Systematic changes in decapod shrimps: Gnathophyllidae Dana, 1852, Hymenoceridae Ortmann, 1890 and Pontoniinae Kingsley, 1879 all become synonyms of Palaemonidae Rafinesque, 1815 (Crustacea: Decapoda)

Sammy De Grave, Charles HJM Fransen, Timothy J Page

In recent years the systematic position of genera in the shrimp families Gnathophyllidae and Hymenoceridae has been under debate, with phylogenetic studies suggesting the families not to form monophyletic taxa. Here, we review the molecular evidence as well as the morphological characters used to distinguish both families, leading to the conclusion that neither family is valid. Further, we studied the structural details of the single morphological character which distinguishes the two subfamilies (Palaemoninae, Pontoniinae) in Palaemonidae, as well as their phylogenetic relationship. As the supposed character distinction plainly does not hold true and supported by the phylogenetic results, the recognition of subfamilies in Palaemonidae is not warranted. As a consequence, all three supra generic taxa (Gnathophyllidae, Hymenoceridae, Pontoniinae) are thus herein formally synonymised with Palaemonidae.

1 Systematic changes in decapod shrimps: Gnathophyllidae Dana, 1852, Hymenoceridae 2 Ortmann, 1890 and Pontoniinae Kingsley, 1879 all become synonyms of Palaemonidae 3 Rafinesque, 1815 (Crustacea: Decapoda) 4 Sammy De Grave¹, Charles H.J.M. Fransen² and Timothy J. Page^{3,4} 5 6 7 ¹ Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United 8 Kingdom. 9 ² Department of Marine Zoology, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA 10 Leiden, The Netherlands. 11 ³ Australian Rivers Institute, Faculty of Environmental Sciences, Griffith University, Nathan 12 Campus, Qld 4111, Australia. 13 ⁴ Water Planning Ecology, Queensland Dept. of Science, Information Technology and 14 Innovation, Dutton Park, QLD, 4102, Australia. 15 16 **ABSTRACT** In recent years the systematic position of genera in the shrimp families Gnathophyllidae and 17 18 Hymenoceridae has been under debate, with phylogenetic studies suggesting the families not to 19 form monophyletic taxa. Here, we review the molecular evidence as well as the morphological 20 characters used to distinguish both families, leading to the conclusion that neither family is valid. 21 Further, we studied the structural details of the single morphological character which 22 distinguishes the two subfamilies (Palaemoninae, Pontoniinae) in Palaemonidae, as well as their 23 phylogenetic relationship. As the supposed character distinction plainly does not hold true and 24 supported by the phylogenetic results, the recognition of subfamilies in Palaemonidae is not 25 warranted. As a consequence, all three supra generic taxa (Gnathophyllidae, Hymenoceridae, Pontoniinae) are thus herein formally synonymised with Palaemonidae. 26 27 28 Key words: Molecular phylogenetics, telson, systematics, synonymy 29 30 Corresponding author: Sammy De Grave, sammy.degrave@oum.ox.ac.uk 31

32

INTRODUCTION

33 34 In recent years, the higher level of systematics of caridean shrimps has seen considerable 35 changes at subfamily, family and superfamily level, but not without controversy. To take but 36 one example, Bracken et al. (2009) suggested that the family Oplophoridae could be 37 polyphyletic, however this study only included 4 genera (out of 10). This was followed by Chan 38 et al. (2010) who, on the basis of a molecular phylogeny of 10 species from 9 genera, split the 39 family into two families, Oplophoridae and Acanthephyridae, underpinned by habitat and 40 morphological differences between the two families. However, Wong et al. (2015) in a more 41 comprehensive study of 30 species in 9 genera, consider the family to be monophyletic, yet 42 comprising two distinct clades, which correspond to the above separate families. Finally, Aznar-43 Cormano et al. (2015) in a wide-ranging analysis with coverage across all caridean families, 44 recover both families as distinct lineages with high support, but with poorly resolved 45 relationships between them. 46 Despite such problems, currently 39 families of caridean shrimps are recognised (De 47 Grave & Fransen, 2011; Baeza et al., 2014; De Grave et al., 2014). Seven of these families used 48 to be placed in the superfamily Palaemonoidea Rafinesque, 1815 (see De Grave & Fransen, 49 2011), namely Anchistioididae Borradaile, 1915; Desmocarididae Borradaile, 1915; 50 Euryrhynchidae Holthuis, 1950; Gnathophyllidae Dana, 1852; Hymenoceridae Ortmann, 1890; 51 Palaemonidae Rafinesque, 1815 and Typhlocarididae Annandale & Kemp, 1913. In previous 52 classifications (e.g. De Grave et al., 2009; De Grave & Fransen, 2011) a further family was 53 recognised, Kakaducarididae Bruce, 1993. Following the phylogenetic analysis in Page et al. 54 (20028), Short et al. (2013) in a morphological reappraisal relegated this family to the synonymy 55 of Palaemonidae. Although Palaemonoidea at superfamily level appears to indeed form a 56 monophyletic group (Li et al., 2011), superfamilies are not often formally used any more in 57 caridean systematics, and we herein refer to this assemblage of families as the palaemonoid 58 clade. Traditionally, Palaemonidae has been thought to comprise two subfamilies, Palaemoninae 59 Rafinesque, 1815 (primarily freshwater and temperate coastal species) and Pontoniinae Kingsley, 60 1879 (primarily tropical species, most abundant on coral reefs), although the morphological dividing line between both can be rather arbitrary (Bruce, 1995). 61

) _	in common with several other taxa, the systematic composition of the palaemonoid clade
53	has been somewhat mired in controversy in recent decades. Not until Chace (1992) was
54	Hymenoceridae recognised as separate from Gnathophyllidae. In contrast, Typhlocarididae was
55	comprised of two subfamilies in his classification, Typhlocaridinae and Euryrhynchinae, therein
66	followed by the major compilations of Chace & Bruce (1993) and Holthuis (1993). Bruce
57	(1993) expressed the opinion that both these taxa are not closely related and should be treated as
68	independent families, a view corroborated by the morphological discussion in De Grave (2007).
59	Mitsuhashi et al. (2007) were the first to demonstrate that Gnathophyllidae,
70	Hymenoceridae and Pontoniinae form a paraphyletic clade in their 18S/28S analysis of a limited
71	dataset (only including 17 species from four families) and pointed out the congruence of larval
72	morphology to this result. Kou et al. (2013a) expanded on this dataset (16S/18S/28S), with 44
73	species (7 families), but with heavy bias towards Palaemoninae (only 2 Pontoniinae were
74	included). Despite this unbalanced sampling scheme, their results demonstrate Palaemoninae to
75	be polyphyletic and the same paraphyletic assemblage of Gnathophyllidae, Hymenoceridae and
76	Pontoniinae. Recently, Gan et al. (2015) provided yet one more variant, based on a combined
77	analysis of 16S/H3/Nak/Enolase, with a heavy inclusion of Pontoniinae over Palaemoninae (as
78	well as Gnathophyllidae, Hymenoceridae, Anchistioididae), but exclusive of the Atlantic
79	families, Desmocarididae, Euryrhynchidae and Typhlocarididae. Nevertheless, their analysis
30	once again recovers Gnathophyllidae and Hymenoceridae inside Pontoniinae. Despite this
31	wealth of data, analyses to date have not included the full breadth of available molecular
32	diversity within the palaemonoid clade as a whole, thus any systematic conclusions are at best
33	partial, and at worst misleading. This has, in part, been due to the fact that different loci have
34	often been sequenced for the different taxa, making a comparison between them impossible. We
35	have trawled through available molecular data to assemble datasets that represent the lion's share
36	of the currently available molecular diversity within each of the nine suprageneric palaemonoid
37	taxa (7 families, 2 subfamilies) so as to assess the relationships amongst them with fullest
88	possible data.
39	The systematic distinction of the two subfamilies within Palaemonidae, i.e. Palaemoninae
90	and Pontoniinae, has received scant scrutiny and has been generally followed without query. To
1	date, no phylogenetic study has included sufficient taxa from both to allow a discussion of the
2	validity of either subfamily. Morphologically, they are distinguished on a single character, of

93	somewhat dubious validity. Kingsley (1879) distinguished both taxa on the basis of the
94	presence/absence of a mandibular palp (therein followed by Spence Bate, 1888), a clearly
95	variable character within each subfamily (see Chace & Bruce, 1993; De Grave & Ashelby,
96	2013). Sollaud (1910) distinguished both taxa on the basis of the presence/absence of a
97	pleurobranch on the third thoracic somite, to which Balss (1957) added the ornamentation of the
98	posterior telson. Bruce (1995) reviewed the pleurobranch character, and concluded that it is
99	likely that both Palaemoninae and Pontoniinae have five pairs of pleurobranchs, leaving only the
100	telson distinction. Holthuis (1993) defines the latter as follows: telson with two pairs of posterior
101	"spines" and with one or more pairs of hairs (i.e. plumose setae) - Palaemoninae, versus telson
102	usually with three pairs of posterior "spines" – Pontoniinae. However, Bruce (1995) already
103	drew attention to the fact that in many Pontoniinae, the submedian "spines" are often also
104	plumose. In the present contribution, we provide a detailed morphological examination of these
105	setae, in combination with molecular analyses to investigate the relationships of the two
106	subfamilies.
107	
108	MATERIAL AND METHODS
109	
110	Dataset construction for molecular analysis
111	
112	Genbank (www.ncbi.nlm.nih.gov) was searched for sequences of palaemonoid taxa on 24
113	November, 2014. We were looking for genetic markers for which there were data from all seven
114	palaemonoid families (Anchistioididae, Desmocarididae, Euryrhynchidae, Gnathophyllidae,
115	Hymenoceridae, Palaemonidae, Typhlocarididae) and for which there was also good coverage of
116	genera of the two subfamilies within Palaemonidae (Palaemoninae, Pontoniinae). In particular,
117	we strove to include the various clades and divergent taxa within each subfamily as identified in
118	previous restricted subfamily studies (Ashelby et al., 2012; Kou et al., 2013b; Gan et al., 2015).
119	We only included species for which there were at least two different independent markers. It
120	quickly became apparent that some loci were available only for one subfamily (e.g., Pontoniinae
121	- Enolase, NaK, Pepck), and so were not informative across all taxa. The four markers that had
122	the best coverage across all taxa were the mitochondrial 5' cytochrome c oxidase I (COI),
123	mitochondrial 16S ribosomal DNA (16S) nuclear Histone 3 (H3) and nuclear 18S ribosomal

124	DNA (18S). Preliminary analyses of COI data quickly established that although it was effective
125	at grouping very closely related species, it was highly ineffective at inferring deeper systematic
126	relationships, which is unsurprising given its relatively rapid rate of molecular divergence. Thus
127	we settled on 16S, H3 and 18S for our analyses, as this combination of markers with differing
128	levels of divergence may pull out any strong systematic relationships.
129	Relevant data from GenBank, and an additional three new H3 sequences of our own to
130	round out the datasets (Gnathophylloides mineri, Manipontonia psamathe, Pontonia manningi)
131	were combined (Table 1), with the alpheid Betaeus longidactylus as an outgroup. Sequences of
132	the three markers were imported into Mega 6 (Tamura et al., 2013) and each aligned separately
133	using Muscle (Edgar, 2004) within Mega. The most appropriate substitution model (lowest
134	Bayesian Information Criterion score) was chosen with Mega. Four separate datasets were
135	created; 16S (424 base pairs [bp], 45 species); H3 (327 bp, 42 species); 18S (1559 bp, 23
136	species), combined 16S/H3/18S (2310 bp, 45 species), with any unavailable data coded as
137	missing (Table 1).
138	
139	Molecular analyses
140	
141	The single marker datasets were analysed using Bayesian analyses in MrBayes 3.2 (Ronquist et
142	al. 2012) and Maximum Likelihood in Mega (bootstrapped 1000 times), both using the relevant
143	molecular model for each marker. The Bayesian analyses were done using the following
144	parameters: 5 million generations, trees sampled every 1000 cycles, 25% burn in, two runs of
145	four chains heated to 0.2. The combined dataset was analysed using Bayesian analyses as above
146	Formal phylogenetic support for various systematic schemes was assessed by
147	constraining the topology of the Bayesian analyses in the relevant way and then rerunning
148	MrBayes for each dataset. Constrained versus unconstrained harmonic means of log likelihood
149	values were then compared with Bayes Factors (Kass & rafter, 1995). Seven different
150	topological constraints were tested (the last 5 only on the Combined dataset), with no constraints
151	place on topologies within each defined clade unless specified:
152	A) species of Palaemoninae form a clade, and species of Pontoniinae form a separate clade; B)
153	species of Palaemoninae form one clade, and species of Gnathophyllidae/ Hymenoceridae/
154	Pontonijnae form a separate single clade: C) species of Palaemonidae/ Gnathophyllidae/

155	Hymenoceridae form a clade; D) Palaemonidae form a clade, and within it both Palaemoninae
156	and Pontoniinae are reciprocally monophyletic (effectively the current state of play); E)
157	Palaemonidae form a clade, and within it Palaemoninae forms a clade sister to a clade of
158	Pontoniinae/ Gnathophyllidae/ Hymenoceridae; F) species of Anchistioididae/ Palaemonidae/
159	Gnathophyllidae/ Hymenoceridae form one clade; G) species of Desmocarididae/
160	Euryrhynchidae/ Palaemonidae/ Gnathophyllidae/ Hymenoceridae form a clade.
161	
162	Morphological study
163	
164	Twelve species (Table 2) were selected randomly from Palaemoninae (4 species) and
165	Pontoniinae (8 species) to investigate the posterior ornamentation of the telson, which currently
166	is the only morphological character which distinguishes both subfamilies. Tissue preparation for
167	Scanning Electron Microscopy (SEM) follows De Grave & Wood (2011), whereby tissue is
168	hydrated to distilled water via a series of graded ethanol solutions, briefly sonicated using a light
169	surfactant and dehydrated in graded ethanol to 100%. Drying was achieved using the HMDS
170	method, and specimens coated with a gold-palladium mixture using an E5000 sputter coater.
171	Mounted specimens were observed and photographed using a JEOL JSM-5510 microscope;
172	images were not post processed with image software. SEM observations were complemented by
173	light microscopy of a much wider range of species to verify the results. Setal terminology in
174	general follows Garm (2004), although we consider the term cuspidate to also include more
175	elongated forms of setae termed "intermediate form between cuspidate and simple" in Garm
176	(2004) to facilitate discussion.
177	
178	RESULTS
179	
180	Molecular Results
181	
182	Bayesian (BA) trees were produced for the combined dataset (Fig. 1, Figs. S1-2), as well as
183	Bayesian and Maximum Likelihood (ML) trees for each single locus dataset (Figs. S3-8).
184	Majority rule consensus trees are displayed for Bayesian trees (i.e. clades >0.50 posterior
185	probability). BA and ML analyses inferred similar clades at shallower levels for the single

186	marker datasets, with ML support values generally lower. Our analyses are primarily based on
187	the combined dataset, with the single locus analyses provided for reference.
188	
189	Typhlocarididae
190	Typhlocarididae was represented by two of the three markers (16S, 18S). Its sole genus was
191	recovered strongly as sister to all other palaemonoids (Fig. 1). Both its 16S and 18S sequences
192	were highly differentiated from the rest of the sampled Palaemonoidea.
193	
194	Anchistioididae
195	The two species from the sole anchistioidid genus (Anchistioides) formed a strong clade in all
196	analyses. Its relationship with the other families (excluding Typhlocarididae) is not immediately
197	apparent. It did not form strong clades with the other families in most analyses, except in both
198	18S analyses where it groups with Palaemonidae, Gnathophyllidae and Hymenoceridae to the
199	exclusion of Desmocarididae and Euryrhynchidae. However when Anchistioididae was
200	constrained to form a clade with Palaemonidae/ Gnathophyllidae/ Hymenoceridae in a combined
201	analysis (Constraint F), its score was slightly worse than when Desmocarididae and
202	Euryrhynchidae were constrained to form a clade with Palaemonidae/ Gnathophyllidae/
203	Hymenoceridae (Constraint G) (Table 3), so its precise relationship with the other families is
204	unclear.
205	
206	Desmocarididae and Euryrhynchidae
207	Desmocarididae and Euryrhynchidae were represented by two of the three markers (16S, 18S).
208	They formed a strong clade with each other (Fig. 1), in particular due to their 18S data, but their
209	relationship to the other families (except Typhlocarididae) is unclear in the same way as
210	Anchistioididae above. They may be sister to Anchistioididae/ Palaemonidae/ Gnathophyllidae/
211	Hymenoceridae (Fig. S2), however the tree score when they are forced to form a clade with
212	Palaemonidae/ Gnathophyllidae/ Hymenoceridae to the exclusion of Anchistioididae (Constraint
213	G) is marginally better than when Anchistioididae is constrained to Palaemonidae/
214	Gnathophyllidae/ Hymenoceridae (Constraint F) (Table 3), however the difference is not great,
215	and neither constraint produces a particularly bad score relative to the unconstrained analysis.
216	Therefore the relationship of the clade formed by Desmocarididae/ Euryrhynchidae is unclear

217	relative to Anchistioididae/ Palaemonidae/ Gnathophyllidae/ Hymenoceridae. However, when
218	constraints are applied to other taxa (Constraints B, C), Anchistioididae forms a strong clade
219	with palaemonid taxa to the exclusion of Desmocarididae/ Euryrhynchidae (Figs. S1-2), so it is
220	possible that Desmocarididae/ Euryrhynchidae is sister to Anchistioididae/ Palaemonidae/
221	Gnathophyllidae/ Hymenoceridae, but more data is required to explore this further.
222	
223	Palaemonidae
224	As currently defined a pure Palaemonidae is not supported as a distinct separate unit (Constraint
225	D) since Gnathophyllidae and Hymenoceridae clearly nest within, making Palaemonidae
226	paraphyletic at best (Fig. 1). However when one includes Gnathophyllidae and Hymenoceridae
227	within Palaemonidae and does not enforce monophyly of the subfamilies, then there is little
228	difference compared to completely unconstrained analyses (Constraint C). Even when
229	Palaemoninae and Pontoniinae/ Gnathophyllidae/ Hymenoceridae are constrained to be sisters
230	within a monophyletic Palaemonidae, the resulting tree score is not really too much worse
231	(Constraint E, Table 3). This implies that the "problem" is with the internal structure of
232	Palaemonidae rather than in its relationship to others, and that it may well be a monophyletic
233	unit. However as stated above, it is also unclear how Desmocarididae/ Euryrhynchidae, and
234	particularly Anchistioididae, relate to Palaemonidae. Plainly Palaemonidae contains
235	Gnathophyllidae and Hymenoceridae. However, it is not yet clear phylogenetically whether
236	Palaemonidae is truly monophyletic relative to Anchistioididae and/or Desmocarididae/
237	Euryrhynchidae, within Palaemonoidea.
238	
239	Palaemoninae and Pontoniinae
240	In none of our analyses, do Palaemoninae or Pontoniinae species form clear monophyletic
241	clades. When they are each constrained to monophyly (Constraint A), the scores are all very
242	much worse than when unconstrained (Table 3). When Gnathophyllidae and Hymenoceridae are
243	considered honorary Pontoniinae (Constraint B), then the tree scores improved markedly in all
244	analyses (Table 3) (Fig. S1), but the evidence against this topology is still very strong. When
245	Palaemoninae and Pontoniinae are constrained to clades within a monophyletic Palaemonidae
246	(Constraint D), which is essentially the current taxonomy, the scores are very poor and so are
247	unlikely to reflect phylogenetic reality. However when Gnathophyllidae and Hymenoceridae are

248	included within Pontoniinae within a monophyletic Palaemonidae (Constraint E), then scores
249	improve greatly, although still worse than unconstrained. The one constraint that approaches the
250	unconstrained scores is when all species of Palaemoninae, Pontoniinae, Gnathophyllidae and
251	Hymenoceridae are thrown together into a single clade but without any intraclade constraints
252	(Constraint C) (Fig. S2).
253	Instead of a clear delineation of reciprocally monophyletic Palaemoninae and Pontoniinae
254	(which includes Gnathophyllidae/ Hymenoceridae), what emerges are a number of larger clades
255	that contain either species of Palaemoninae or species of Pontoniinae/ Gnathophyllidae/
256	Hymenoceridae, and a few divergent species of Palaemoninae whose relationship is unclear (Fig.
257	1). However these clades and species do not form larger clades that equate to the subfamilies as
258	currently defined.
259	
260	Morphology of the posterior margin of the telson in Palaemonidae
261	
262	The posterior margin of the telson in the majority of Palaemoninae comprises a lateral pair of
263	short cuspidate setae, a submedian pair of elongated, cuspidate setae and one or more pairs of
264	median plumose setae (Fig. 2A, C, E). The plumose setae are classical in structure, with two
265	rows of long setules, weakly articulated with the setal shaft (Fig. 2B, D). Although the examples
266	shown herein (Palaemon adspersus, Macrobrachium amazonicum, Leander tenuicornis) only
267	have a single pair of median plumose setae, several other taxa harbour two (e.g. Brachycarpus
268	biunguiculatus) or more pairs (e.g. Neopalaemon nahuatlus, Palaemon tonkinensis). As
269	exemplified herein by Palaemon modestus (Fig. 2F), deviations of this bauplan exist, with the
270	species previously assigned to Exopalaemon (recently transferred to Palaemon), having lost the
271	median plumose setae.
272	Although the extensive bauplan modification in Pontoniinae due to their extensive
273	commensal relationships has resulted in more variation in the ornamentation of the posterior
274	margin of the telson, many genera remain morphologically very similar in this respect to
275	Palaemoninae. For example, the free living Palaemonella rotumana (Fig. 3A-B) and Cuapetes
276	americanus (Fig. 3C-D) have a similar arrangement with a pair of lateral cuspidate setae, a
277	submedian pair of elongated, cuspidate setae and a median pair of plumose setae. The median
278	plumose setae are however more robust than their counterparts in Palaemoninae, with sparser

and somewhat shorter setules. In some commensal taxa, the submedian pair of cuspidate setae is
considerably shorter, as exemplified herein by the anemone associate, Periclimenes brevicarpalis
(Fig. 3E) and the sponge associate <i>Periclimenaeus caraibicus</i> (Fig. 3F). Both, however, harbour
a robust pair of median plumose setae, with somewhat shorter and sparser setules. In contrast,
rather densely plumose median setae are evident in the coral dwelling, Jocaste lucina (Fig. 4A-
B) and the sponge associated <i>Thaumastocaris streptopus</i> (Fig. 4C-D), with the setules in both
being as long as in Palaemoninae. In the morphologically highly modified, echinoid associated
Stegopontonia commensalis, the median setae are very robust, but continue to display a reduced
set of setules, both sparse (mainly restricted to basal part) and very short (Fig. 4E). A barely
discernible set of minute setules is still present on the median setae in the equally highly
modified, bivalve associate, Conchodytes nipponensis (Fig. 4F), which otherwise has only two
pairs of extremely short and robust cuspidate setae, homologous to the median and submedian
pairs in the other species.

DISCUSSION

The numerous molecular analyses presented here agree strongly in some respects, agree weakly in some, and disagree in others. Therefore it is not always possible to come to unequivocal

conclusions in all cases. Our hypothesis of relationships, based on the current molecular analyses

in the palaemonoid clade is presented in Figure 5. Available data suggests strongly that

Typhlocarididae are sister to the rest of Palaemonoidea. Next, there is weak evidence that a

clade of Desmocarididae/ Euryrhynchidae are sister to the remaining taxa, however this is not

certain. Anchistioididae may form a clade with Palaemonidae/ Gnathophyllidae/

Hymenoceridae, either as sister or within the clade itself. There is very strong evidence that

304 Gnathophyllidae and Hymenoceridae form a clade within Palaemonidae.

There is also strong molecular evidence that Palaemoninae and Pontoniinae do not form reciprocally monophyletic clades. Even when Gnathophyllidae and Hymenoceridae are considered as part of Pontoniinae, the evidence against this is strong, however the evidence against legitimate clades of Palaemoninae and Pontoniinae/ Gnathophyllidae/ Hymenoceridae is reduced markedly. Because of this, and because there are few instances when some species of

310	Palaemoninae and Pontoniinae form strong clades with each other relative to others from their
311	respective subfamilies, it remains possible that the addition of more markers and taxa could
312	theoretically bring together reciprocal monophyletic clades that equate to Palaemoninae and
313	Pontoniinae/ Gnathophyllidae/ Hymenoceridae. This does not however seem particularly likely.
314	Our molecular results mirror those of Mitsuhashi et al. (2007), Kou et al. (2013a) and
315	Gan et al. (2015), who each recover a paraphyletic clade comprising the family Palaemonidae
316	and Gnathophyllidae/Hymenoceridae. As already discussed by Mitsuhashi et al. (2007), this
317	relationship is underpinned by similarities in larval morphology. Bruce (1986) when describing
318	the first zoea of Gnathophyllum americanum already remarked that they are fundamentally
319	pontoniine in nature, and further highlighted the uniformity in larval form within Palaemonidae
320	sensu lato when he described the zoea of Hymenocera picta (see Bruce, 1988). Recently, Meyer
321	et al. (2014) also commented on the close morphological similarity between gnathophyllids,
322	hymenocerids and pontoniines, when describing the fine features under SEM of the zoea of
323	Gnathophyllum elegans.
324	As regards the adults, Holthuis (1955, 1993) and Chace (1992) characterise both
325	Gnathophyllidae and Hymenoceridae by the mandible with a vestigial or absent incisor process,
326	third maxilliped being broadened, at least proximally (sometimes operculate) and the first
327	maxilliped with the caridean lobe not distinctly overreaching the endite. The other palaemonoid
328	families are therein jointly defined primarily by the slender third maxilliped and the mandible
329	usually with a prominent incisor. Ample evidence exists that the vestigial or absent incisor is not
330	a synapomorphy of these families. Bruce (1986) already commented that some species in the
331	pontoniine genera Periclimenaeus, Onycocaris and Typton also lack an incisor, for example
332	Typton gnathophylloides (see Holthuis, 1951, Plate 50). Conversely, some gnathophyllids, like
333	Pycnocaris chagoae harbour a rudimentary incisor (see Bruce, 1972, Fig 5A.). In fact, even in
334	Gnathophyllum elegans, the type species of the family Gnathophyllidae, a vestigial incisor is
335	present (see Ashelby et al., 2015, Fig. 5A). Although the third maxilliped is markedly operculate
336	in Gnathophyllum, this is not the case for all gnathophyllid genera. The third maxilliped in
337	Gnathophylloides is broadened, but not operculate (see Bruce, 1973, Fig. 4C), whilst only
338	basally broadened in <i>Levicaris</i> (see Bruce, 1973, Fig. 8G). Conversely, some pontoniine genera
339	equally have a much broadened third maxilliped, notably members of the genus Conchodytes
340	(see Fransen, 1994, Figs. 35-37). The extensive bauplan modifications of the first maxilliped in

341	pontoniine shrimps makes a comparison futile, perhaps the reason why this character distinction
342	was not listed in the latest definition of the families by Wicksten (2010). It should be noted that
343	both Hymenocera and Phyllognathia do share a unique synapomorphy amongst palaemonoid
344	shrimps, namely the basis of the third maxilliped being distinct from the ischiomerus, which in
345	turn is marked by a distinct suture, delineating the ischium and merus. Both Chace (1992) and
346	Holthuis (1993) used this character to separate the Hymenoceridae from the Gnathophyllidae.
347	The current molecular analysis, as well as those of Mitsuhashi et al. (2007), Kou et al. (2013a)
348	and Gan et al. (2015) do demonstrate this not to be of familial importance.
349	In view of the overwhelming molecular evidence, the similarity in larval morphology and
350	the weak morphological basis on which to separate adults into their respective families,
351	Gnathophyllidae Dana, 1852 and Hymenoceridae Ortmann, 1890 are thus herein formally
352	synonymised with Palaemonidae Rafinesque, 1815. As a result, the genera Gnathophylleptum
353	d'Udekem d'Acoz, 2001, Gnathophylloides Schmitt, 1933, Gnathophyllum Latreille, 1819,
354	Levicaris Bruce, 1973, and Pycnocaris Bruce, 1972 (all formerly in Gnathophyllidae), as well as
355	Hymenocera Latreille, 1819 and Phyllognathia Borradaile, 1915 (both formerly in
356	Hymenoceridae), and their constituent species (see De Grave & Fransen, 2011 for a listing) are
357	now to be considered genera in Palaemonidae.
358	Our molecular analyses do not recover the two subfamilies within Palaemonidae, viz.
359	Palaemoninae and Pontoniinae as reciprocally monophyletic clades. Instead, there appear to be
360	at least two clades of Pontoniinae species (Clades I and II as per Kou et al., 2013b; Gan et al.,
361	2015), including the ex-gnathophyllid and hymenocerid genera in Clade II, and yet these two
362	clades of Pontoniinae do not necessarily form a clade with each other (Fig. 1). Within
363	Palaemoninae, there is generally one large strongly supported clade of species (here called
364	palaemonid Clade III) (Fig. 1), which usually includes a couple more divergent species
365	(Palaemon concinnus, Palaemon elegans). There are also a number of species of Palaemoninae
366	which do not form a clade with other members of the subfamily, namely Brachycarpus
367	biunguiculatus, Nematopalaemon tenuipes, and a clade of Leander tenuicornis/ Urocaridella
368	pulchella. When species of Palaemonidae are constrained to a clade without subfamily
369	constraints, Leander tenuicornis/ Urocaridella pulchella and Nematopalaemon tenuipes form a
370	clade with the pontoniine Clade I (Fig. S2). These results do mirror the actual trees presented in
371	Kou et al. (2013a) which equally do not show the two subfamilies to form monophyletic clades

although not discussed therein. Earlier, Bracken et al. (2009) had already hinted at the fact that the family as then defined was either para- or polyphyletic and the position of several pontoniine genera in their analysis was at odds with their current classification.

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

As already mentioned the sole morphological character on which placement of a given genus in their respective subfamily is based, is the ornamentation of the posterior margin of the telson, specifically the cuticular extensions. The terminology of these structures has been confusing in taxonomic descriptions, variously referred to as "spines", "stout setae", "spiniform setae". Herein, we adhere to the definition of Watling (1989) that a "spine" is a non-articulated, cuticular extension, with a "seta" being articulated, although we do acknowledge that nonarticulated setae exist (see Garm & Watling, 2013), but these do not enter the discussion here. Following the classification of setal types by Garm (2004), it is clear (Figs. 2-4) that the plesiomorphic condition in the family Palaemonidae comprises of a lateral pair of cuspidate setae, a submedian pair of elongated cuspidate setae and a median (or more) pair of plumose setae. Variations on this theme abound, with the median pair of plumose setae being thin and long to short(er) and stout, but nevertheless with a clear double row of poorly articulated setules on the shaft, thus still fitting the definition of plumose setae. In some taxa (Fig. 4E-F), the setules are reduced and the general appearance of the setae approaches that of cuspidate setae. Although cuspidate setae are known to occasionally have small outgrowths on their shaft, these are in the shape of denticles (Garm, 2004; Garm & Watling, 2013). We therefore interpret these median setae as reduced plumose setae.

Of course, concomitant with the rich bauplan diversity of pontoniine and palaemonine taxa, more variation exists than herein illustrated. For example, in *Hamopontonia*, the distal margin of the telson is emarginated and devoid of cuspidate and plumose setae, instead a number of simple setae are present (see Bruce, 1970) and in *Yeminicaris*, the distal margin is broadly rounded and devoid of cuspidate and plumose setae (see Bruce, 1997). A further example is illustrated in Fig. 10F, *Palaemon modestus*, where the median plumose setae are absent, the latter being characteristic for species of *Palaemon* previously considered to be a separate genus, *Exopalaemon* (see De Grave & Ashelby, 2013).

Nevertheless, from the evidence presented herein (Figs. 2-4) it is abundantly clear that the sole morphological character separating the two subfamilies does not hold true. In light of this, and supported by the molecular analyses, the subfamilies Palaemoninae Rafinesque 1815

.03	and Pontoniinae Kingsley, 1879 are herein formally synonymised and subfamilies are thus no
04	longer recognised in Palaemonidae Rafinesque, 1815.
05	As in previous analyses (Mitsuhashi et al., 2007; Bracken et al., 2009; Kou et al., 2013a;
-06	Gan et al., 2015) the position of Anchistiodidae remains uncertain, although it is clear that the
07	family is closely related to Palaemonidae as herein defined. Historically the sole genus in this
-08	family, Anchistioides was often considered to be in Pontoniinae (now Palaemonidae), for
09	instance by Kemp (1922), Gordon (1935) and Holthuis (1955). In more recent treatments,
10	following Chace (1992) separate familial status has been the norm. Chace & Bruce (1993)
11	remarked that the genus differs little from some pontoniines, separated only by seemingly mino
12	adult morphological characters, but as pointed out by Chace (1992) and Chace & Bruce (1993),
13	the larvae, described by Gurney (1936, 1938) differ sufficiently to support a separate family. A
14	we cannot clarify the position of the genus Anchistioides, we refrain from analysing the
15	morphological evidence and leave the family Anchistioididae as valid, until further evidence
16	becomes available.
17	
18	ACKNOWLEDGEMENTS
19	
20	Bregje W. Brinkmann and Cessa Rauch (Naturalis Biodiversity Centre) are acknowledged for
21	sequencing the H3 genes of Gnatophylloides mineri, Manipontonia psamathe and Pontonia
-22	manningi. Part of the present work was supported by a research grant (project no. 41476146)
23	from the National Natural Science Foundation of China (NSFC).
24	
25	REFERENCES
26	
27	Ashelby CW, De Grave S, Johnson ML. 2015. Preliminary observations on the mandibles of
28	palaemonoid shrimp (Crustacea: Decapoda: Caridea: Palaemonoidea). PeerJ 3: e846.
29	Ashelby CW, Page TJ, De Grave S, Hughes JM, Johnson ML. 2012. Regional scale speciation
30	drives multiple invasions of freshwater in Palaemoninae (Decapoda). Zoologica Scripta
31	41 :293–306.
32	Aznar-Cormano L, Brisset J, Chan TY, Corbari L, Puillandre N, Utge J, Zbinden M, Zuccon D,
33	Samadi S. 2015. An improved taxonomic sampling is a necessary but not sufficient

434	condition for resolving inter-families relationships in Caridean decapods. Genetica 143:
435	195–205.
436	Baeza JA, Bauer RT, Okuno J, Thie, M. 2014. Molecular phylogeny of hinge-beak shrimps
437	(Decapoda: Caridea: Rhynchocinetes and Cinetorhynchus) and allies: a formal test of
438	familiar and generic monophyly using a multilocus phylogeny. Zoological Journal of the
439	Linnean Society 172: 426–450.
440	Balss H. 1957. Decapoda VIII Systematik. In: Gruner HE, ed. Dr H.G. Bronns klassen und
441	ordungen des tierreichs. Fünfter Band, I. Abteilung. Buch 7 Lieferung 12. Leipzig:
442	Akademische Verlagsgesellschaft, 1505–1672.
443	Bracken HD, De Grave S, Felder DL. 2009. Phylogeny of the infraorder Caridea based on
444	mitochondrial and nuclear genes (Crustacea: Decapoda). In: Martin JW, Crandall KA,
445	Felder DL, eds. Decapod Crustacean Phylogenetics. Boca Raton, London, New York:
446	CRC Press, Taylor & Francis Group, 281–305.
447	Bruce AJ. 1970. Notes on some Indo-Pacific Pontoniinae. XV. Hamopontonia corallicola gen.
448	nov., sp. nov., a new pontoniid shrimp from Hong Kong. Crustaceana 18: 37-48.
449	Bruce AJ. 1972. Pycnocaris chagoae gen. nov., sp. nov., a new shrimp from the Chagos
450	Archipelago (Decapoda Natantia, Gnathophyllidae). Crustaceana 23: 50-64.
451	Bruce AJ. 1973. Gnathophylloides robustus sp. nov., a new commensal gnathophylloid shrimp
452	from Western Australia, with the designation of a new genus Levicaris (Decapoda,
453	Caridea). Crustaceana 24: 17–32.
454	Bruce AJ. 1986. Observations on the family Gnathophyllidae Dana, 1852 (Crustacea:
455	Decapoda). Journal of Crustacean Biology 6: 463-470.
456	Bruce AJ. 1988. A note on the first zoeal stage larva of <i>Hymenocera picta</i> Dana (Crustacea:
457	Decapoda: Palaemonidae). The Beagle, Records of the Northern Territory Museum of
458	Arts and Sciences 5: 119–124.
459	Bruce AJ. 1993. Kakaducaris glabra gen. nov., sp. nov., a new freshwater shrimp from the
460	Kakadu National Park, Northern Territory, Australia, Crustacea: Decapoda:
461	Palaemonidae with the designation of a new subfamily Kakaducaridinae. Hydrobiologia
462	268 : 27–44.

463	Bruce AJ. 1995. A synopsis of the Indo-West Pacific genera of the Pontoniinae (Crustacea:
464	Decapoda: Pontoniinae). Theses Zoologicae 25: 1-172 [imprint 1994, published 16
465	March 1995].
466	Bruce AJ. 1997. A new pontoniine shrimp genus (Crustacea :Decapoda) from the Yemen, with a
467	note on other species. Journal of Natural History 31:1213-1222.
468	Chace FAJr. 1992. On the classification of the Caridea (Decapoda). Crustaceana 63: 70-80.
469	Chace FAJr, Bruce AJ. 1993. The caridean shrimps (Crustacea: Decapoda) of the Albatross
470	Philippine Expedition 1907-1910, Part 6: Superfamily Palaemonoidea. Smithsonian
471	Contributions to Zoology 543 : 1–152.
472	Chan TY, Lei HC, Li CP, Chu KH. 2010. Phylogenetic analysis using rDNa reveals polyphyly of
473	Oplophoridae (Decapoda: Caridea). Invertebrate Systematics 24: 172-181.
474	De Grave S, Pentcheff ND, Ahyong ST, Chan TY, Crandall KA, Dworschak PC, Felder DL,
475	Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng
476	PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R. 2009. A classification of living and
477	fossil genera of decapod crustaceans. Raffles Bulletin of Zoology Suppl. 21:1-109.
478	De Grave S. 2007. A new species of Euryrhynchus Miers, with a discussion of the systematic
479	position of the Euryrhynchidae Holthuis (Crustacea, Decapoda). Zoologischer Anzeiger
480	246 : 193–203.
481	De Grave S, Ashelby CW. 2013. A re-appraisal of the systematic status of selected genera in
482	Palaemoninae (Crustacea: Decapoda: Palaemonidae). Zootaxa 3734: 331-344.
483	De Grave S, Fransen CHJM. 2011. Carideorum Catalogus: The recent species of the
484	dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea:
485	Decapoda). Zoologische Mededelingen 85: 195–589.
486	De Grave S, Wood L. 2011. Further occurrences of tegumental scales in caridean shrimps
487	(Crustacea: Decapoda: Caridea). Crustacean Research 40: 41-50.
488	De Grave S, Li CP, Tsang LM, Chu KH, Chan, TY. 2014. Unweaving hippolytoid systematics
489	(Crustacea, Decapoda, Hippolytidae): resurrection of several families. Zoologica Scripta
490	43 : 496–507.
491	Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
492	throughput Nucleic Acids Research 32:1792-1797.

493	Fransen CHJM. 1994. Marine palaemonoid shrimps of the Netherlands Seychelles Expedition
494	1992-1993. Zoologische Verhandelingen 297 : 85–152.
495	Gan Z, Li X, Kou Q, Chan T, Chu K, Huang H. 2015. Systematic status of the caridean families
496	Gnathophyllidae Dana and Hymenoceridae Ortmann (Crustacea: Decapoda): a further
497	examination based on molecular and morphological data. Chinese Journal of Oceanolog
498	and Limnology 33 : 149–158.
499	Garm A. 2004. Revising the definition of the crustacean seta and setal classification systems
500	based on examinations of the mouthpart setae of seven species of decapods. Zoological
501	Journal of the Linnean Society 142: 233–252.
502	Garm A, Watling L. 2013. The crustacean integument: Setae, setules, and other ornamentation.
503	In: Watling L, Thiel M, eds. The Natural History of the Crustacea. Vol. 1, Functional
504	morphology and diversity. Oxford: Oxford University Press, 167–198.
505	Gordon I. 1935. On new and imperfectly known species of Crustacea Macrura. The Journal of
506	the Linnean Society.Zoology 39 : 307–351.
507	Gurney R. 1936 Notes on some decapod Crustacea of Bermuda. III. The larvae of the
508	Palaemonidae. Proceedings of the Zoological Society of London 1936: 619-623.
509	Gurney R. 1938. The larvae of the decapod Crustacea, Palaemonidae and Alpheidae. Great
510	Barrier Reef Expedition, 1928-1929, Scientific Reports 6: 1–60.
511	Holthuis LB 1951. A general revision of the Palaemonidae (Crustacea Decapoda Natantia) of the
512	Americas. I. The subfamilies Euryrhynchidae and Pontoniinae. Occasional Papers of the
513	Allan Hancock Foundation 11: 1–332.
514	Holthuis LB 1955. The recent genera of the caridean and stenopodidean shrimps (Class
515	Crustacea, order Decapoda, supersection Natantia) with keys for their determination.
516	Zoologische Verhandelingen 26 : 1–157.
517	Holthuis LB. 1993. The recent genera of the caridean and stenopodidean shrimps (Crustacea,
518	Decapoda) with an appendix on the order Amphionidacea. Leiden: Nationaal
519	Natuurhistorisch Museum.
520	Kass RE, Raftery AE. 1995. Bayes factors. Journal of the American Statistical Association 90:
521	773–795.
522	Kemp S. 1922. Notes on Crustacea Decapoda in the Indian Museum, XV. Pontoniinae. <i>Records</i>
523	of the Indian Museum 24: 113–288.

524	Kingsley JS. 18/9. List of the North American Crustacea belonging to the suborder Caridea.
525	Bulletin of the Essex Institute 10 (for 1878); 53–71.
526	Kou Q, Li X, Chan TY, Chu KH, Gan Z. 2013a. Molecular phylogeny of the superfamily
527	Palaemonoidea (Crustacea: Decapoda: Caridea) based on mitochondrial and nuclear
528	DNA reveals discrepancies with the current classification. <i>Invertebrate Systematics</i> 27:
529	502–514.
530	Kou Q, Li X, Chan TY, Chu KH, Huang H, Gan Z. 2013b. Phylogenetic relationships among
531	genera of the Periclimenes complex (Crustacea: Decapoda: Pontoniinae) based on
532	mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution 68: 14-22.
533	Li CP, De Grave S, Chan TY, Lei HC, Chu KH. 2011. Molecular systematics of caridean
534	shrimps based on five nuclear genes: implications for superfamily classification.
535	Zoologischer Anzeiger 250 : 270–279.
536	Meyer, R. Lehmanna T, Melzera RR, Geiselbrech H. 2014. Morphology of the first zoeal stage
537	of the Mediterranean bumblebee shrimp Gnathophyllum elegans studied with both light
538	microscopy and scanning EM. Journal of the Marine Biological Association of the
539	United Kingdom 94:151–158.
540	Mitsuhashi M, Sin YW, Lei HC, Chan TY, Chu KH. 2007. Systematic status of the caridean
541	families Gnathophyllidae Dana and Hymenoceridae Ortmann (Crustacea : Decapoda): a
542	preliminary examination based on nuclear rDNA sequences. Invertebrate Systematics 21:
543	613–622.
544	Page TJ, Short JW, Humphrey CJ, Hillyer MJ, Hughes JM. 2008. Molecular systematics of the
545	Kakaducarididae (Crustacea: Decapoda: Caridea). Molecular Phylogenetics and
546	Evolution 46 : 1003–1014.
547	Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L,
548	Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic
549	inference and model choice across a large model space. Systematic Biology 61: 539-542.
550	Short JW, Humphrey CL, Page TJ. 2013. Systematic revision and reappraisal of the
551	Kakaducarididae Bruce (Crustacea: Decapoda: Caridea) with the description of three new
552	species of Leptopalaemon Bruce & Short. Invertebrate Systematics 27: 87-117.

553	Sollaud E. 1910. Sur les affinités des genres Urocaris (Stimpson) et Palaemonella (Dana), et
554	consideration sur l'evolution des crevettes de la famille Pontoniides. Comptes Rendus de
555	l'Academie des Sciences, Paris 151: 1158–1161.
556	Spence Bate C. 1888. Report on the Crustacea Macrura collected by the Challenger during the
557	years 1873-76. Report on the Scientific Results of the Voyage of H.M.S."Challenger"
558	during the years 1873-76 24: i-xc-1-942, Plates 1-157.
559	Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary
560	Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.
561	Watling L. 1989. A classification system for crustacean setae based on the homology concept. In
562	Felgenhauer BE, Watling L, Thistle AB, eds. Functional morphology of feeding and
563	grooming in Crustacea. Rotterdam: A.A. Balkema. 15-26.
564	Wicksten MK. 2010. Infraorder Caridea Dana, 1852. In: Schram FJ, von Vaupel Klein JC, eds.
565	Treatise on Zoology – Anatomy, Taxonomy, Biology. The Crustacea. Volume 9, part A.
566	Eucarida: Euphausiacea, Amphionidacea, and Decapoda (partim). Leiden: Brill, 165-
567	206.
568	Wong ML, Pérez-Moreno JL, Chan TY, Frank TM, Bracken-Grissom HD. 2015. Phylogenetic
569	and transcriptomic analyses reveal the evolution of bioluminescence and light detection
570	in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda).
571	Molecular Phylogenetics and Evolution 83: 278–292.
572	

573 Figures

- 574 Figure 1. Bayesian majority rule consensus topology for combined dataset (16S/H3/18S) of the
- 575 palaemonoid clade. No constraints, only clades with >0.50 posterior probability are shown, Tree
- Score = -16540.11. For definitions of palaemonid clades, see text.

577

- 578 Figure 2. Ornamentation of the posterior telson margin of some Palaemoninae. A: *Palaemon*
- 579 adspersus; B: same, detail of median setae; C: Macrobrachium amazonicum; D; same, detail of
- 580 median setae; E: Leander tenuicornis, F: Palaemon modestus. Scale bars indicate 100 μm (A, C,
- 581 D-E), 40 μm (B) or 20 μm (D).

582

- Figure 3. Ornamentation of the posterior telson margin of some Pontoniinae. A: *Palaemonella*
- 584 rotumana, B: same, detail of median setae; C: Cuapetes americanus, D, detail of median setae;
- 585 E: Periclimenes brevicarpalis; F: Periclimenaeus caraibicus. Scale bars indicate 100 μm (A, C,
- 586 E), 50 μm (B, F) or 20 μm (D).

587

- Figure 4. Ornamentation of the posterior telson margin of some Pontoniinae. A: *Jocaste lucina*,
- 589 B: same, detail of median setae; C: *Thaumastocaris streptopus*, D: same, detail of median setae;
- 590 E: Stegopontonia commensalis; F: Conchodytes nipponensis. Scale bars indicate 100 μm (A, C,
- 591 F), 20 μm (E) or 10 μm (B, D).

592

- Figure 5. Cladogram of hypothesised relationships of palaemonoid taxa derived from all
- 594 molecular analyses. Thicker lines denote where evidence is stronger.

595596

597

Supplementary figures

- 598 Supplementary Figure 1. Bayesian majority rule consensus topology for combined dataset
- 599 (16S/H3/18S) of the palaemonoid clade. Constraint B (Palaemoninae species form a clade and
- species of Pontoniinae, Gnathophyllidae, and Hymenoceridae form a clade) (clades with >0.50
- 601 posterior probability shown) (Tree Score = -16546.48).

602

- Supplementary Figure 2. Bayesian majority rule consensus topology for combined dataset
- 604 (16S/H3/18S) of the palaemonoid clade. Constraint C (species of Palaemoninae, Pontoniinae,
- 605 Gnathophyllidae and Hymenoceridae all form a clade) (clades with >0.50 posterior probability
- 606 shown) (Tree Score = -16540.26).

607

Supplementary Figure 3. Maximum Likelihood majority rule consensus topology for 16S dataset of the palaemonoid clade (Tree Score = -7434.59).

610

- Supplementary Figure 4. Bayesian majority rule consensus topology for 16S dataset of the
- 612 palaemonoid clade (Tree Score = -8098.11).

613

- Supplementary Figure 5. Maximum Likelihood majority rule consensus topology for H3 dataset
- of the palaemonoid clade (Tree Score = -3329.51).

616

- 617 Supplementary Figure 6. Bayesian majority rule consensus topology for H3 dataset of the
- 618 palaemonoid clade (Tree Score = -3364.55).

19	
20	Supplementary Figure 7. Maximum Likelihood majority rule consensus topology for 18S dataset
21	of the palaemonoid clade (Tree Score = -4812.79).
22	
23	Supplementary Figure 8. Bayesian majority rule consensus topology for 18S dataset of the
24	palaemonoid clade (Tree Score = -4859.85).
25	
26	
27	

Table 1(on next page)

Details of sequences used in this study.

Table 1 Details of sequences used in this study.

1 2

	GenBank Accession Numbers		
	16S	18S	
Anchistioididae			
Anchistioides antiguensis (Schmitt, 1924)	EU920911	EU921043	EU920936
Anchistioides willeyi (Borradaile, 1900)	KC515030	KC515074	-
Desmocarididae			
Desmocaris sp.	EU868651	-	EU868742
Euryrhynchidae			
Euryrhynchus wrzesniowskii Miers, 1877	EU868654	-	EU868745
Gnathophyllidae			
Gnathophylloides mineri Schmitt, 1933	EU868659	TBA	EU868750
Gnathophyllum americanum Guérin-Meneville, 1855	EU868660	JF346317	EU868751
Hymenoceridae			
Hymenocera picta Dana, 1852	EU868663	JF346328	EU868754
Phyllognathia ceratophthalma (Balss, 1913)	KC515032	KC515076	DQ642847
Palaemonidae - Palaemoninae			
Arachnochium mirabilis (Kemp, 1917)	KC515033	KC515077	KC515052
Brachycarpus biunguiculatus (Lucas, 1846)	EU868684	JN674391	EU868779
Creaseria morleyi (Creaser, 1936)	EU868688	DQ079671	DQ079746
Cryphiops caementarius (Molina, 1782)	DQ079711	DQ079672	DQ079747
Leander tenuicornis (Say, 1818)	EU868690	JN674388	EU868783
Leandrites deschampsi (Nobili, 1903)	KC515039	KC515081	-
Leptocarpus potamiscus (Kemp, 1917)	JN674328	JN674392	-
Macrobrachium rosenbergii (De Man, 1879)	FM986637	FM958123	DQ642856
Nematopalaemon tenuipes (Henderson, 1893)	KC515042	JN674382	-
Palaemon concinnus Dana, 1852	KC515043	KC515085	KC515056
Palaemon elegans Rathke, 1837	EU868696	DQ079696	DQ079764
Palaemon pandaliformis (Stimpson, 1871)	JN674341	JN674364	-
Urocaridella pulchella Yokes & Galil, 2006	KC515050	KC515092	KC515062
Palaemonidae - Pontoniinae			
Anchiopontonia hurii (Holthuis, 1961)	KF738358	KF738309	-
Anchistus custos (Forskål, 1775)	KF738360	KF738311	-
Conchodytes meleagrinae Peters, 1852	KC515051	KC515093	EF540837
Coralliocaris graminea (Dana, 1852)	KF738361	KF738313	AM083319
Cuapetes andamanensis (Kemp, 1922)	JX025214	KF738315	-
Cuapetes elegans (Paulson, 1875)	JX025213	KF738316	-
Dactylonia ascidicola (Borradaile, 1898)	KF738363	KF738317	-
Harpiliopsis spinigera (Ortmann, 1890)	JX025206	KF738319	-
Harpilius lutescens Dana, 1852	JX025205	KF738320	-
Ischnopontonia lophos (Barnard, 1962)	KF738364	KF738321	
Laomenes nudirostris (Bruce, 1968)	KF738366	KF738323	-
Manipontonia psamathe (De Man, 1902)	JX025199	TBA	-
Palaemonella spinulata Yokoya, 1936	KF738367	KF738325	-

PeerJ reviewing PDF | (2015:06:5543:0:0:NEW 26 Jun 2015)

Periclimenaeus bidentatus Bruce, 1970	KF738368	KF738326	-
Periclimenes brevicarpalis (Schenkel, 1902)	JX025191	JF346324	JF346254
Periclimenes calcaratus Chace & Bruce, 1993	KF738370	KF738329	-
Philarius gerlachei (Nobili, 1905)	JX025177	KF738333	-
Platycaris latirostris Holthuis, 1952	KF738371	KF738335	-
Pliopontonia furtiva Bruce, 1973	KF738372	KF738336	-
Pontonia manningi Fransen, 2000	EU868705	TBA	EU868800
Thaumastocaris streptopus Kemp, 1922	KF738373	KF738337	DQ642852
Zenopontonia soror (Nobili, 1904)	JX025178	KF738332	-
Typhlocarididae			
Typhlocaris salentina Caroli, 1923	EU868713	-	EU868808
Alpheidae			
Betaeus longidactylus Lockington, 1877	JX010752	JX010771	JF346263

3

Table 2(on next page)

Species examined by SEM for morphology of telson setation (all material is accessioned in the Oxford University Museum of Natural History-OUMNH.ZC).

Table 2 Species examined by SEM for morphology of telson setation (all material is accessioned in the Oxford University Museum of Natural History-OUMNH.ZC).

_
2
•
_
1
4

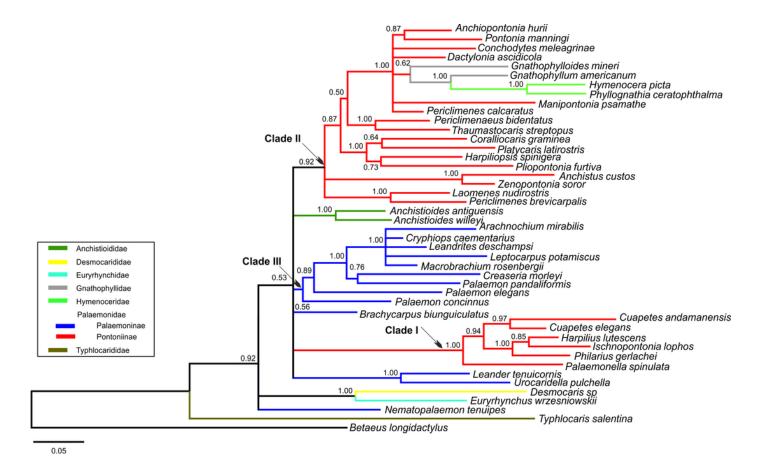
	Origin	Accession number
Palaemonidae - Palaemoninae		
Leander tenuicornis (Say, 1818)	USA	OUMNH.ZC.2006-11-007
Macrobrachium amazonicum (Heller, 1862)	Brazil	OUMNH.ZC.2002-27-003
Palaemon adspersus Rathke, 1837	Greece	OUMNH.ZC.2003-03-001
Palaemon modestus (Heller, 1862)	Kazahkstan	OUMNH.ZC.2012-01-068
Palaemonidae - Pontoniinae		
Conchodytes nipponensis (De Haan, 1844)	Japan	OUMNH.ZC.2011-11-001
Cuapetes americanus (Kingsley, 1878)	Panama	OUMNH.ZC.2003-33-050
Jocaste lucina (Nobili, 1901)	Chagos	OUMNH.ZC.2014-09-038
Palaemonella rotumana (Borradaile, 1898)	Singapore	OUMNH.ZC.2011-02-003
Periclimenaeus caraibicus Holthuis, 1951	Panama	OUMNH.ZC.2008-14-065
Periclimenes brevicarpalis (Schenkel, 1902)	Taiwan	OUMNH.ZC.2010-02-003
Stegopontonia commensalis Nobili, 1906	Taiwan	OUMNH.ZC.2010-02-039
Thaumastocaris streptopus Kemp, 1922	Israel	OUMNH.ZC.2011-05-024

5

Datasets, molecular models and tree scores for analyses conducted in this study

Table 3. Datasets, molecular models and tree scores for analyses conducted in this study

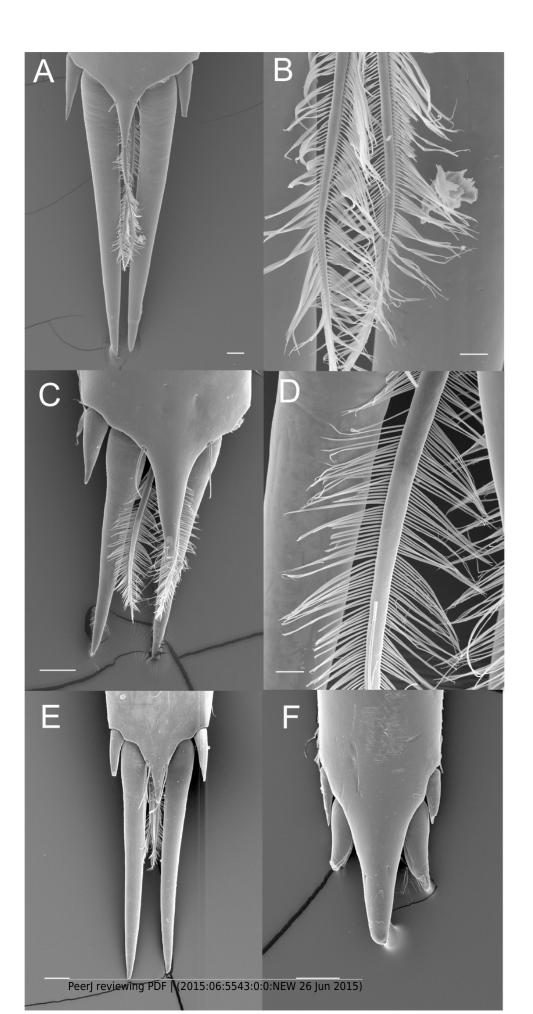
Dataset	Molecular model	N	Figure	Tree Scores	Difference versus unconstraint	BF strength of evidence of difference
16S/H3/18S (Combined)		45				
Unconstrained BA			1	-16540.11		
Constraint A				-16617.59	77.48	very strong against
Constraint B			S1	-16546.48	6.37	very strong against
Constraint C			S2	-16540.26	0.15	equivocal
Constraint D				-16616.49	76.38	very strong against
Constraint E				-16544.29	4.18	strong
Constraint F				-16547.56	7.45	very strong against
Constraint G				-16545.17	5.06	very strong against
16S rDNA (16S)	TN93+G+I	45				
Unconstrained ML			S3	-7434.59		
Unconstrained BA			S4	-8098.11		
Constraint A				-8133.18	35.07	very strong against
Constraint B				-8120.15	22.04	very strong against
Histone 3 (H3)	K2+G+I	42				
Unconstrained ML			S5	-3329.51		
Unconstrained BA			S6	-3364.55		
Constraint A				-3386.06	21.51	very strong against
Constraint B				-3371.81	7.26	very strong against
18S rDNA (18S)	K2+G+I	23				
Unconstrained ML			S7	-4812.79		
Unconstrained BA			S8	-4859.85		
Constraint A				-4907.84	47.99	very strong against
Constraint B				-4872.23	12.38	very strong against


³ Abbreviations: BA, Bayesian analysis; BF, Bayes Factor; G, Gamma Rate Distribution; I, Invariant sites; K2 Kimua 2-parameter; ML,

⁴ Maximum Likelihood; TN93, Tamara-Nei model.

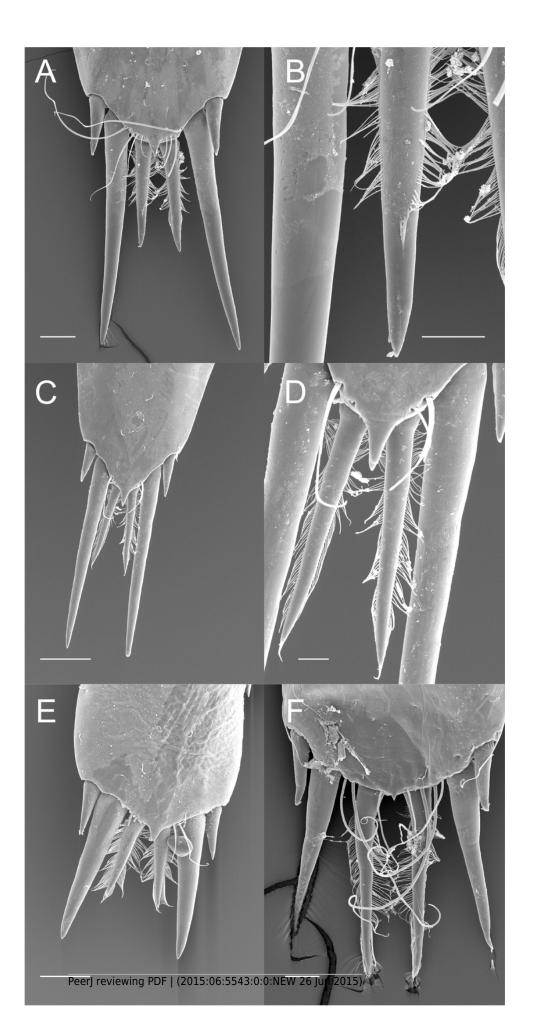
1

Bayesian majority rule consensus topology for combined dataset (16S/H3/18S) of the palaemonoid clade tr(8? BZ�


No constraints, only clades with >0.50 posterior probability are shown, Tree Score = -16540.11. For definitions of palaemonid clades, see text.

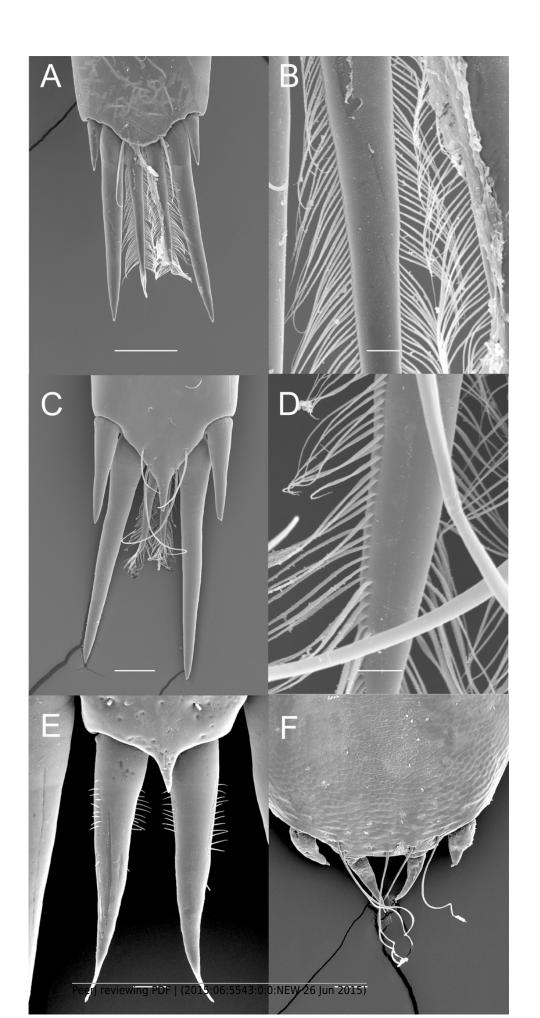
2

Ornamentation of the posterior telson margin of some Palaemoninae.


A: Palaemon adspersus; B: same, detail of median setae; C: Macrobrachium amazonicum; D; same, detail of median setae; E: Leander tenuicornis, F: Palaemon modestus. Scale bars indicate 100 μ m (A, C, D-E), 40 μ m (B) or 20 μ m (D).

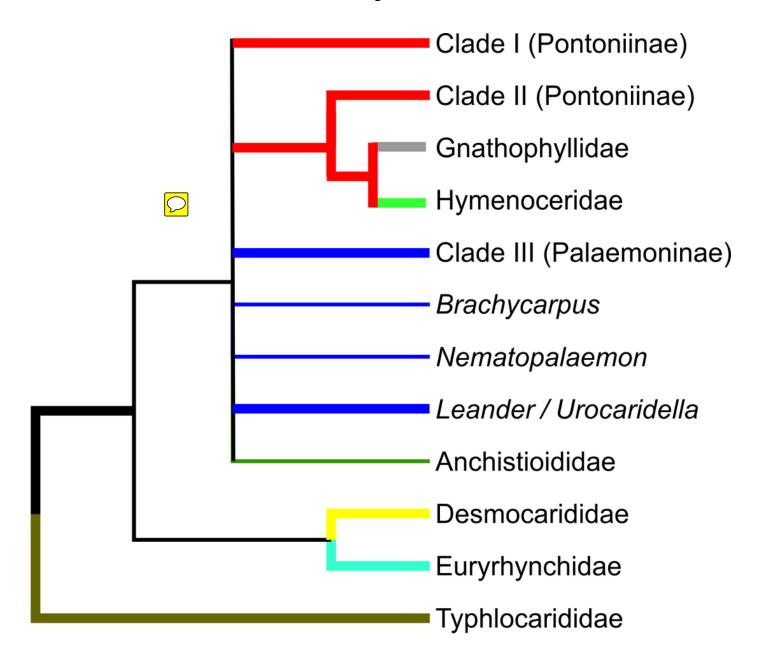
3

Ornamentation of the posterior telson margin of some Pontoniinae.


A: Palaemonella rotumana, B: same, detail of median setae; C: Cuapetes americanus, D, detail of median setae; E: Periclimenes brevicarpalis; F: Periclimenaeus caraibicus. Scale bars indicate 100 μ m (A, C, E), 50 μ m (B, F) or 20 μ m (D).

4

Ornamentation of the posterior telson margin of some Pontoniinae.


A: Jocaste lucina, B: same, detail of median setae; C: Thaumastocaris streptopus, D: same, detail of median setae; E: Stegopontonia commensalis; F: Conchodytes nipponensis. Scale bars indicate 100 μ m (A, C, F), 20 μ m (E) or 10 μ m (B, D).

5

Cladogram of hypothesised relationships of palaemonoid taxa derived from all molecular analyses.

Thicker lines denote where evidence is stronger.

