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ABSTRACT
Background: Ferroptosis is a novel form of programmed cell death characterized by
the excessive accumulation of intracellular iron and an increase in reactive oxygen
species. Emerging studies have shown that ferroptosis plays a vital role in the
progression of lung adenocarcinoma, but the effect of ferroptosis-related genes on
prognosis has been poorly studied. The purpose of this study was to explore the
prognostic value of ferroptosis-related genes.
Methods: Lung adenocarcinoma samples were downloaded from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The least
absolute shrinkage and selection operator (LASSO) Cox regression algorithm was
used to establish a predictive signature for risk stratification. Kaplan–Meier (K–M)
survival analysis and receiver operating characteristic (ROC) curve analysis were
conducted to evaluate the signature. We further explored the potential correlation
between the risk score model and tumor immune status.
Results: A 15-gene ferroptosis signature was constructed to classify patients into
different risk groups. The overall survival (OS) of patients in the high-risk group was
significantly shorter than that of patients in the low-risk group. The signature could
predict OS independent of other risk factors. Single-sample gene set enrichment
analysis (ssGSEA) identified the difference in immune status between the two groups.
Patients in the high-risk group had stronger immune suppression, especially in the
antigen presentation process.
Conclusions: The 15-gene ferroptosis signature identified in this study could be a
potential biomarker for prognosis prediction in lung adenocarcinoma. Targeting
ferroptosis might be a promising therapeutic alternative for lung adenocarcinoma.
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INTRODUCTION
Lung cancer has the highest morbidity and mortality worldwide (Bray et al., 2018).
The most common subtype is lung adenocarcinoma (LUAD), accounting for
approximately 40% of all lung cancers (Wei et al., 2018). Due to the lack of obvious clinical
symptoms, most patients are diagnosed at relatively advanced stages and have 5-year
survival rates of less than 15% (Denisenko, Budkevich & Zhivotovsky, 2018). In recent
years, targeted therapies, such as epidermal growth factor tyrosine kinase inhibitors
(EGFR-TKIs), have achieved much success (Li et al., 2016). However, drug resistance,
which is an inevitable problem, causes the prognosis of LUAD patients to be far from
satisfactory, and the survival rate at 5 years is still only 21% (Macheleidt et al., 2018).
Therefore, it is meaningful to explore novel mechanisms of therapy and identify an
effective prognostic model for risk stratification to improve the clinical outcomes of LUAD
patients.

Iron is an indispensable element for human biological processes, while iron metabolism
plays a dual role in the proliferation and death of tumor cells (Wang et al., 2019b).
An increased level of iron within a limited range facilitates the proliferation of cancer
cells, while the excessive accumulation of iron leads to the death of cancer cells by lipid
peroxidation of the cell membrane, namely, ferroptosis (Mou et al., 2019; Stockwell et al.,
2017). Ferroptosis is a novel form of regulated cell death and has a tumor suppressive
function (Dixon et al., 2012). Emerging studies, though limited, have shown that
ferroptosis plays a pivotal role in the regulation of tumor progression in non-small cell
lung cancer (NSCLC). For example, SLC7A11, which could negatively regulate the process
of ferroptosis, was reported to be overexpressed in LUAD and closely associated with
tumor progression (Hu et al., 2020; Ji et al., 2018;Ma et al., 2021). Upregulated GPX4 was
reported to promote the proliferation of cancer cells and play a role in the resistance to
ferroptosis in NSCLC (Ji et al., 2018). High expression of NFS1 in LUAD could protect
cancer cells from ferroptosis (Alvarez et al., 2017). High expression of FSP1, EGLN1
and STRYK1 was found to be associated with greater ferroptosis resistance in lung cancer
cells (Doll et al., 2019; Jiang et al., 2017; Lai et al., 2019). In recent years, ferroptosis
was reported to interact with some immune cells to influence tumor progression.
For example, abnormal ferroptosis-mediated cell death could induce neutrophil
recruitment and the inflammatory response to cancer cell death (Pentimalli et al., 2019).
Additionally, Wang et al. revealed that CD8+ T cells drive the ferroptosis of cancer cells
and enhance the antitumor effect, indicating a vital role of ferroptosis in human anticancer
immunity (Wang et al., 2019a; Zhang et al., 2020). All these discoveries shed light on
ferroptosis as a promising target for cancer therapy. However, there are still limited studies
exploring the potential role of ferroptosis-related genes in LUAD so far, and their effect on
prognosis remains largely unknown.

In this study, we comprehensively analyzed the expression patterns, prognostic value,
biological functions and potential pathways of ferroptosis-related genes to gain a better
understanding of ferroptosis in LUAD. Then, we constructed a prognostic signature of the
ferroptosis-related genes in The Cancer Genome Atlas (TCGA) cohort and validated it in
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two Gene Expression Omnibus (GEO) datasets. Finally, we further explored the
correlation between the prognostic signature and the immune status of LUAD patients.
Our findings may provide useful information for further studies in this field.

METHODS
Acquisition of ferroptosis-related genes
We downloaded the list of ferroptosis pathway genes (map04216) from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway database (https://www.genome.jp/
kegg/pathway.html) and designated these genes as ferroptosis-related genes. Iron
metabolism-associated genes were retrieved from the R-HAS-917937 pathway in
the Reactome pathway database (https://reactome.org/) and the cellular iron ion
homeostasis pathway in the AmiGO2 database (http://amigo.geneontology.org/amigo).
After systematically searching and analyzing the original document, we discarded the
genes that do not have a modulatory effect on ferroptosis. In addition, we collected and
integrated newly reported ferroptosis-related genes for subsequent research.

Data collection
We obtained the level 3 mRNA expression profiles and corresponding clinical data of
LUAD patients from the TCGA database (https://portal.gdc.cancer.gov/) and GEO
database (https://www.ncbi.nlm.nih.gov/geo/) (Rousseaux et al., 2013; Schabath et al.,
2016) up to September 20, 2020. Samples with a follow-up time of less than 30 days or lack
of prognostic data were excluded. Since the TCGA and GEO databases are public to
researchers and we completely abided by the publication guidelines as well as the policies
of access to the database, ethical review and approval were not required.

Identification of differentially expressed ferroptosis genes
The “limma” R package was used for the normalization of gene expression matrixes.
Then, we matched the mRNA sequencing data with the ferroptosis-related gene list and
performed differential expression analysis between the tumor tissues and normal tissues in
the TCGA cohort by using false discovery rate (FDR) < 0.05 as the threshold. Thus,
ferroptosis-related differentially expressed genes (DEGs) were identified. A heatmap
and volcano plot to visualize the DEGs were generated by the “pheatmap” R package.
In addition, the protein-protein interaction (PPI) network of the ferroptosis-related DEGs
was analyzed in the Search Tool for the Retrieval of Interacting Genes (STRING) online
database and visualized in Cytoscape 3.8.2 software. We also generated a correlation
network of the DEGs using the “igraph” R package.

Establishment and validation of the prognostic model
DEGs with prognostic value were screened by univariate Cox regression analysis with a
P value less than 0.05. Then, the least absolute shrinkage and selection operator (LASSO)
Cox regression algorithm was conducted to establish the signature. In brief, we used
the normalized expression data as the independent variable and the overall survival (OS)
data of the patients in the TCGA cohort as the response variable to perform the LASSO
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algorithm for the shrinkage of variables by the “glmnet” R package. Tenfold
cross-validation was used to narrow the number of candidate genes and identify the
penalty parameter (λ), which corresponds to the lowest position of the likelihood deviance
curve. We further evaluated the prognostic value of the LASSO genes by Kaplan–Meier
(K–M) survival analysis. The K–M survival analysis was conducted using the optimal
cutoff determined by the “surv_cutpoint” function in the “survival” R package.

The risk score of each patient was calculated with the following formula: risk score =
Σ (ExpmRNAn × βmRNAn). The patients were stratified by the median risk score into
high- and low-risk groups. After that, we performed principal component analysis (PCA)
to evaluate the discriminatory ability by the “status” R package. We evaluated the
predictive ability of the signature for OS through K–M survival analysis as well as
time-dependent receiver operating characteristic (ROC) curve analysis conducted by the
“survminer” and “survivalROC” R packages. Finally, we performed multivariate Cox
regression analysis to identify independent risk factors for OS. In this study, the TCGA
cohort was used as the derivation cohort, and the GSE72094 and GSE30219 cohorts were
used as external validation cohorts.

Construction and evaluation of the predictive nomogram
We constructed a nomogram to predict the survival probabilities at 1, 2 and 3 years in the
TCGA cohort by integrating all the independent risk factors using the “rms” R package.
The patients were stratified into different risk groups, and K–M survival analysis was
conducted to analyze the OS difference between the different risk groups. Then, we
calculated the C index and performed time-dependent ROC analysis to further validate
the prediction accuracy of the nomogram. Moreover, a calibration plot was used to
evaluate the consistency between the predicted survival probability and the real
observation. The GSE72094 cohort was used for the external validation of the nomogram.

Correlation with immune status
Using the “GSVA” R package, we calculated the enrichment score of 16 immune-related
cells as well as 12 immune-related functions for each patient by single-sample gene set
enrichment analysis (ssGSEA). In brief, using a set of genes that correspond to a particular
immune cell or immune function, the enrichment score was calculated in the gene
expression matrix through the ssGSEA algorithm, and the enrichment scores were
normalized for subsequent analysis. Then, the enrichment scores for diverse immune
cells and functions of patients in different risk groups were compared to illustrate the
potential correlation between ferroptosis and immune status. The R script used for this
part of the analysis is provided in the GitHub website (https://github.com/guangxu0109/
ssGSEA.git).

Functional enrichment analysis
To gain insight into the molecular mechanisms of these ferroptosis-related genes, we
performed Gene Ontology (GO) and KEGG enrichment analyses of the DEGs between the
high-risk group and low-risk group in the TCGA cohort, which were screened by the
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thresholds of |log2 fold change (FC)| ≥ 1 and FDR < 0.05. GO enrichment analysis was
performed by the “clusterProfiler” R package, and KEGG enrichment analysis was
performed by gene set enrichment analysis (GSEA) using GSEA 4.0.2 software.
The pathways with a P value less than 0.05 were considered to be significantly enriched.

Statistical analysis
All statistical analyses were conducted in R software version 4.0.2. The Mann–Whitney test
was conducted to compare gene expression levels between tumor tissues and normal
tissues as well as to compare the ssGSEA enrichment scores between different risk groups.
A P value less than 0.05 (if not otherwise specified) was considered statistically significant.

RESULTS
Twenty-two genes correlated with prognosis were identified in the
TCGA cohort
We generated a flowchart to describe the design of this study, as shown in Fig. 1.
A total of 948 LUAD patients from the TCGA database (N = 477), GSE72094 cohort
(N = 386) and GSE30219 cohort (N = 85) were used for subsequent analysis in this study.
Table S1 shows the basic characteristics of these patients. A total of 125 ferroptosis-
associated genes (as listed in Table S2) were identified to intersect with the mRNA
expression matrix of the TCGA and GEO databases. Ninety-seven genes were confirmed
to be differentially expressed between tumor tissues and nontumorous tissues
(62 upregulated and 35 downregulated) in the TCGA cohort (Figs. 2A, 2B and Table S3).
The PPI network and the correlation network of the DEGs are shown in Fig. S1.
Twenty-two genes were identified to be correlated with prognosis through univariate Cox
regression analysis (Fig. 3).

Establishment and assessment of the prognostic ferroptosis signature
in the TCGA cohort
A signature consisting of 15 genes was established based on the minimum λ value
identified by the LASSO algorithm in the TCGA cohort (Fig. S2). The risk score of each
patient was calculated with the following formula: (−0.037 × expression level of AGER) +
(0.261 × expression level of CISD1) + (−0.019 × expression level of DPP4) + (0.173 ×
expression level of EGLN1) + (0.077 × expression level of FANCD2) + (−0.253 ×
expression level of GLS2) + (−0.233 × expression level of ISCU) + (0.087 × expression
level of ITGA6) + (0.024 × expression level of ITGB4) + (0.118 × expression level of
KRAS) + (0.109 × expression level of NEDD4) + (−0.048 × expression level of PEBP1) +
(−0.133 × expression level of SLC11A2) + (0.013 × expression level of TFAP2A) +
(0.208 × expression level of VDAC1). We further performed K–M survival analysis for the
15 ferroptosis-related genes in the prognostic signature. The results confirmed that all
these genes were significantly correlated with OS (Fig. S3). Among them, AGER, DPP4,
GLS2, ISCU, PEBP1 and SLC11A2 were identified to be protective factors for OS, while
the remaining factors (CISD1, EGLN1, FANCD2, ITGA6, ITGB4, KRAS, NEDD4,
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TFAP2A and VDAC1) were risk factors, which was consistent with the results of
univariate Cox analysis, as shown in Fig. 3.

The patients in the TCGA cohort were divided into different risk groups by the median
risk score (Table S4). The PCA plot in Fig. 4A shows that patients in different risk groups
were clearly distributed in two directions, indicating that the gene signature had good
discriminatory power. The K–M curve showed that the OS of patients in the high-risk
group was significantly lower than that of patients in the low-risk group (Figs. 4B, 4C).
In addition, OS was significantly decreased with increasing risk scores (Fig. 4D).
The area under the curve (AUC) value of the risk score model to predict OS was 0.775,
which was the highest among all the risk factors, indicating the superior predictive ability
of the prognostic signature (Fig. 5E).

External validation of the ferroptosis-related gene signature
To further validate the robustness of the signature, we applied the 15-gene ferroptosis
signature to the GSE72094 and GSE30219 cohorts. The patients in the two cohorts were
stratified into high- and low-risk groups by the median risk score (Tables S5 and S6).

Lasso-Cox regression

Expression data of TCGA-LUAD cohort
(535 tumor tissues and 59 normal tissues)

Differentially expressed analysis of 125 ferroptosis-related genes

97 ferroptosis-related DEGs (FDR < 0.05)

22 DEGs related to OS (P < 0.05)

Univariate Cox regression analysis

15-gene ferroptosis signature

Building and validating
 a predictive nomogram

External validation in 
the GSE72094 cohort 
and GSE30219 cohort

Functional enrichment 
analysis

Performance verification 
by PCA, survival analysis 

and ROC analysis

Independent prognostic 
value analysis

Correlation with 
immune status

Figure 1 Work flow of the study. The TCGA cohort was used to construct the prognostic ferropto-
sis-related gene signature. The GSE72094 cohort and GSE30219 cohort were used to further validate the
prognostic signature. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; DEGs, differ-
entially expressed genes; FDR, false discovery rate; OS, overall survival; PCA, principal component
analysis; ROC, the receiver operating characteristic. Full-size DOI: 10.7717/peerj.11687/fig-1
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In the GSE72094 cohort, the PCA plot showed that patients in different risk groups were
distributed in two directions (Fig. 5A). The K–M curve indicated that patients in the
high-risk group had significantly shorter OS than those in the low-risk group, and OS was
significantly decreased with increasing risk scores (Figs. 5B–5D). The AUC value of the
risk score model was 0.711, which was the highest among all the risk factors (Fig. 5E).
In the GSE30219 cohort, the PCA plots showed that patients in different groups were
distributed in two directions (Fig. 5F). The K–M survival curve confirmed a significantly
worse OS for patients in the high-risk group than for those in the low-risk group (Fig. 5G).
OS significantly decreased with increasing risk scores (Figs. 5H, 5I). The AUC value of
the risk score model was 0.877, which was the highest among all the risk factors (Fig. 5J).
All these results indicated that the 15-gene ferroptosis signature had a robust predictive
performance.
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Figure 5 Validation of the 15-gene ferroptosis signature in the GSE72094 cohort (A–E) and
GSE30219 cohort (F–J). (A, F) PCA plots of patients in high-risk group (red) and low-risk group
(navy blue). (B, G) Kaplan–Meier curves of patients in high-risk group (red) and low-risk group (navy
blue). (C, H) The distribution of risk score of each patient. (D, I) The distribution of OS, survival status
and risk score of each patient. (E, J) Time- dependent ROC curves of risk score and clinical character-
istics. PCA, principal component analysis; OS, overall survival; AUC, area under curve; ROC, receiver
operating characteristic. Full-size DOI: 10.7717/peerj.11687/fig-5
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Independent prognostic value of the ferroptosis-related gene
signature
To further assess the independent prognostic value of the 15-gene ferroptosis signature, we
performed univariate and multivariate Cox regression analyses on all characteristics,
including age, sex and TNM stage, and the risk score model based on the ferroptosis
signature in both the derivation cohort and two validation cohorts. The results are
presented in Table 1. In the TCGA cohort, TNM stage and risk score model were identified
to be independent prognostic factors for OS. In the GSE72094 cohort, sex, TNM stage and
risk score model were independent prognostic factors for OS. The risk score model was
the only independent prognostic factor for OS in the GSE30219 cohort.

Given that the risk score model was not the only independent prognostic factor in
the TCGA and GSE72094 cohorts, we further performed subgroup survival analysis to
verify whether the 15-gene ferroptosis signature could be independent of other risk factors
to predict prognosis. In the TCGA cohort, patients in stage I–II and stage III–IV were
stratified into high-risk and low-risk groups by the median risk score. K–M curves showed
that the OS of the high-risk group was significantly worse than that of the low-risk group
regardless of whether patients were stage I-II or stage III-IV, indicating that the
15-gene ferroptosis signature could predict OS independent of TNM stage (Figs. 6A, 6B).

Table 1 Univariate and multivariate analysis of OS in the TCGA, GSE72094 and GSE30219 cohorts.

Variables Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

TCGA cohort

Age 0.997 [0.978–1.015] 0.718

Gender 1.000 [0.694–1.441] 1.000

Stage 1.648 [1.396–1.946] <0.001 1.591 [1.064–2.380] 0.024

T 1.600 [1.285–1.994] <0.001 1.064 [0.830–1.364] 0.626

N 2.765 [1.911–4.001] <0.001 1.316 [0.723–2.397] 0.369

M 1.748 [0.959–3.187] 0.068

Risk score 3.670 [2.521–5.341] <0.001 2.918 [1.972–4.318] <0.001

GSE72094 cohort

Age 1.010 [0.990–1.030] 0.344

Gender 1.501 [1.027–2.194] 0.036 1.547 [1.050–2.280] 0.027

Stage 1.628 [1.358–1.951] <0.001 1.589 [1.351–1.920] <0.001

Risk score 2.607 [1.918–3.544] <0.001 2.135 [1.722–3.208] <0.001

GSE30219 cohort

Age 1.031 [0.996–1.067] 0.088

Gender 1.114 [0.516–2.403] 0.784

T 1.463 [0.856–2.499] 0.164

N 1.247 [0.299–5.202] 0.762

Risk score 2.881 [1.516–5.474] 0.001 6.751 [2.400–18.785] <0.001

Note:
Abbreviations: TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval.

Tu et al. (2021), PeerJ, DOI 10.7717/peerj.11687 10/24

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
http://dx.doi.org/10.7717/peerj.11687
https://peerj.com/


Similarly, in the GSE72094 cohort, the OS of the high-risk group was significantly worse
than that of the low-risk group regardless of whether the patient was male or female,
indicating that the signature could predict OS independent of sex (Figs. 6C, 6D).
For the TNM stage subgroup, the OS of patients in the high-risk group was significantly
shorter than that of patients in the low-risk group except for patients in stage III and
stage IV, which was likely due to the small sample size of patients in these groups (Figs. 6E,
6F). Overall, the 15-gene ferroptosis signature could predict OS independent of other
clinical characteristics.

Construction and assessment of the predictive nomogram
Based on the independent risk factors identified in the TCGA cohort, we constructed a
nomogram model to predict the OS probabilities of patients at 1, 2 and 3 years for risk
assessment and earlier intervention to improve patient survival time (as shown in Fig. 7A).
As depicted in Fig. 7B, a significantly poorer prognosis was observed in the high-risk
group. The C index for the nomogram model to predict OS was 0.770 (95% CI
[0.724–0.816]), indicating that the nomogram model had a robust predictive accuracy.
We further evaluated the discrimination and calibration of the nomogram by
time-dependent ROC curves and calibration plots for 1-year and 3-year OS. The 1-year
and 3-year calibration plots indicated that the predicted survival was highly consistent
with the actual survival in the TCGA cohort (Figs. 7D, 7E). As shown in Figs. 7H and 7I,
the AUC values of the nomogram for predicting 1-year and 3-year OS were 0.812 and
0.757, respectively. All the AUC values of the nomogram were superior to those of
other independent risk factors, indicating that the nomogram had a better predictive
performance.

The nomogram was further validated in the GSE72094 cohort, while TNM stage
information was not given in the GSE30219 cohort. The results showed that the OS of
patients in the high-risk group was significantly shorter than that of patients in the
low-risk group (Fig. 7C). The C index of the nomogram model was 0.708 (95% CI
[0.660–0.756]). The calibration plots indicated great consistency between the predicted
survival rate and the real observation (Figs. 7F, 7G). The AUC values of the nomogram for
predicting 1-year and 3-year OS were 0.735 and 0.758, respectively, which were also
superior to those of all other independent risk factors (Figs. 7J, 7K).

Functional analysis of the 15-gene ferroptosis signature
GO and KEGG enrichment analyses were performed to elucidate the possible biological
functions and pathways involved in the 15-gene ferroptosis signature. The results of
GO enrichment analysis indicated that the DEGs between the high-risk group and the
low-risk group were mainly enriched in pathways of the cell cycle and immune response,
such as chromosome segregation, mitotic nuclear division, mitotic sister chromatid
segregation, antimicrobial humoral response and humoral immune response (Fig. 8A and
Table S7). As shown in Fig. 8B and Table 2, the KEGG enrichment analysis revealed
that the top five pathways enriched in the high-risk group were the cell cycle, ubiquitin-
mediated proteolysis, oocyte meiosis, homologous recombination and p53 signaling
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Figure 6 Stratification analyses of the TCGA cohort (A–B) and GSE72094 cohort (C–F). (A, B)
Kaplan–Meier curves of patients in high-risk group (red) and low-risk group (navy blue) stratified via
stage I-II and stage III-IV in the TCGA cohort, respectively. (C, D) Kaplan–Meier curves of patients in
high-risk group (red) and low-risk group (navy blue) stratified via female and male in the GSE72094
cohort, respectively. (E, F) Kaplan–Meier curves of patients in high-risk group (red) and low-risk
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Genome Atlas. Full-size DOI: 10.7717/peerj.11687/fig-6
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pathways. The top five pathways enriched in the low-risk group were the arachidonic acid
metabolism, primary bile acid biosynthesis, alpha linolenic acid metabolism, asthma, and
intestinal immune network for IgA production pathways.
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Figure 7 Construction and validation of the predictive nomogram. (A) The nomogram for OS prediction at 1, 2 and 3 years was constructed in
the TCGA cohort. (B) Kaplan–Meier curve of patients in high-risk group (red) and low-risk group (navy blue) in the TCGA cohort.
(C) 2xKaplan–Meier curve of patients in high-risk group (red) and low-risk group (navy blue) in the GSE72094 cohort. (D, E) Calibration plots of
nomogram for OS prediction at 1 and 3 years in the TCGA cohort, respectively. (F, G) Calibration plots of nomogram for OS prediction at 1 and 3
years in the GSE72094 cohort, respectively. (H, I) Time-dependent ROC curves to evaluate the predictive performance of nomogram at 1 and 3 years
in the TCGA cohort, respectively. (J, K) Time-dependent ROC curves to evaluate the predictive performance of nomogram at 1 and 3 years in the
GSE72094 cohort, respectively. In the calibration plot, the closer the red line (fitting line) and gray line (ideal line) are, the higher predictive accuracy
of the model is. TCGA, The Cancer Genome Atlas; OS, overall survival; AUC, area under curve; ROC, receiver operating characteristic.
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Correlation with immune status
Given that pathways of the immune response were significantly enriched in the 15-gene
ferroptosis signature, we further sought to investigate the correlation between immune
status and risk score of the ferroptosis signature. The enrichment results are presented in
Tables S8–10. Then, we analyzed the difference in the enrichment score of immune cells
and immune functions between the high-risk and low-risk groups. By comparing the
enrichment results of the three cohorts, we found that enrichment scores of activated
dendritic cells (aDCs), dendritic cells (DCs), immature dendritic cells (iDCs), mast cells
and neutrophils were significantly lower in the high-risk group than in the low-risk group
(Figs. 9A, 9C, 9E). Regarding immune-related functions, higher enrichment score of
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Figure 8 GO and KEGG pathway enrichment analyses. (A) Representative GO pathways enriched in
the DEGs between the high- and low-risk groups. (B) The top five enriched KEGG pathways identified by
GSEA in the high- and low-risk groups. |log2FC| ≥ 1 and FDR < 0.05 were set as the criteria to screen
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Genomes; GSEA, Gene Set Enrichment Analysis. Full-size DOI: 10.7717/peerj.11687/fig-8
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antigen-presenting cell (APC) inhibition was found in the high-risk groups of all three
cohorts, while a higher enrichment score of the type II IFN (IFN-γ) response was found in
the low-risk group (Figs. 9B, 9D, 9F). All these results indicated a close correlation between
risk score of the ferroptosis signature and immune cells as well as immune functions.

DISCUSSION
Ferroptosis is a novel form of programmed cell death characterized by the excessive
accumulation of intracellular iron and an increase in reactive oxygen species (ROS)
(Dixon et al., 2012). Disturbances in iron hemostasis lead to excessive intracellular iron
accumulation and may induce ferroptosis (Bogdan et al., 2016). In recent years, this unique
pattern of cell death has been the focus of a large number of studies, and it is well
characterized as a promising therapeutic alternative for various cancer types (Hassannia,
Vandenabeele & Vanden Berghe, 2019). However, there are still limited studies regarding
the specific role of ferroptosis in LUAD as well as its potential mechanism and pathways.
The rapid development of RNA sequencing and microarrays and large-scale public
databases provide an opportunity to obtain a better understanding of these ferroptosis-
related genes and to construct a reliable ferroptosis-based prognostic signature.

In the present study, we systematically analyzed the expression profile of ferroptosis-
related genes in LUAD, and we found that the majority of ferroptosis-related genes (77.6%,
97/125) were differentially expressed between LUAD tumor tissues and normal tissues.
Univariate Cox regression analysis showed that 22 genes were associated with OS, and
LASSO Cox regression finally identified 15 genes (AGER, CISD1, DPP4, EGLN1,
FANCD2, GLS2, ISCU, ITGA6, ITGB4, KRAS, NEDD4, PEBP1, SLC11A2, TFAP2A
and VDAC1) to construct the ferroptosis-related gene signature. Their modulatory effects
on ferroptosis are summarized in Table 3. Among them, CISD1, DPP4, EGLN1, FANCD2,

Table 2 Top five enriched KEGG pathways of the high-risk and low-risk groups analysed by GSEA.

Enriched pathways Size Es NES NOM
p-value

FDR
q-value

High-risk group

KEGG_CELL_CYCLE 125 0.769 2.495 <0.001 <0.001

KEGG_UBIQUITIN_MEDIATED_PROTEOLY-SIS 135 0.615 2.458 <0.001 <0.001

KEGG_OOCYTE_MEIOSIS 113 0.619 2.342 <0.001 <0.001

KEGG_HOMOLOGOUS_RECOMBINATION 28 0.845 2.291 <0.001 <0.001

KEGG_P53_SIGNALING_PATHWAY 68 0.589 2.270 <0.001 <0.001

Low-risk group

KEGG_ARACHIDONIC_ACID_METABOLISM 58 0.571 1.988 0.002 0.103

KEGG_PRIMARY_BILE_ACID_BIOSYNTHE-SIS 16 0.661 1.883 <0.001 0.144

KEGG_ALPHA_LINOLENIC_ACID_METABO-LISM 19 0.621 1.823 0.006 0.156

KEGG_ASTHMA 28 0.745 1.820 0.017 0.119

KEGG_INTESTINAL_IMMUNE_NETWORK_
FOR_IGA_PRODUCTION

46 0.650 1.740 0.040 0.177

Note:
Abbreviations: ES, enrichment score; NES, normalized enrichment score; NOM p-value, nominal p value; FDR q-valve,
false discovery rate.
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Figure 9 Comparison of ssGSEA scores of different risk groups in the TCGA cohort (A, B),
GSE72094 cohort (C, D) and GSE30219 cohort (E, F). (A, C, E) Boxplots to display the enrichment
scores of 16 immune cells of different risk groups in the TCGA cohort, GSE72094 cohort and GSE30219
cohort, respectively. (B, D, F) Boxplots to display the enrichment scores of 12 immune functions of
different risk groups in the TCGA cohort and GSE72094 cohort and GSE30219 cohort, respectively.
Adjusted P values were showed as: ns, not significant; �, P < 0.05; ��, P < 0.01; ���, P < 0.001. ssGSEA,
single-sample gene set enrichment analysis; TCGA, The Cancer Genome Atlas; DC, Dendritic cells; APC,
Antigen-presenting cells; Type II INF, IFN-γ. Full-size DOI: 10.7717/peerj.11687/fig-9
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ISCU, ITGA6, ITGB4, KRAS and NEDD4 negatively regulated ferroptosis, while AGER,
GLS2, PEBP1, SLC11A2 and VDAC1 positively regulated ferroptosis. The depletion of
AGER inhibited autophagy-dependent ferroptosis (Wen et al., 2019). Low CISD1
expression could contribute to the ferroptosis of hepatocellular cancer cells by
iron-mediated intramitochondrial lipid peroxidation (Yuan et al., 2016).
The accumulation of DPP4 could protect cells from ferroptosis by inhibiting lipid
peroxidation in human colorectal cancer (Xie et al., 2017). A previous study indicated
that EGLN1 could act as an oncogene by inducing LSH expression, which inhibits
ferroptosis in lung cancer (Jiang et al., 2017). FANCD2 was found to act as a ferroptosis
suppressor by decreasing lipid peroxidation (Song et al., 2016). Upregulation of GLS2
exhibited antitumor effects in gastric cancer by promoting ferroptosis (Niu et al., 2019).
ISCU, a mitochondrial protein, could regulate iron metabolism and increase the
expression of GSH, thus significantly alleviating ferroptosis (Du et al., 2019). Integrin
subunit alpha 6 (ITGA6) and integrin subunit beta 4 (ITGB4) belong to the integrin
family, which mainly functions in cell adhesion. Overexpression of ITGA6 and ITGB4
attenuated the ferroptosis induced by erastin, while knockout of ITGA6 and ITGB4
promoted ferroptosis in breast cancer cells (Brown et al., 2017). Activated mutant
KRAS could promote the expression of SCL7A11, thus inhibiting ferroptosis in lung
adenocarcinoma (Hu et al., 2020). The depletion of NEDD4 was found to promote the
ferroptosis induced by erastin by limiting the degradation of VDAC2/3 in melanoma
(Yang et al., 2020). PEBP1, a scaffold protein kinase cascade inhibitor, was reported to
promote ferroptosis by enabling lipoxygenase (Wenzel et al., 2017). SLC11A2, also called
DMT1, is a major iron transporter and contributes to iron uptake in most cell types, and its
upregulation could trigger ferroptosis in acute myocardial infarction mice (Song et al.,
2020). TFAP2A was reported to negatively modulate ferroptosis by activating the NRF2
signaling pathway (Huang et al., 2020). Inhibition of VDAC1 could significantly alleviate
ferroptosis and improve cell survival by decreasing the ROS level in mitochondria
(Nagakannan et al., 2019). Subsequent K–M survival analyses confirmed the prognostic
value of the 15 ferroptosis-related genes, indicating their potential role in the initiation
and progression of LUAD. Unsurprisingly, the risk scores of the 15-gene ferroptosis
signature were demonstrated to be significantly associated with the OS of LUAD patients
in both the TCGA cohort and two external validation cohorts. The signature was
independent of other clinical characteristics in all three cohorts. In addition, the
nomogram integrating the independent risk factors, including the risk score model,
exhibited high predictive value and may help clinicians make optimal clinical decisions to
improve the OS rate of LUAD patients. These findings indicated the important role of
ferroptosis in the progression of LUAD and the possibility of the ferroptosis signature as a
biomarker for OS.

KEGG pathway analysis showed that the high-risk group was mainly enriched in
pathways closely associated with tumorigenesis, such as the cell cycle, oocyte meiosis and
homologous recombination. GO analysis of the DEGs between the high-risk group and
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low-risk group showed that the biological functions of the DEGs were mainly enriched
in the regulation of the cell cycle and immune response, indicating a link between
ferroptosis and antitumor immunity. Cancer growth and metastasis are closely related to
interactions with the immune system (Matsushita et al., 2012). When investigating the
correlation with immune status, we interestingly found that enrichment scores of aDCs,
DCs, iDCs, mast cells and neutrophils were significantly lower in the high-risk group.
Among these differentially enriched immune cells, iDCs specialize in antigen capture, and
DCs are professional APCs (Lin et al., 2019; Tiberio et al., 2018). Both aDCs and iDCs play
crucial roles in the process of cytotoxic T cell activation and in the regulation of the
immune response to cancer cells (Durai & Murphy, 2016). Moreover, neutrophils
infiltrating tumor tissues, termed tumor-associated neutrophils (TANs), also play a role in
antitumor immunity (Lecot et al., 2019). It was confirmed that TANs could release
cytotoxic substances such as ROX, thus directly inducing tumor cell apoptosis (Takeshima
et al., 2016). The role of mast cells in the progression of tumors is controversial.
For instance, mast cells could play a protumorigenic role by releasing angiogenic and

Table 3 Modulatory effect of the signature genes on ferroptosis.

Gene
symbol

Protein Modulatory effect on ferroptosis References

AGER Advanced glycosylation end
product-specific receptor

Depletion attenuates the autophagy-dependent ferroptosis Wen et al. (2019)

CISD1 CDGSH iron-sulfur domain-containing
protein 1

Down-expression contributes to ferroptosis by iron-mediated
intramitochondrial lipid peroxidation

Yuan et al. (2016)

DPP4 Dipeptidyl peptidase 4 Overexpression protects cell from ferroptosis by inhibiting lipid
peroxidation

Xie et al. (2017)

EGLN1 Egl nine homolog 1 Overexpression inhibits ferroptosis by the induction of LSH Jiang et al. (2017)

FANCD2 Fanconi anemia group D2 protein Knockout promotes ferroptosis though increasing iron accumulation and
lipid peroxidation

Song et al. (2016)

GLS2 Glutaminase liver isoform Upregulation promotes ferroptosis in gastric cancer Niu et al. (2019)

ISCU Iron-sulfur cluster assembly enzyme
ISCU

Overexpression attenuates ferroptosis by increasing the level of GSH Du et al. (2019)

ITGA6 Integrin alpha-6 Overexpression inhibits ferroptosis by suppressing the expression of
ACSL4

Brown et al. (2017)

ITGB4 Integrin beta-4 Overexpression inhibits ferroptosis by suppressing the expression of
ACSL4

Brown et al. (2017)

KRAS GTPase KRas Inhibits ferroptosis by upregulating the expression of SLC7A11 Hu et al. (2020)

NEDD4 E3 ubiquitin-protein ligase NEDD4 Upregulation inhibits ferroptosis induced by erastin through the
degradation of VDAC2/3

Yang et al. (2020)

PEBP1 Phosphatidylethanolamine-binding
protein 1

Overexpression increases sensitivity to ferroptosis in HAEC and HT22
cells

Wenzel et al.
(2017)

SLC11A2 Natural resistance-associated
macrophage protein 2

Upregulation contributes to ferroptosis by increasing iron uptake Song et al. (2020)

TFAP2A Transcription factor AP-2-alpha Negatively regulates ferroptosis by increasing the expression of NRF2 Huang et al. (2020)

VDAC1 Voltage-dependent anion-selective
channel protein 1

Inhibition alleviates ferroptosis by decreasing the ROS level in
mitochondria

Nagakannan et al.
(2019)
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lymphangiogenic factors, which promote angiogenesis and lymphogenesis (Detoraki et al.,
2009). In contrast, mast cells could secrete tumor necrosis factor a (TNF-a) and directly
mediate tumor cell cytotoxicity, thus playing an antitumorigenic role (Varricchi et al.,
2017). In lung cancer, Bao et al. and Welsh et al. reported that the low abundance of mast
cell in cancer specimens was correlated with worse OS (Bao et al., 2020;Welsh et al., 2005).
When we analyzed the difference in immune functions, a stronger inhibition of APCs
was found in the high-risk groups of both the derivation cohort and two validation
cohorts. The synergistic effect of reduced DC and stronger inhibition of APCs in the
high-risk group may contribute to the great suppression of the tumor antigen presentation
process. Additionally, we also found that enrichment score of type II IFN was significantly
lower in the high-risk group. IFN-γ produced by APCs, T cells, B cells, NK cells and
NKT cells is the only member of the type II INF family (Castro et al., 2018). It is well
known that IFN-γ plays a pivotal role in cancer immune surveillance, stimulating
antitumor immunity and facilitating the recognition and elimination of cancer cells (Benci
et al., 2019; Shankaran et al., 2001; Street, Cretney & Smyth, 2001). All these findings
suggested that ferroptosis may be involved in antitumor immune response. However, more
experimental investigation is warranted to confirm these findings and reveal the
underlying mechanism.

CONCLUSIONS
The 15-gene ferroptosis signature identified in this study could be a potential biomarker
for prognosis prediction in LUAD. Targeting ferroptosis might be a promising therapeutic
alternative for LUAD.
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