotted against the logarithm of drug concentration. Typically

these curves reasonably fit a priori mathematical models and are characterized with

standard parameters including Emax (maximal magnitude of the effect of a drug at high

doses) and EC50 (plasma concentration of drug that elicits an effect half as large as Emax;

see Fig. 1) (Holford & Sheiner, 1982). These parameters are similar to the Bmax and KD

parameters from receptor binding analyses, or to models of substrate-enzyme kinetics.

The drug effect on the vertical axis of these dose-response curves can sometimes

be measured clinically or by another systemic effect (e.g., change in insulin plasma

concentration in response to a glucose infusion). Alternatively, one can measure responses

in a single organ or even in a single cell (e.g., microdialysis in a given region of brain after

administration of levodopa). Although these methods provide quantitative answers, they

do not allow one to localize where the most sensitive tissues are found, at least not without

numerous experiments isolating different organs or parts of an organ.
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Problems with the approaches mentioned above include spatially limited information

(e.g., for single-cell recordings, microdialysis, clinical or endocrine measures), information

limited to one cellular level (e.g., quantification of receptors but not of second messengers),

limited face validity (e.g., responses in cell culture or at autopsy) or applicability to a

limited pool of subjects (e.g., PET, microdialysis, intrasurgical recordings, or autopsy).

An alternative approach addresses many of these problems. Pharmacologic activation

imaging has the potential both to quantify and to map responses to drugs. Pharmacologic

activation imaging refers to regional comparisons of a biological function in the presence

and absence of a specific, acute pharmacological challenge. The idea is to “push on” specific

receptors to see which parts of the body increase or decrease their activity, and quantify

the responses. Various imaging methods have been used, and responsive regions have been

mapped with increasing sensitivity (Chen et al., 1997; Herscovitch, 2001; Perlmutter, Rowe &

Lich, 1993; Zhang et al., 2000).

However, to date pharmacologic activation imaging has rarely produced quantitative

pharmacodynamic data such as EC50, especially for individual subjects. This goal has

been thought to require two features that are difficult or impractical with many imaging

methods: truly quantitative imaging measures, and repeated imaging sessions at a number

of different doses. Only rarely have data been reported that would allow an approximation

of quantitative pharmacodynamic parameters (Black et al., 2000; Black et al., 2002; Black et

al., 2010; Hershey et al., 2000; Kofke et al., 2007; Matthews, Honey & Bullmore, 2006).

Here we describe a novel approach that can be used to extract quantitative pharmaco-

dynamic information from a single imaging session, even with a nonquantitative imaging

modality and without any identifiable clinical effect of drug. We test the new method’s

performance thoroughly using simulated data, and report preliminary experiments in

nonhuman primates as proof of principle.

METHODS
Theory
The novel approach depends on the recognition that the most accurately measured

variable in most functional imaging experiments is time. By giving repeated doses of

drug and measuring responses to each dose over time intervals short enough to minimize

time-dependent artifactual signal drift, one can compute a quantitative measure of

sensitivity to drug in a single imaging session, even with a nonquantitative imaging

method. This process is summarized in Fig. 2. In Fig. 2A, a typical time-concentration

curve for a drug is plotted using traditional pharmacokinetic modeling (black curve). To

estimate the signal seen in a tissue region from a subject’s imaging data, one examines

the composition of the time-concentration curve with the concentration-response curve

shown in Fig. 2B. (A sigmoid response is assumed here, but a different function could be

chosen.) The three dose-response curves in this graph represent three different subjects (or

three different tissue regions) with different sensitivity to drug. The leftmost curve, with

EC50 = a, represents a region with high sensitivity (low EC50), whereas the curves with
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Figure 2 Relationships between time, drug concentration, and effect in tissue for three different values of EC50. (A) Pharmacokinetic (PK)
simulation of plasma concentration of drug over time after 4 equal doses of drug. (B) Pharmacodynamic (PD) simulation of dose-response curves
from regions or subjects with different sensitivity to drug. (C) PK-PD simulation of tissue response over time. See Methods: Theory for further
details. For these plots, n= 2, a= 0.19 ng/ml, b= 1.0 ng/ml, and c = 5.26 ng/ml; see Table 2 for other values.

higher EC50s represent regions with lower sensitivity. As shown in Fig. 2C, the resulting

tissue time-response curves are markedly different. For the sensitive region with EC50 = a,

the first dose of drug produces a near-maximal response. For the least sensitive region, only

the later doses have a noticeable effect. The following paragraphs formalize this concept.

The pharmacokinetic-pharmacodynamic (PK-PD) model describes the relationship

between doses of a specific drug and the resulting effect in tissue. Initial simulation testing

with this method used four intravenous drug infusions equally spaced in time during

a 40-min phMRI scanning session. The pharmacokinetics are described by a simple

one-compartment model with loss from plasma at a rate proportional to the plasma

concentration. In the equations below, C(t) describes the plasma concentration of drug

over time (Table 1 summarizes the functions described in this section). K doses of drug,
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Table 1 Summary of functions defined in the text.

Function Description

C(t) Predicted plasma concentration of drug as a function of time (depends on pharmacokinetic parameters including
amount and timing of drug doses, elimination half-life, and time delay ts between drug dose and plasma peak)

E(C) Effect of drug as a function of drug plasma concentration (depends on EC50 and Hill coefficient n)

E(C(t)) Predicted effect of drug as a function of time (composition of E(C) with C(t))

polyM(t) A polynomial of degree M,a0+ a1t+ a2t2
+ ···+ aM tM

tissuemodel(t) = E(C(t))+ polyM(t)

voxel(t) Sum of tissuemodel(t) and Gaussian noise (noise added independently at each time point)

Dk, are given at times tk, and u(t) is the unit step function. The pharmacokinetic model

also includes a fixed time delay (shift) ts and a half-life t1/2 for loss of drug from plasma.

C(t)=
K∑

k=1

Dk · 0.5

(
t−ts−tk

t1/2

)
· u(t− ts− tk).

This plasma concentration curve C(t) then becomes the input to a traditional sigmoid

concentration-effect model to describe the pharmacodynamics (Holford & Sheiner, 1982):

E(C)=
EmaxCn

ECn
50+Cn

.

This model is characterized by the maximal effect of drug at high doses, Emax; the Hill

coefficient n, which models the number of drug molecules required to activate the receptor

and can be understood as describing the steepness of the sigmoid curve at its inflection

point; and EC50, which is the drug concentration that produces an effect half as large as

Emax. Figure 1 shows this curve on a logarithmic x axis. The input to the curve is plasma

concentration of a drug, and the effect that is measured and modeled is the imaging signal.

Figure 3 shows several predicted tissue time-activity curves E(C(t)) in response to drug

administration, based on different values of the PK-PD parameters.

Table 2 lists the model parameters used to generate the simulated data. To account for

nonquantitative signal drift encountered with BOLD-sensitive fMRI, unrelated to drug

administration, the model then adds signal drift modeled by a polynomial polyM(t) of

degree M. The sum E(C(t))+ polyM(t) comprises the model for the imaging signal, here

called tissuemodel(t).

Simulation: generation of test data
Predicted time–imaging signal curves tissuemodel(t) were generated for a wide range of

plausible values for EC50, half-life, and other PK-PD model parameters. Then Gaussian

noise was added to tissuemodel(t) to better reflect real-world situations. A random noise

function of time was generated 1000 times for each level of noise to allow testing of

sensitivity and specificity of the curve-fitting methods. The level of noise was quantified

by the standard deviation (SD) of the noise across a given time series, and is reported
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Figure 3 Time-signal curves predicted by different values of EC50, the Hill coefficient n, and drug
elimination half-life t1/2. For each graph, 4 equal doses of drug are assumed, with the first dose producing
a plasma concentration of 1.0 (given in the same units as EC50, e.g., ng/ml). The horizontal axis shows
time in the same units as t1/2 (e.g., minutes). The vertical axis shows a response with Emax = 10 added to
a constant baseline signal of 100. Note the shape of the time-signal curve, not just the amplitude, varies
substantially depending on the values of EC50, n, and t1/2.

relative to the known (input) Emax. Below we refer to the sum of noise and tissuemodel(t) as

voxel(t).

Figure 4 shows examples of tissuemodel(t) (solid line) and voxel(t) (dots) for different

levels of noise. At high levels of noise, curve fitting will obviously be difficult.

To test how likely the curve-fitting procedure was to report a fit to data in the absence

of an (intentional) signal, noise was also repeatedly generated and added to a polynomial
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Table 2 Values used for each parameter in the model. The values shown here were used to generate the E(C(t)) curves used for the final simulation
testing.

Name Description Values used in the simulated data Units

K Number of drug doses 4 (None)

Dk Magnitudes of each drug dose Not simulated; equal doses, with the first dose
producing a plasma concentration peak= 1

arbitrary (e.g., ng)

t Time from 0 to 40 min

tk Time of drug dose k 8, 16, 24, and 32 min

ts Fixed time delay (shift) 0.43 min

t1/2 Elimination half-life for loss of drug from
plasma

41 min

Emax Maximal possible (asymptotic) effect of drug 10 Arbitrary imaging units (e.g., scaled
MRI signal intensity)

EC50 Concentration producing 50% of the maximal
possible effect, Emax/2 (when Hill coefficient
n= 1)

One of the following values for each data set:
0.1, 0.43, 1.0, 1.7, 3.0, 3.8, 5.0, 6.1, 8.0, 9.2

Arbitrary plasma concentration units
(e.g., ng/mL)

n Hill coefficient 1 (none)

M Degree of noise polynomial polyM(t) 1 (none)

ak Coefficients of polyM(t) 1000, 0.05; i.e., y = 1000+ 0.05t a0: arbitrary imaging units (e.g.,
scaled MRI signal intensity)
a1: (imaging units) ·min−1

ak: (imaging units) ·min−k

of low degree, resulting in voxel(t) curves in which no drug response was included (i.e.,

Emax = 0). Without noise the algorithm cannot fit another curve better than the original

polynomial. With substantial noise, however, it is possible that the resulting data may be fit

better by a curve that includes modeled drug response (a false positive fit to the data).

These simulated data sets (1000 instances of voxel(t) for each set of parameter values and

noise level) are available at datadryad.org (Black, Koller & Miller, 2013).

Parameter estimation
A custom computer program (QuanDynTM, available from the authors) was written for

Windows XP in Microsoft Visual Basic. It estimates which parameters for the above PK/PD

model best fit an input time series. The program repeats this process at each voxel of a 4D

imaging dataset. The program first temporally filters the data, replacing the data at each

time point with the median of the data acquired over a longer interval centered on that

time point. For the present analysis a 45-s interval was used.

To speed and simplify the simulation testing described below, and because our original

curve-fitting algorithms performed poorly for some parameters, we allowed each PK/PD

model parameter approximately 10 values. In other words, for the purposes of this testing,

the program could produce only certain answers (Table 3). These values were appropriate

to the range of input data used in simulation testing. This quantization was felt to be

reasonable since in practice precision is adequate if the EC50 reasonably approximates the

achieved blood concentration. For testing, in half the cases the input (“correct”) answer

was chosen to be a value not available to the program, so as not to favorably bias the results.
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Figure 4 Three noise levels added to the same simulated imaging signal. (A) SD= 0.01 ·Emax; (B) SD=
0.1 · Emax; (C) SD= 2 · Emax.
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Table 3 Output range for each parameter fit by the model when analyzing the simulated data. For each parameter, the simulation testing produced
a value selected from the output range shown in the table. In this table, [a,b] indicates a closed interval on the real line, R indicates the set of all real
numbers, and {a,b,c,...} indicates a list of allowed values.

Name Description Starting value Output range Units

ts Fixed time delay (shift) n/a*
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0}

min

t1/2 Elimination half-life for loss of drug from
plasma

41 {41} min

Emax Maximal possible (asymptotic) effect of
drug

n/a** R Arbitrary imaging units (e.g., scaled
MRI signal intensity)

EC50 Plasma concentration producing half-
maximal effect Emax/2 (when Hill coeffi-
cient n= 1)

n/a*
{0.1,0.5,1,2,3,4,5,6.5,8,10} Arbitrary plasma concentration

units (e.g., ng/mL)

N Hill coefficient 1 {1} None

M Degree of noise polynomial polyM(t) 2 {2} None

ai Coefficients of polyM(t) n/a** R None

Notes.
* Tested at each of the values listed.

** Computed directly by least squares fit for each set of other parameters evaluated.

The cost function minimized by the program was the summed squared error of the model

compared to the time-signal curve voxel(t).

The parameter EC50 refers to a concentration of drug in plasma. For this simulation, the

peak plasma concentration attained after the first bolus of drug was taken as 1 unit, and

EC50 was computed relative to that concentration. In a biological system, the computed

relative EC50 values could be easily scaled to absolute EC50s by multiplying by the actual

plasma concentration of drug sampled at the appropriate time.

After experimentation with iterative, linear and nonlinear optimization of the

parameters of interest, a combination of iterative and linear (least squares) curve-fitting

was found to supply a reasonably accurate yet efficient numerical methods solution (see

Results: model fitting).

Statistical test of goodness of model fit to test data
Summed squared error across all time points at a given voxel was used to quantify how

well the data at that voxel, voxel(t), were fit by a time-activity curve tissuemodel(t) generated

by the PK-PD model using a given set of model parameters. A comparison function that

did not incorporate any information about the timing of drug administration was used to

statistically test how well the model fit the data. For simplicity the comparison function

chosen was a polynomial with the same number of degrees of freedom as the PK-PD

model tissuemodel(t). Specifically, if j PK-PD model parameters were used to generate

E(C(t)), to which a polynomial of degree M, polyM(t), was added to give tissuemodel(t),

then the comparison function was polyN(t), where N =M+ j. The ratio F of the summed

squared error for polyN(t) to the summed squared error for tissuemodel(t) is computed

and saved to create a statistical image reflecting the improvement in the fit to the data by

incorporating knowledge of drug administration times and the PK/PD model. Higher
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values for F indicate better fit for the model. The probability that the model fit better than

the comparison polynomial by chance was computed by interpreting F as an F test statistic

with j and ([number of time points in voxel(t)]− j− 2) degrees of freedom.

Simulation testing: test statistics
For each combination of parameters tested, the model was fit to 1000 independently

generated voxel(t) time-signal curves at each noise level. Since only certain values were

possible for EC50, continuous statistics like mean± SD are not appropriate. The following

summary statistics were used to characterize each pair of EC50 and noise values:

• model fit sensitivity = the frequency with which F exceeded a set threshold in 1000

voxel(t) curves generated with the same set of parameters and noise SD

• model fit specificity= one minus the frequency with which F exceeded the threshold in

the (polynomial + noise) data.

• EC50 sensitivity= fraction of times (of 1000) that the primary parameter of interest

(EC50) returned by the program was “correct”, i.e., if the value of EC50 used to generate

the data was 0.43, and the possible answers included {...,0.1,0.5,1,...}, then only the

nearest possible answers, 0.1 and 0.5, were counted as correct. In other words, how often

does the program return (as close as possible to) the desired value?

• EC50 specificity was computed from the (polynomial+ noise) data, and was taken to be

1− p, where p is the fraction of times that the program returned a given value for EC50.

• EC50 positive predictive value (PPV) was defined as follows. A given allowed output

value of EC50 could have been returned by the program from input generated

from a different EC50 value plus noise. The PPV was computed as a fraction whose

denominator was equal to the number of times that the given EC50 value was output by

the program across the tens of thousands of voxels generated by all sets of input model

parameters, and whose numerator was equal to the number of those times when the

output was the correct answer for the input. For example, of all the times the program

output EC50 = 0.5, for what fraction was that the correct answer (i.e., what fraction

came from an input EC50 value nearer 0.5 than any other allowed output value)?

It should be noted that PPV depends on the prior probability, i.e., how often the

specified output value was supposed to be produced, so the actual PPV in a given

experimental situation may differ from that computed here. However, the PPV can be

computed from prior probability, sensitivity and specificity when these are known.

Biological data: protocol
These studies were approved by the Washington University Animal Studies Committee

(protocols # 20020085, 20050126). Two male macaques (M. fascicularis) were studied

under inhaled anesthesia (1.0–2.0% isoflurane, titrated individually by a veterinary

technician to the minimal level consistent with continued sedation). A 20 g plastic

catheter was inserted over a needle into a lower extremity vein. Just prior to drug

infusion, the catheter and tubing’s known volume was filled with drug solution. Repeated
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BOLD-sensitive asymmetric spin echo fMRI images were obtained on a Siemens 3.0T

Allegra magnet with a custom head coil. Over a 40-min period, 800 whole-brain image

volumes were obtained, one every three seconds. A 3D T1-weighted structural image

was also obtained for anatomical comparison (Mugler & Brookeman, 1990). Images were

transformed into the macaque atlas space of Martin and Bowden (Martin & Bowden,

1996; Martin & Bowden, 2000; www.purl.org/net/kbmd/cyno) using previously validated

methods (Black et al., 2004).

Biological data: single-dose experiment
In one experiment (single-dose experiment), at 15 min into the BOLD imaging, an

intravenous infusion of the dopamine D1 agonist SKF82958 was begun, and 0.1 mg/kg

was infused at a fixed rate over 5 min. We have previously shown that this dose of drug

does not alter whole-brain average quantitative blood flow (Black et al., 2000), ruling out

a meaningful direct vascular effect of this drug and implying that regional changes in

hemodynamic signal most likely reflect true changes in regional metabolic activity.

Midbrain and (average left and right) striatal volumes of interest (VOIs) were drawn

on the anatomical image. The midbrain is the region of brain with the highest regional

sensitivity to exogenous levodopa (Black et al., 2005; Hershey et al., 2003; Trugman &

Wooten, 1986), and striatum has been examined in several prior phMRI studies. The

midbrain region measured 0.17 mL and the striatal region 0.80 mL. For each VOI, the

average time-signal curve was extracted and temporally smoothed with a 45-s median

filter to match the QuanDynTM filtering. Additionally, a noise/effect ratio was computed

to allow comparison to noise/Emax from the simulated data. To this end, a regression

line was fit to the first 15 min of data, during which no drug was administered, and the

standard deviation of the residual signal was computed and divided by the maximal signal

produced by the drug infusion. By definition, the drug-induced signal seen with this

dose cannot exceed the maximal possible signal Emax, implying that the desired ratio,

(SD of residuals)/Emax, is probably smaller and cannot be worse than the estimate (SD of

residuals)/(peak signal change after drug) derived from this experiment.

Biological data: multiple-dose proof-of-principle experiments
In other experiments (multiple-dose proof-of-principle experiments), the same total dose

of SKF82958 was separated into 4 or 8 equal aliquots, each of which was infused over 30 s at

4-min intervals. Each animal had a 4-dose and an 8-dose study. The QuanDynTM program

was applied to these data using both a 30-min half-life (Black et al., 2000) and a 5-min

half-life, in case there were prominent distribution effects. The t1/2 value that produced the

higher F statistic was retained.

RESULTS
Simulation: model fitting
Shape of cost function in parameter space
Plots of the cost function surface over bivariate plots of EC50 and time shift, without noise,

showed well-behaved error with a single clear minimum at the correct value. Similar plots
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with EC50 and either half-life or the Hill coefficient n showed flatter surfaces, suggesting

half-life or n would be harder to fit even with perfect data. Half-life can be determined

without imaging methods and n can be reasonably estimated from in vitro data. The results

below were derived assuming a fixed half-life and n= 1.

Model fit sensitivity
At low levels of noise, e.g., SD< 0.05Emax, the PK-PD model always fit the data better than

the null hypothesis (polynomial) regardless of the input EC50, i.e., F exceeded 1.218,

the value at which p(F) = 0.05, in all or nearly all voxels tested. See Fig. 5A. At high

levels of noise, e.g., SD > 0.5Emax, the model rarely fit significantly better than the null

hypothesis. (For comparison, different ratios of SD to Emax are shown in Fig. 4.) At realistic

intermediate values of noise, the model fit better for lower EC50 values (i.e., more sensitive

regions/subjects). Similar results obtained when F was thresholded at the Bonferroni

corrected value for 64,000 voxels (typical for a brain image); see Fig. 5B.

Model fit specificity
Here the question is how often the program identifies a voxel as fitting the PK-PD model

when the voxel contains no drug signal but only noise. Formally, the question is how

often the model fits voxel(t) significantly better than the null hypothesis polynomial does

(judging by the F statistic, at the p = 0.05 level, uncorrected for multiple comparisons).

This did not happen once among all the thousands of time-activity curves generated,

giving a model-fitting specificity of 100%. With a sensitivity of 100%, this implies a model

fit PPV of 100% with these test data. In other words, voxels whose F statistic exceeds the

value corresponding to p= 0.05 are very unlikely to come from noise of the type modeled

here.

In summary, the model fits the data well under these conditions. The next question is

whether the answer is correct, i.e., whether the EC50 that produces the best-fitting model

curve is accurate.

Simulation: accuracy
EC50 sensitivity
Figure 6 shows how often the calculated EC50 is correct as a function of input EC50 and

noise level. Since for this analysis we limited the QuanDynTM software to producing one

of 10 possible values, the question is framed as follows. If the input EC50 fell in the interval

between two possible output values, does the program return one of those two values? As

seen in Fig. 6A, with small amounts of noise the software nearly always returns the correct

EC50. As noise increases, the model is less likely to find the correct EC50, especially for high

EC50s (i.e., regions relatively insensitive to drug), where the signal is fainter. Limiting the

analysis to voxels identified as fitting the model significantly better than a null-hypothesis

curve improves the results somewhat (Fig. 6B).

EC50 specificity
Given a specified level of noise added to a null hypothesis curve (a polynomial), how likely

is it that the quantitative pharmacodynamic method will return a given value for EC50?
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Figure 5 Model fit sensitivity as a function of EC50 and noise. Vertical axis shows fraction of input
curves (with noise) for which F exceeds the F statistic value corresponding to p = 0.05, as a function
of input EC50 and noise level. In (A), the F threshold corresponds to p = 0.05 uncorrected. In (B), the
F threshold corresponds to p = 0.05/64000, representing Bonferroni correction for an image of 64,000
voxels, such as an MR image of human brain.

Surprisingly, this was relatively insensitive to the amount of noise added to the polynomial.

About 30% of the time the program returned the lowest allowed EC50, about 42% of the

time it returned the highest allowed EC50, and the remaining results were fairly evenly

scattered among the other possible output values for EC50. Fortunately, as noted above, in

these cases the model never fit the data better than a polynomial, so specificity was 100%

after censoring results with F below threshold.
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Figure 6 EC50 sensitivity as a function of EC50 and noise. Vertical axis shows percentage of voxels whose
output EC50 was within range of the input EC50. (A) includes all voxels. (B) includes only those voxels in
which the model fit the data significantly (F > 1.218).

EC50 positive predictive value
The next result is a measure of how confident one can be in the estimate of EC50 returned

by this method. Across all 90,000 voxels generated from all selected values of EC50 and

other parameters and all levels of noise, we computed the answer to the following question.

If the QuanDynTM software returns a given value for EC50, what is the likelihood that value

is “in range”, i.e., that it was computed from data generated with an EC50 between the next

lowest and next highest possible output values? The results are shown in Fig. 7.
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Figure 7 EC50 positive predictive value. The PPV is a measure of how confident one can be in the
computed EC50 result. (A) Data from all voxels tested. (B) Results from only those voxels in which the
model fit the data significantly (F > 1.218).

In summary, this method usually gives a good answer for EC50 in the simulated data as

long as noise is low or EC50 is low, indicating reasonable sensitivity to drug. The natural

next question is, can we expect noise this low in biological data?

Signal vs noise estimation, with biological data (single-dose ex-
periment)
An intravenous infusion of a dopamine D1 receptor agonist in a dose that does not affect

whole-brain mean blood flow induced a clear signal (about 2.2% of modal brain BOLD
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Figure 8 Time-signal curve in an a priori midbrain VOI from the single-dose fMRI experiment
described in Methods. A single injection of dopamine D1 receptor agonist was given slow i.v. from time
15 to 20 min (vertical lines). The regression line shown was fit only to the baseline data (time 0–15 min).

signal) in an a priori VOI (Fig. 8). The drug-induced signal showed a pharmacokinetically

reasonable time course, peaking at the end of the infusion, when plasma concentration

of drug is highest, and largely fading over the next 15 min. The SD of the residual signal

after fitting a line to the VOI data from the baseline period preceding the drug infusion was

clearly much smaller than the drug-induced signal change. Since by definition Emax is at

least as large as the signal observed at any given dose, we can compute for each region an

upper bound, SD/(observed effect), on the ratio SD/Emax. For the midbrain VOI the ratio

was 0.05 in one animal (Fig. 8) and 0.08 in the other. The striatal VOI gave a ratio of 0.06 in

the second animal, but in the first animal there was negligible striatal response to the drug,

giving a ratio of 0.93. Fig. 9 shows that in simulated data, noise-to-Emax ratios of 0.05–0.08

predict a PPV of 70–100% depending upon EC50. Even these are underestimates for PPV,

since the observed effect is a lower bound for the maximum possible effect Emax.

Estimation of EC50 in primate (multiple-dose proof-of-principle
experiments)
We applied the method to 8 regional time-signal curves: a midbrain and a striatum VOI in

a 4- and an 8-dose experiment in each of two animals. For 6 of the 8 time-signal curves, the

F statistic was less than 1.2, indicating that the model did not fit the data better than chance

and the EC50 estimates should be rejected (see Table 4 and Figs. 10A, 10B).

One animal had two regions with F > 1.218, namely the midbrain in the 4-dose

experiment and the striatum in the 8-dose experiment (see Table 4 and Figs. 10C, 10D).

The two EC50 estimates are approximately 8 and 5 times the peak blood level after the first

25 µg/kg i.v. dose. If we had a quantitative measurement of that blood level, e.g., in ng/mL,

then the EC50 values would also be absolute estimates in ng/mL.
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Figure 9 EC50 positive predictive value for four noise levels, based on simulated data. By comparison,
the noise level in the fMRI experiment shown in Fig. 8 was ≤0.06 · Emax, nearest the uppermost curve
shown here.

Figure 10 Response to the dopamine D1 agonist SKF82958 in four experiments from two ani-
mals. Horizontal axis shows time in minutes. Vertical black bars indicate successive fractional doses of
drug. Black curve indicates observed fMRI signal. White curve in (C) and (D) shows the best model fit to
the data. Total dose in each case was 100 µg/kg i.v. See Table 4 for further details. (A, B) Time-signal curves
for two experiments in which the model did not fit the data significantly better than did a polynomial
with the same degrees of freedom. (C) Computed EC50 = 8 ·X, where X= peak blood level after 25 µg/kg
i.v. (D) Computed EC50 = 10 ·Y ≈ 5 ·X, where Y = peak blood level after 12.5 µg/kg i.v.
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Table 4 Results from the multiple-dose proof-of-principle experiments.

Doses Animal Region F Comments

4 1 Midbrain 0.813 –

4 1 Striatum 1.132 –

4 2 Midbrain 1.884* t1/2 = 5 min, EC50 = 8 times the peak blood level after 25 µg/kg, Emax = 32.3;
Fig. 10C

4 2 Striatum 0.992 Fig. 10A

8 1 Midbrain 0.973 –

8 1 Striatum 0.991 –

8 2 Midbrain 0.724 Fig. 10B

8 2 Striatum 1.570* t1/2 = 5 min, EC50 = 10 times the peak blood level after 12.5 µg/kg, Emax =

−29.6; Fig. 10D

Notes.
* p< 0.05 for model fit to data.

DISCUSSION
In simulated data, this novel quantitative pharmacodynamics method performed well.

Under a reasonable set of assumptions, this method returns the correct answer either if

it claims a given region has high sensitivity to drug effect (i.e., low EC50), or if noise is

of modest magnitude relative to the drug-induced signal. The assumptions used for this

simulation are reasonable: (1) the object imaged has a response to the drug that can be

detected by the imaging method employed; (2) the sigmoid response model is appropriate

for the drug effect being studied; (3) random error is reasonably approximated by a normal

distribution; and (4) nonrandom error (signal drift) can be reasonably modeled by a

low-degree polynomial. In this scenario, not every possible model parameter can be

simultaneously fit to the data accurately, but one can reasonably assume a single value

for n, and half-life can be measured directly.

These simulation results suggested that the key remaining question was the actual

relative magnitudes of imaging system noise and a realistic drug-induced physiological

signal. Our fMRI data in a nonhuman primate give a real example of a system in which

a drug-induced imaging signal is large with respect to baseline fluctuations in the same

volume of interest (Fig. 8). With a signal:noise ratio of this magnitude, simulations predict

a high degree of confidence in EC50 estimates from this method (Fig. 9).

In an initial proof-of-principle study using a dopamine D1 agonist in nonhuman

primates, the model fit the data significantly in two regional time-signal curves and the

method provided a quantitative estimate for EC50 for each region (relative to the peak

concentration of drug in blood after the first dose). Remarkably, the estimated EC50s were

higher than the peak blood level of drug in these experiments, or, put another way, this

method could estimate the EC50 without needing to give high doses of drug that produce

anywhere near a maximal effect (not to mention a higher chance of noxious side effects).

This new method provides for the first time a quantitative pharmacodynamic measure

from a single imaging session, even with an imaging method subject to baseline signal drift.
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This advance can potentially allow research and clinical applications that are not possible

from qualitative methods.

Comparison to prior methods
Though other approaches have been suggested (Schwarz et al., 2007), most prior research

with nonquantitative imaging methods has used two general strategies to map responses to

a single dose of drug. One mapping strategy could be called the pure pharmacokinetic

approach, which identifies voxels whose time-signal curve approximates that of the

expected drug concentration before and after a rapidly administered dose of drug (Bloom

et al., 1999; Chen et al., 1997; Stein, Risinger & Bloom, 1999). Generally that approach relies

on a drug with rapid onset and fading of effect, such as nicotine or cocaine. The second

strategy could be called the pure pharmacodynamic method, which seeks voxels whose

time-signal curve correlates with that of a clinically evident effect such as analgesia or

intoxication (Breiter et al., 1997; Wise et al., 2002). The pure pharmacodynamic methods

generally cannot disentangle pure pharmacologic effects of drug from the clinical effect

caused by the drug. In other words, they cannot determine whether tissue in an identified

voxel is showing a direct response to drug or would respond similarly to the clinical effect

(e.g., pain relief) whether or not the targeted receptor was activated. Additionally, while

useful for spatially mapping responses, neither of these methods allows one to compute

quantitative pharmacodynamics in a single subject.

The new method presented here takes a different approach using combined

pharmacokinetic-pharmacodynamic (PK-PD) modeling. This approach rests on three

fundamental concepts: the nonlinearity of drug response; repeated doses of challenge

drug in an interval that is brief compared to the waning of effect of a single dose of drug

and to artifactual signal; and exploitation of a variable easily quantified in any imaging

experiment: time.

Another substantial difference is that this method aims at deriving within-subject EC50s.

In the traditional approach to derive a population EC50, each subject contributes to a

single data point. In fact, each data point usually is derived from at least 3–5 subjects each

exposed to the same dose, so the dose-response curve for the overall experiment requires

numerous subjects in order to sample a wide range of doses. The population approach

has occasionally been used with phMRI (Black et al., 2010; Kofke et al., 2007; Wise et al.,

2002). The population approach is an excellent choice when the population under study is

homogeneous, such as an inbred strain of mice, or when population inference is desired,

such as when one is less interested in between-subject variability than in central tendency.

However, the population approach requires giving some subjects doses much higher than

the EC50, which may be difficult in early human studies. The approach described here

may also be a better choice when individual responses are important, because otherwise

numerous imaging sessions would be required over a wide range of doses, including at

doses likely to produce side effects.
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Limitations of the method
Our approach shares two limitations common to any pharmacologic activation method.

First, the location of the drug effect need not occur in the physical location where the

receptors are situated. A classic example is the hypothalamic-pituitary axis. The prolactin

inhibiting factor, dopamine, acts at dopamine receptors on neuronal cell bodies in the

hypothalamus. However, the endocrine and metabolic effects of this drug activation

occur outside the brain proper, at the termination of the neuronal axonal processes

in the pituitary (Schwartz et al., 1979). In other words, as with any pharmacologic

activation approach, the method described here maps not drug receptors but rather

the “downstream” effects of the drug at axon termini of activated neurons (Ackermann

et al., 1984; Eidelberg et al., 1997; McCulloch, 1982; McCulloch, 1984; Raichle, 1987).

Existing methods (such as receptor-radioligand PET) can more precisely map receptor

location. However, this property of pharmacologic activation also has advantages. First, it

maps “real” areas of interest (e.g., sites where drugs acting on subcortical receptors exert

influence on cortical activity) (Schwarz et al., 2004). Second, pharmacologic activation

can detect functional alterations in drug-modulated neuronal circuits even when receptor

binding remains normal. Pharmacologic activation studies of dopaminergic denervation

have demonstrated such effects (McCulloch, 1982; McCulloch, 1984; McCulloch & Teasdale,

1979; Trugman & James, 1992). This makes sense given that changes in second messenger

function or “downstream” neurons can also modulate drug-sensitive neuronal circuits.

Pharmacologic activation is the method of choice for detecting overall effects on a

neuronal circuit rather than at a single level (e.g., receptors).

A second limitation of pharmacologic activation is that nonquantitative input data may

affect interpretation of the results. For instance, in a blood flow PET experiment analyzed

in the usual nonquantitative fashion (normalizing whole-brain mean image intensity to

a constant value), the D2-like dopamine agonist pramipexole appeared to cause cerebral

blood flow (CBF) increases in occipital cortex and cerebellum. However, quantitative

blood flow methods revealed that these apparent increases were artifactual; pramipexole

actually decreases CBF in most of the brain (preferentially in frontal cortex) while sparing

occipital cortex and cerebellum (Black et al., 2002).

In addition, the novel method described herein is limited by how well its assumptions fit

reality. For instance, we have modeled drug elimination but not drug distribution. After an

intravenous bolus dose, many drugs show an initial rapid clearing from plasma, assumed

to reflect distribution of drug into tissues, followed by the slower decline attributed to

elimination (Holford & Sheiner, 1982). Given the short time scale on which the novel

method relies, drugs with a prominent distribution phase may require the distribution

half-life to be modeled separately, or instead of the elimination half-life. For instance,

the elimination half-life (t1/2) of levodopa is 1–2 h, whereas its initial distribution

half-life (t1/2α) is only about 8 min (Gancher, Nutt & Woodward, 1987; Nutt, Woodward

& Anderson, 1985). As a second example, many drugs show hysteresis, i.e., the effect of a

drug at a given moment is influenced not only by the drug concentration at that moment

but also by its concentration prior to that moment (Contin et al., 2001; Contin et al., 1994;
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Holford & Sheiner, 1982; Tedroff et al., 1992). Modeling distribution half-life and hysteresis

may be important for accurate parameter estimation for certain drugs.

Here we modeled four equal doses of the challenge drug. The method has obvious

extensions to unequal dosing (e.g., 0.001 mg, 0.01 mg, 0.1 mg, 1 mg) or to a different

number of doses. Such changes may increase the range over which the method can return

accurate results, or increase the number of PK-PD parameters that can be modeled.

However, in preliminary simulation work, four to eight equal doses seem to give good

results. The logical extreme of more, smaller doses is a continuous slow infusion. However,

if there is any delay from blood concentration to effect, including hysteresis effects, a

continuous infusion may confound time and EC50.

This method also requires rapid administration and absorption of the drug. This

represents an important practical limitation of the method, as most drugs in clinical

use are optimized for oral use and once- or twice-a-day dosing. The simulations and

proof-of-principle biological data used brief intravenous infusions, and many drugs of

interest have no marketed i.v. formulations. On the other hand, i.v. administration is

not the only potential delivery option for the new method; it would also be expected to

work with other rapid delivery methods such as oral or nasal inhalation or sublingual or

subcutaneous administration.

Limitations of the proof-of-principle data
The 4 monkey experiments were intended as proof-of-principle demonstrations and as

such did not include the full set of controls that a more complete study would require. For

instance, no vehicle infusions were included as a strong control for the drug infusions, to

rule out the possibility that BOLD signal changed due to the sedated animal perceiving the

investigator’s activity or the infusion of fluid related to each dose. On the other hand, the

signal changes in response to infusions (estimated |Emax| ≈ 30= 3% of modal whole-brain

signal) are quite large in comparison to typical BOLD responses to most sensory or

cognitive manipulations (around 0.5%). The lack of BOLD response during the first

several minutes of the imaging session, before the first dose of drug was administered, may

also be considered an internal control supporting the validity of the results.

QuanDynTM did not identify a significant effect of drug for 6 of the 8 time-signal curves

(Figs. 10A, 10B). This is of course the desired output if these volumes of interest had no

meaningful response to the drug. It could also reflect excessive noise in the measurement

system compared to any true signal, a problem that could be mitigated by improved

imaging methods or larger a priori VOIs. More problematic would be a failure to identify

significant drug effect because of signal artifacts not well described by quadratic drift and

random error. Nevertheless, those regions in which the method identified a significant

drug response showed reasonable time-signal curves (Figs. 10C, 10D) and internally

consistent values for EC50.

The midbrain response in animal 2 was positive (Fig. 10C) whereas the striatal response

in the same animal was negative (Fig. 10D). The opposite sign of the responses in the

two significant regions may seem surprising at first glance, since the drug presumably
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has similar effects on receptors wherever they are located. However, the remote effects

of the drug may depend on where excitatory or inhibitory neurotransmitters appear

in the affected circuitry “downstream” to the receptor. Negative BOLD responses to a

stimulus have been well studied and often reflect a decrease in blood flow and oxygen

metabolism. See Black et al. (2010, Fig. 4 and Table S7) for a real-world phMRI example of

this phenomenon with a thorough discussion.

Applications and future directions
Simulations show that this new method can determine quantitative pharmacodynamic

parameters such as EC50 even if the underlying data derive from a nonquantitative imaging

method that includes noise and slow baseline signal drift. BOLD-sensitive fMRI data

appear to fit this model reasonably well. However, it may prove in practice that BOLD or

other methods have additional artifactual signal changes that overcome this robustness.

Other nonquantitative imaging methods may outperform BOLD-sensitive fMRI (Chen et

al., 2001). Results may improve further using quantitative or semiquantitative methods

(e.g., blood flow PET with arterial sampling, or arterial spin label perfusion MRI).

We envision several potential research applications of this method. Examples pertinent

to our prior work include between-group tests of dopamine theories of drug abuse,

schizophrenia, dystonia, Tourette syndrome, and complications of Parkinson disease.

Application to other pharmacologic systems and other organs is equally feasible.

Several clinical applications also suggest themselves. Since the method can predict

EC50s higher than the peak blood level achieved during testing, this approach may

find uses for individualized dosing estimates for drugs that are very expensive or have

narrow therapeutic windows. Pure pharmacokinetic modeling has found more limited

application. Another potential application would be for individualized dose-finding for

drugs whose clinical response may take weeks, such as antidepressants.

Finally, there are possible applications to drug development. Assume for instance that

an acute brain imaging effect occurs at the same blood level of an antidepressant that

provides efficacy in chronic treatment for major depression. Then if phase I studies

show a reasonable safety profile across a given range of blood concentrations, those

concentrations could be used to measure EC50 for the acute effect in a single day from a

modest sample of patients. This would reasonably narrow the likely efficacious dose range,

potentially providing substantial savings of time and money. If the receptor system being

targeted shows similar sensitivity in patients and healthy controls, the initial dose-ranging

estimation could even be performed in healthy subjects.
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