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ABSTRACT
Wind energy is an important renewable energy source for generating electricity that
has the potential to replace fossil fuels. Herein, we propose confidence intervals for the
difference between the coefficients of variation of Weibull distributions constructed
using the concepts of the generalized confidence interval (GCI), Bayesian methods, the
method of variance estimates recovery (MOVER) based on Hendricks and Robey’s
confidence interval, a percentile bootstrap method, and a bootstrap method with
standard errors. To analyze their performances, their coverage probabilities and
expected lengths were evaluated via Monte Carlo simulation. The simulation results
indicate that the coverage probabilities of GCI were greater than or sometimes close to
the nominal confidence level. However, when the Weibull shape parameter was small,
the Bayesian- highest posterior density interval was preferable. All of the proposed
confidence intervals were applied to wind speed datameasured at 90-meter wind energy
potential stations at various regions in Thailand.

Subjects Statistics, Natural Resource Management, Atmospheric Chemistry, Environmental
Impacts
Keywords Dispersion, Coefficients of variation, Bayesian methods, The method of variance
estimates recovery, Wind speed data, Gibbs algorithm, Random walk Metropolis, Markov chain
Monte Carlo, Generalized confidence interval

INTRODUCTION
Nowadays, Thailand is increasingly using alternative energy sources to oil and coal
owing to the government pushing forward a policy concerning alternative energy
development and efficiency. The alternative energy development in Thailand has
primarily relied on energy production in domestic with emphasis on solar, wind,
hydro energy, biomass, biogas, municipal Solid waste (MSW), geothermal power
and biofuels including ethanol and biodiesel in term of electricity, heat and biofuels
(https://www.dede.go.th/ewt_news.php?nid=47340). Wind energy is an important natural
energy source for use in power generation because it has many advantages: it is clean and
environmentally friendly, it reduces the level of carbon dioxide emissions that contribute
toward global warming, and it offers unlimited renewable energy. In recent years, power
generation from wind energy in Thailand has limitation about potential of wind speeds

How to cite this article La-ongkaew M, Niwitpong S-A, Niwitpong S. 2021. Confidence intervals for the difference between the coeffi-
cients of variation of Weibull distributions for analyzing wind speed dispersion. PeerJ 9:e11676 http://doi.org/10.7717/peerj.11676

https://peerj.com
mailto:sa-aat.n@sci.kmutnb.ac.th
mailto:sa-aat.n@sci.kmutnb.ac.th
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11676
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.dede.go.th/ewt_news.php?nid=47340
http://doi.org/10.7717/peerj.11676


such as wind power density, wind speed, and the height of wind turbine (Chancham et al.,
2009). In addition, there are problems about where to install wind turbines because wind
energy is related to the topography of the installation area and wind strength variation
throughout the year. Potential areas to harvest wind energy in Thailand are coastal areas
and the northeastern region of Thailand. Since the coefficient of variation can be used to
analyze areas with high wind speed variability, we are interested in analyzing wind datasets
from the aforementioned areas in terms of the difference between coefficients of variation
of Weibull distributions. The approach in this study could be useful in finding areas that
are the most suitable for placing wind turbine systems to produce electricity.

In statistics, the Weibull distribution, which is named after Swedish mathematician
Waloddi Weibull (Weibull, 1951), is a continuous probability distribution commonly used
to analyze wind speed data. It has also been widely applied in engineering, industry,
and weather forecasting. For example, Chaichana et al. (2015) studied the potential
of wind energy for high-tech agricultural projects as part of the Royal Initiative at
Chiang Mai province, Thailand. Moreover, Pang, Forster & Troutt (2001) estimated the
parameters for a Weibull distribution when applied to wind speed data obtained from an
observatory in Hong Kong. Previously, many researchers have estimated the parameters
and functions of parameters for Weibull distributions. For instance, Green et al. (1994)
used the Markov chain Monte Carlo (MCMC) method to estimate three parameters
of a Weibull distribution. Colosimo & Ho (1999) derived confidence intervals for the
Weibull mean lifetime based on censored reliability datasets. Krishnamoorthy, Lin & Xia
(2009) constructed confidence intervals for the mean of Weibull distribution based on
the generalized variable approach and compared this with Wald confidence intervals.
In another study, Krishnamoorthy & Lin (2010) presented the confidence interval for
stress–strength reliability involving two Weibull distributions. Ibrahim (2010) compared
the performance of Bayesian approaches using Jeffreys’ prior and an extension of Jeffreys’
prior with maximum likelihood estimation to estimate the parameters of a Weibull
distribution. Kundu & Howlader (2010) used Bayesian inference to estimate the scale
parameter of an inverted Weibull distribution based on Type-II censored data. Yalcinkaya
& Birgoren (2017) compared a confidence interval of the lower percentiles in a Weibull
distribution of small samples based on maximum likelihood estimation and the Bayesian-
Weibull method. Saraiva & Suzuki (2017) compared methods to estimate the parameters
of aWeibull distribution, which are a maximum likelihood method and a Bayesian method
with the Metropolis–Hastings algorithm.

The coefficient of variation is used for measuring variations in data as well as comparing
the degree of variation between several datasets in which the measurement units are
different. It has been used in many fields. Faber & Korn (1991) used the coefficient of
variation tomeasure variation in themean synaptic response of nerves in the central nervous
system.Banik & Kibria (2011)used the coefficient of variation to analyze data on psychiatric
disorders, while Yosboonruang, Niwitpong & Niwitpong (2019) used it to examine variation
in rainfall data in Thailand. In this study, we focus on the coefficient of variation. Many
researchers have provided confidence intervals for estimating the single and function
of coefficients of variation. For example in a normal distribution: a normal coefficient
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of variation (Vangel, 1996), common coefficient of variation (Tian, 2005), coefficient of
variation (Mahmoudvand & Hassani, 2009) and (Donner & Zou, 2010). Moreover, Pang
et al. (2005) proposed confidence intervals for estimating the coefficient of variation of a
three-parameterWeibull distribution via a simulation-based Bayesian approach.Niwitpong
(2013) provided confidence intervals for the coefficient of variation of a lognormal
distribution with a restricted parameter space. Buntao & Niwitpong (2013) constructed
confidence intervals for the difference between the coefficients of variation of lognormal
distributions. Sangnawakij, Niwitpong & Niwitpong (2015) presented confidence intervals
for the ratio of coefficients of variation of gamma distributions. Yosboonruang, Niwitpong &
Niwitpong (2020) proposed confidence intervals for the difference between the coefficients
of variation of delta-lognormal distributions. La-ongkaew, Niwitpong & Niwitpong (2009)
constructed confidence interval for single coefficient of variation ofWeibull distribution. It
could be seen that not many researches mentioned above focused on coefficient of variation
or difference between the coefficients of variation of Weibull distributions. Consequently,
we extended this study to construct confidence intervals for the difference between the
coefficients of variation of Weibull distributions.

Herein, we propose new confidence intervals for the difference between the coefficients of
variation of Weibull distributions using the generalized confidence interval (GCI) method,
Bayesian methods, the method of variance estimates recovery (MOVER) method, a
percentile bootstrap method, and a bootstrap interval with standard errors, the derivations
of which are given in this article. As an empirical application, we use wind speed data
measured at 90-meter wind energy potential stations in Thailand. Finally, we discuss the
results of our study and draw conclusions on them.

METHODS
Let a random variable X follow the 2-Parameter Weibull distribution. The probability
density function of X is given by

f (x;a,k)=
k
a

(x
a

)k−1
exp

[
−

(x
a

)k]
,x > 0, (1)

where the positive constant a is called the scale parameter and the positive constant k is
called the shape parameter. The mean and the variance of X are E(X)= a0

(
1+ 1

k

)
and

Var(X)= a2
[
0
(
1+ 2

k

)
−
(
0
(
1+ 1

k

))2], respectively. Therefore, the coefficient of variation
of X can be written as

CV(X)= λ=

√√√√ 0
(
1+ 2

k

)(
0
(
1+ 1

k

))2 −1. (2)

Suppose thatX =(X1,X2,...,Xn) be a random sample of size n fromWeibull distribution
with scale parameter a and shape parameter k, denoted as Weibull(a,k). To estimate the
parameters a and k, the maximum likelihood estimation is applied. The maximum
likelihood estimators (MLEs) can be obtained from Cohen (1965), they are as follows. The
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MLE k̂ of k is solution of the following equation

1
k̂
−

∑n
i=1

[
x k̂i ln(xi)

]
∑

(x k̂i )
+

1
n

n∑
i=1

ln(xi)= 0 (3)

and the MLE â of a is given by

â=

[ n∑
i=1

x k̂i /n

] 1
k̂

. (4)

For solving the Eq.(3), the Newton–Raphson iterative method can be applied. We
obtained a starting value for the Newton–Raphson iterative method. Let x1, x2,. . . , xn be
a sample of observations from a Weibull(a,k) distribution. Let zi= ln(xi),i =1 ,2,...,n.
Menon (1963) showed that the estimator

k̂u=
(
π
√
6

)(√
n−1
s2

)
(5)

is asymptotically unbiased estimator, which is the starting value.
The following algorithm is used to compute the MLEs:

Algorithm 1
1. Generate x1, x2,. . . , xn, let zi= ln(xi).
2. Compute s1=

∑n
i=1zi, z̄ = s1/n and s2=

∑n
i=1(zi− z̄)

2.

3. Compute k̂u =
(
π
√
6

)(√
n−1
s2

)
.

4. For l = 1 to number of iterations.
5. Compute wi= x k̂ui , s2=

∑n
i=1(wi), s3=

∑n
i=1(wizi) and s4=

∑n
i=1(wiz2i ).

6. Compute F =
(

1
k̂u

)
+ z̄−

(
s3
s2

)
.

7. Compute f =
(

1
k̂2u

)
+
[
(s2s4)− (s23)

]
/(s22).

8. Compute k̂u= k̂u +
(
F
f

)
.

9. If (F ≤ error tolerance) return k̂= k̂u.
10. End l loop.
11. Compute â from Eq. (4).

Let X1,X2,...,Xn and Y1,Y2,...,Ym be random samples from two independent Weibull
distributions with scale parameters aX ,aY and shape parameters kX ,kY , respectively.
Moreover, let λX be the coefficient of variation of X . Similarly, let λY be the coefficient of
variation of Y . Thus, the difference between the coefficients of variation is defined by

δ= λX −λY =

√√√√√√ 0
(
1+ 2

kX

)
(
0
(
1+ 1

kX

))2 −1−
√√√√√√ 0

(
1+ 2

kY

)
(
0
(
1+ 1

kY

))2 −1. (6)

And the estimator of δ is given by

δ̂= λ̂X − λ̂Y =

√√√√√√ 0
(
1+ 2

k̂X

)
(
0
(
1+ 1

k̂X

))2 −1−
√√√√√√ 0

(
1+ 2

k̂Y

)
(
0
(
1+ 1

k̂Y

))2 −1. (7)
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THE GENERALIZED CONFIDENCE INTERVAL
The generalized confidence interval (GCI) was introduced by Weerahandi (1993). The
most important concept of GCI is the generalized pivotal quantity (GPQ) defined as
Definition Suppose that X = (X1,X2,...,Xn) be a random variables from distribution,
which depends on a parameter of interest ϕ, and a nuisance parameter γ . Furthermore,
suppose that x =(x1,x2,...,xn) be the observed value of X. To obtain a GCI for ϕ, a GPQ
R(X ;x,ϕ,γ ) is also required to satisfy the following two conditions.
(i) For a fixed x, the distribution of R(X ;x,ϕ,γ ) is free of unknown parameters.
(ii) The observed value of R(X ;x,ϕ,γ ) at X = x , denoted as r(X ;x,ϕ,γ ) does not depend
on nuisance parameters.

Let Rϕ(α/2) and Rϕ(1−α/2) are the 100(α/2)-th and 100(1−α/2)-th percentile of
Rϕ(X ;x), respectively. The 100 (1−α)% two-sided confidence interval based on GCI for
parameter of interest is given by [Rϕ(α/2),Rϕ(1−α/2)]. Note that 1−α is the probability
that population parameter will be in the interval. The 100 (1−α)% confidence interval
will include the true value of the population parameter with probability 1−α, i.e., if
α= 0.05, that probability is about 0.95 that the 95% confidence interval will include the
true population parameter.

For Weibull distribution, Thoman, Bain & Antle (1969) showed that the distributions
of k̂

k and k̂ ln
( â
a

)
do not depend on a and k, where â and k̂ are the MLEs of a and k,

respectively. Let â∗ and k̂∗ be the MLEs based on a sample of size n from a Weibull(1,1).
Then k̂

k ∼ k̂∗ and k̂ ln
( â
a

)
∼ k̂∗ ln(â∗). Both distributions do not depend on any parameters.

Hence, they are pivotal quantity.
Krishnamoorthy, Mukherjee & Guo (2007) presented the GPQs of scale and shape

parameters from Weibull distribution. Let â0 and k̂0 be the observed values of â and
k̂. The GPQs of the parameters are given by

Rk =
k
k̂
k̂0=

k̂0
k̂∗

(8)

and

Ra=
(a
â

) k̂
k̂0 â0=

(
1
â∗

) k̂∗

k̂0
â0. (9)

From the random variables X and Y , the GPQs for kX and kY are given by

RkX =
k̂X0

k̂∗X
(10)

and

RkY =
k̂Y0
k̂∗Y
. (11)
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Thus, the GPQ for δ is defined by

Rδ =RλX −RλY =

√√√√√√ 0
(
1+ 2

RkX

)
(
0
(
1+ 1

RkX

))2 −1−
√√√√√√ 0

(
1+ 2

RkY

)
(
0
(
1+ 1

RkY

))2 −1. (12)

Therefore, the 100 (1−α)% two-sided confidence interval for the difference between
the coefficients of variation of Weibull distributions based on GCI is

CIδ(gci)=
[
Lδ(gci),Uδ(gci)

]
= [Rδ(α/2),Rδ(1−α/2)], (13)

where Rδ(α/2) denotes the 100(α/2)-th percentile of Rδ .
The following algorithm is used to construct confidence interval based on GCI for the

difference between the coefficients of variation of Weibull distributions:

Algorithm 2
1. Compute âX , âY , k̂X and k̂Y from Algorithm 1.
2. Generate X∗1 , X

∗

2 , . . . , X
∗
n and Y ∗1 , Y

∗

2 , . . . , Y
∗
m fromWeibull(1,1).

3. Compute â∗X , â
∗

Y , k̂
∗

X and k̂∗Y from Algorithm 1.
4. Compute RkX and RkY from Eqs. (10) and (11).
5. Compute Rδ from Eq. (12).
6. Repeat steps 1-5 for q times, where q is the number of generalized computation.
7. Compute 95% confidence interval based on GCI, as given in Eq. (13).

THE BOOTSTRAP CONFIDENCE INTERVALS
The bootstrap method was introduced by Efron & Tibshirani (1993). This is a resampling
method to determine precision measures for statistical estimation.

Let xi = (x1,x2,...,xn) and yi =
(
y1,y2,...,ym

)
be random samples of size n and m

from Weibull distributions, and let x∗bi =
(
x∗b1 ,x

∗b
2 ,...,x

∗b
n
)
and y∗bi =

(
y∗b1 ,y

∗b
2 ,...,y

∗b
m
)

be bootstrapped samples drawn with replacement from the original data, using the same
sample sizes. After resampling B bootstrap samples, the difference between the coefficients
of variation are calculated in each bootstrap sample, as follows: δ∗b = λ∗bX −λ

∗b
Y ,b =1

,2,...,B.

The percentile bootstrap confidence interval
The percentile bootstrap confidence interval is based on the percentile of the distribution
of the bootstrapped replications. The value of the bootstrap statistic, δ∗b are ordered from
the smallest to the largest.

Therefore, the 100 (1−α)% two-sided confidence interval for the difference between
the coefficients of variation of Weibull distributions based on percentile bootstrap is given
by

CIδ(pb)=
[
Lδ(pb),Uδ(pb)

]
=
[
δ∗b(α/2),δ∗b(1−α/2)

]
, (14)

where δ∗b(α/2) denotes the 100(α/2)-th percentile of δ∗b.
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The following algorithm is used to construct confidence interval based on percentile
bootstrap for the difference between the coefficients of variation of Weibull distributions:

Algorithm 3
1. Generate X1, X2, . . . , Xn fromWeibull(aX ,kX ) and Y1, Y2, . . . , Ym fromWeibull(aY ,kY ).
2. For b= 1.
3. Resampling bootstrap samples X∗1 ,X

∗

2 ,...,X
∗
n from X1,X2,...,Xn and compute λ∗bX .

4. Resampling bootstrap samples Y ∗1 ,Y
∗

2 ,...,Y
∗
m from Y1,Y2,...,Ym and compute λ∗bY .

5. Compute δ∗b= λ∗bX −λ
∗b
Y .

6. Repeat steps 3-5 for B times, where B is the number of bootstrap sample.
7. Sort δ∗b from the smallest to the largest.
8. Compute 95% confidence interval based on percentile bootstrap, as given in Eq. (14).

The bootstrap confidence interval with standard errors
From the B bootstrap statistic denoted as δ∗b,b =1 ,2,...,B, we can calculate the standard
error of a statistic. They can be estimated using the standard deviation of the bootstrap
distribution.

Therefore, the 100 (1−α)% two-sided confidence interval for the difference between
the coefficients of variation ofWeibull distributions based on bootstrap confidence interval
with standard errors can be written as

CIδ(bs)=
[
Lδ(bs),Uδ(bs)

]
=
[
δ̂−Z(α/2)SE,δ̂+Z(α/2)SE

]
, (15)

where SE is the standard error of a statistic.
The following algorithm is used to construct confidence interval based on bootstrap

confidence interval with standard errors for the difference between the coefficients of
variation of Weibull distributions:

Algorithm 4
1. Generate X1, X2, . . . , Xn fromWeibull(aX ,kX ) and Y1, Y2, . . . , Ym fromWeibull(aY ,kY ).
2. For b= 1.
3. Resampling bootstrap samples X∗1 ,X

∗

2 ,...,X
∗
n from X1,X2,...,Xn and compute λ∗bX .

4. Resampling bootstrap samples Y ∗1 ,Y
∗

2 ,...,Y
∗
m from Y1,Y2,...,Ym and compute λ∗bY .

5. Compute δ∗b= λ∗bX −λ
∗b
Y .

6. Repeat steps 3-5 for B times, where B is the number of bootstrap sample.
7. Compute SE .
8. Compute 95% confidence interval based on bootstrap confidence interval with standard
errors, as given in Eq. (15).

THE METHOD OF VARIANCE ESTIMATES RECOVERY
According to Donner & Zou (2010), this approach can be used to construct a confidence
interval for a function of two parameters, λX −λY , defined as

CIm= [Lm,Um], (16)

where the lower limit and upper limit for λ̂X - λ̂Y are given by

Lm=
(
λ̂X − λ̂Y

)
−

√
(λ̂X − lX )2+ (uY − λ̂Y )2 (17)
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Um=
(
λ̂X − λ̂Y

)
+

√
(uX − λ̂X )2+ (λ̂Y − lY )2. (18)

Hendricks & Robey (1936) presented confidence intervals for λX and λY defined as

(lX .HR,uX .HR)=
(
λ̂X − t(α/2,n−1)

λ̂X
√
2n
,λ̂X + t(α/2,n−1)

λ̂X
√
2n

)
(19)

and

(lY .HR,uY .HR)=
(
λ̂Y − t(α/2,m−1)

λ̂Y
√
2m
,λ̂Y + t(α/2,m−1)

λ̂Y
√
2m

)
, (20)

where t(α/2,n−1) and t(α/2,m−1) denote the 100(α/2)-th percentile of t-distribution with
n−1 andm−1 degrees of freedom, respectively. To construct a confidence interval for the
difference between the coefficients of variation of Weibull distributions based on MOVER
with Hendricks and Robey’s confidence interval, we substitute lX .HR, uX .HR, lY .HR and
uY .HR for lX , uX , lY and uY , respectively.

Therefore, the 100 (1−α)% two-sided confidence interval for the difference between
the coefficients of variation of Weibull distributions based onMOVER with Hendricks and
Robey’s confidence interval becomes

CIδ(m.HR)=
[
Lδ(m.HR),Uδ(m.HR)

]
, (21)

where

Lδ(m.HR)=
(
λ̂X − λ̂Y

)
−

√
(λ̂X − lX .HR)2+ (uY .HR− λ̂Y )2 (22)

Uδ(m.HR)=
(
λ̂X − λ̂Y

)
+

√
(uX .HR− λ̂X )2+ (λ̂Y − lY .HR)2. (23)

The following algorithm is used to construct confidence interval based on MOVER for
the difference between the coefficients of variation of Weibull distributions:

Algorithm 5
1. Generate X1, X2, . . . , Xn fromWeibull(aX ,kX ) and Y1, Y2, . . . , Ym fromWeibull(aY ,kY ).
2. Compute the intervals for λX and λY from Eqs. (19) and (20).
3. Compute 95% confidence interval based on MOVER, as given in Eq. (21).

THE BAYESIAN CONFIDENCE INTERVALS
Here, we derive Bayesian estimates of the parameters of aWeibull distribution. Once again,
for random variable X = (X1, X2, . . . , Xn) from a Weibull distribution, we transform scale
parameter a′= ( 1a )

k , and so we can provide its probability density function in another form
as follows:

f (x;a′,k)= a′kxk−1exp
[
−a′xk

]
,x > 0. (24)

It is assumed that the prior distributions for the scale and shape parameters are gamma
with hyperparameters (v1,v2,z1,z2):

π(a′)∼ gamma(v1,z1) (25)
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and

π(k)∼ gamma(v2,z2). (26)

Hence, using Bayes’ theorem, the joint posterior density function of a′ and k is given by

π(a′,k|x)∝ L(a′,k|x)π(a′)π(k), (27)

where L(a′,k|x) is a likelihood function.
However, the posterior distributions cannot be computed, and so we used the MCMC

method with Gibbs sampling to provide them for the parameters. We used the Gibbs
sampling procedure to generate samples from the joint posterior distribution, as given in
Eq. (27). The conditional posterior distributions of parameters are

π(a′|k,x)∼ gamma(v2+n,z2+
∑

xk) (28)

and

π(k|a′,x)∝ kv1+n−1exp
[
−v1k−a′

∑
xk
]
. (29)

For Eq. (29), we used the Metropolis-Hasting (MH) algorithm to update shape parameter
k. Moreover, the random walk Metropolis (RWM) and Gibbs sampling methods are
applied as follows (Geman & Geman, 1984):

Algorithm 6 The Gibbs algorithm
1. Take the initial value of parameter (a′(0),k(0)).
2. Generate a′(t )∼ gamma(v2+n,z2+

∑
xk

(t−1)
).

3. Using Random walk Metropolis (RWM) algorithm for calculate k(t ).
4. Repeat step 2–3 for T times, where T is the number of replications of MCMC.
5. Burn in 1000 samples and compute the parameter of interest.

Algorithm 7 The random walk Metropolis (RWM)
1. Start with (a′(t ),k(t−1)).
2. Generate ε∼N

(
0,σ 2

k
)
.

3. Compute k∗= k(t−1)+ε.
4. Compute Ak =

L(k∗,a′|x)π(k∗)
L(k,a′|x)π(k) .

5. Generate u∼U (0,1).
6. If u≤min(1,Ak) set k(t )= k∗ and If u>min(1,Ak) set k(t )= k(t−1).

The Bayesian-MCMC
Once again, let X and Y be random variables from Weibull distributions. First, we used
Algorithms 6 and 7 to calculate the difference between the coefficients of variation denoted
as δt ,t =1 ,2,...,T , based on the Bayesian-MCMC.

Therefore, the 100 (1−α)% two-sided confidence interval for the difference between
the coefficients of variation of Weibull distributions based on the Bayesian-MCMC is given
by

CIδ(MCMC)=
[
Lδ(MCMC),Uδ(MCMC)

]
=
[
δt (α/2),δt (1−α/2)

]
, (30)
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where δt (α/2) denotes the 100(α/2)-th percentile of δt .
The following algorithm is used to construct confidence interval based on Bayesian-

MCMC for the difference between the coefficients of variation of Weibull distributions:

Algorithm 8
1. Calculate the initial value of parameter (a′(0),k(0)).
2. Calculate δt from Algorithms 6 and 7.
3. Compute 95% confidence interval based on Bayesian-MCMC, as given in Eq. (30).

The Bayesian-Highest Posterior Density (HPD) Interval
Here, the assumption is that the density of every point inside the interval is greater than that
of every point outside the interval, and it is also the shortest interval (Box & Tiao, 2011).
In this article, the HPD interval was computed by using the R package with HDInterval.

Therefore, the 100 (1−α)% two-sided confidence interval for the difference between
the coefficients of variation of Weibull distributions based on the Bayesian-HPD interval
can be written as

CIδ(HPD)=
[
Lδ(HPD),Uδ(HPD)

]
. (31)

The following algorithm is used to construct confidence interval based on Bayesian-HPD
for the difference between the coefficients of variation of Weibull distributions:

Algorithm 9
1. Calculate the initial value of parameter (a′(0),k(0)).
2. Calculate δt from Algorithms 6 and 7.
3. Compute 95% confidence interval based on Bayesian-HPD interval, as given in Eq. (31).

RESULTS
A simulation study was conducted to compare the performances of the six confidence
intervals for the difference between the coefficients of variation of Weibull distributions:
GCI, the Bayesian-MCMC method, the Bayesian-HPD interval, MOVER based on
Hendricks and Robey’s confidence interval, the percentile bootstrap method, and the
bootstrap confidence interval with standard errors. The R program was used to estimate
the coverage probabilities and expected lengths of the proposed confidence intervals using
the following parameter settings:
Scale parameter aX = aY = 0.5 and 2.
Shape parameter kX = 1 and kY = 0.5, 1, 2, 2.5, 4 and 9, with the differences between the
coefficients of variation of −1.2360, 0, 0.4772, 0.5720, 0.7194 and 0.8671, respectively.
Sample sizes (n,m) = (10,10), (10,20), (20,20), (30,30), (30,50), (50,50), (50,100) and
(100,100).
Hyperparameters v1= v2= z1= z2= 0.1.

The number of replications for each situation was 5,000, along with 2,500 pivotal
quantities for GCI. Moreover, we used 500 bootstrap samples for the bootstrap methods
and we generated 20,000 realizations of MCMC using the Gibbs and RWM algorithms
with a burn-in of 1000. The following performance indicators were used to determine
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the best-performing method: a coverage probability of greater than or equal to 0.95 (the
nominal confidence level) and the shortest expected length.

The following algorithm is used to estimate the coverage probability and expected
length:

Algorithm 10
1. SetM ,q,B,T ,n,m,aX ,kX ,aY and kY .
2. Generate X1, X2, . . . , Xn from Weibull(aX ,kX ) and Y1, Y2, . . . , Ym from Weibull(aY ,kY ),
respectively.
3. Use Algorithm 2 to construct generalized confidence interval (CIδ(gci)).
4. Use Algorithm 3 to construct percentile bootstrap confidence interval (CIδ(pb)).
5. Use Algorithm 4 to construct bootstrap confidence interval with standard errors (CIδ(bs)).
6. Use Algorithm 5 to construct MOVER based on Hendricks and Robey’s confidence
interval (CIδ (m.HR)).
7. Use Algorithm 8 to construct Baysian-MCMC confidence interval (CIδ(MCMC)).
8. Use Algorithm 9 to construct Baysian-HPD confidence interval (CIδ(HPD)).
9. If (L≤ δ≤U ), then set P = 1, else set P = 0.
10. Compute (U −L).
11. Repeat steps 2-10 forM times.
12. Compute mean of P for the coverage probability.
13. Compute mean of (U −L) for the expected length.

For a= 0.5 (Table 1 and Fig. 1), the simulation results indicate that the coverage
probabilities ofCIδ(gci) were greater than or sometimes close to the nominal confidence level
of 0.95 in almost all cases.CIδ(pb) yielded coverage probabilities greater than 0.95 when kY =
1 for (n,m)= (10,10) and (20,20). For the Bayesian methods, the coverage probabilities of
CIδ(MCMC) and CIδ(HPD) were greater than or sometimes close to the nominal confidence
level, while the expected lengths of CIδ(HPD) for (n,m)= (10,10) and kY = 0.5,2,4;
(n,m)= (20,20) and kY = 0.5; (n,m)= (10,20),(30,30),(30,50),(50,50),(50,100) and
kY = 0.5,1; and (n,m)= (100,100) and kY = 1 were the shortest. Moreover, CIδ(bs) and
CIδ(m.HR) yielded coverage probabilities under 0.95 for all cases.

From the simulation results for a= 2 (Table 2 and Fig. 2), CIδ(gci) performed well in
terms of coverage probability in almost all cases, while those of CIδ(pb), CIδ(bs) and CIδ(m.HR)
were the same as for a= 0.5. CIδ(pb) yielded coverage probabilities of under 0.95 in almost
all cases except when (n,m)= (10,10),(20,20) and kY = 0.5. For the Bayesian methods,
the coverage probabilities of CIδ(HPD) were greater than 0.95 and its expected lengths
were shortest for (n,m)= (10,20),(30,50),(50,100) and kY = 0.5,1; (n,m)= (20,20)
and kY = 2; (n,m)= (30,30) and kY = 1,2,2.5; (n,m)= (50,50) and kY = 0.5,1,2.5; and
(n,m)= (100,100) for all kY except for kY = 4 and 9.
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Table 1 Comparison results of the 95% two-sided confidence intervals for the difference between the
coefficients of variation ofWeibull distributions for a= 0.5.

(n,m) k Coverage probability (Expected length)

CIδ(gci) CIδ(pb) CIδ(bs) CIδ(m.HR) CIδ(MCMC) CIδ(HPD)

(10,10) 0.5 0.9568 0.6324 0.6956 0.8430 0.9392 0.9514
(8.1452) (1.6874) (1.7114) (2.3678) (5.4003) (4.6368)

1 0.9494 0.9614 0.9032 0.9610 0.9388 0.9706
(2.3498) (1.1568) (1.1587) (1.3535) (1.8406) (1.7986)

2 0.9510 0.9046 0.8860 0.9410 0.9454 0.9578
(1.7089) (0.9219) (0.9248) (1.0787) (1.3696) (1.3018)

2.5 0.9492 0.8710 0.8610 0.9152 0.9370 0.9400
(1.6386) (0.8863) (0.8894) (1.0359) (1.3144) (1.2340)

4 0.9580 0.8604 0.8526 0.9026 0.9360 0.9510
(1.5526) (0.8366) (0.8404) (0.9827) (1.2451) (1.1469)

9 0.9510 0.8374 0.8334 0.8854 0.9120 0.8764
(1.5173) (0.8076) (0.8105) (0.9515) (1.2218) (1.1060)

(10,20) 0.5 0.9564 0.7056 0.7924 0.8598 0.9476 0.9664
(3.6785) (1.6034) (1.6216) (1.7373) (3.1102) ( 2.9756)

1 0.9504 0.9378 0.8948 0.9344 0.9416 0.9616
(1.8251) (1.0235) (1.0258) (1.1510) (1.5018) (1.4525)

2 0.9536 0.8620 0.8536 0.9018 0.9406 0.9362
(1.5737) (0.8642) (0.8664) (1.0037) (1.2677) (1.1743)

2.5 0.9543 0.8480 0.8448 0.8952 0.9382 0.9300
(1.5418) (0.8407) (0.8432) (0.9810) (1.2400) (1.1376)

4 0.9488 0.8380 0.8312 0.8836 0.9386 0.9154
(1.5419) (0.8264) (0.8302) (0.9668) (1.2290) (1.1124)

9 0.9482 0.8262 0.8250 0.8786 0.9204 0.8794
(1.5300) (0.8106) (0.8144) (0.9544) (1.2208) (1.0958)

(20,20) 0.5 0.9524 0.6292 0.7778 0.8282 0.9480 0.9536
(3.2987) (1.4974) (1.5220) (1.5855) (2.8839) (2.6795)

1 0.9530 0.9564 0.9170 0.9450 0.9444 0.9656
(1.2350) (0.8758) (0.8814) (0.9149) (1.1264) (1.1166)

2 0.9522 0.9024 0.9010 0.9330 0.9434 0.9486
(0.9234) (0.6836) (0.6889) (0.7236) (0.8471) (0.8260)

2.5 0.9526 0.8900 0.8918 0.9276 0.9458 0.9470
(0.8915) (0.6566) (0.6615) (0.6969) (0.8178) (0.7917)

4 0.9534 0.8730 0.8870 0.9166 0.9430 0.9344
(0.8589) (0.6348) (0.6403) (0.6666) (0.7866) (0.7532)

9 0.9522 0.8652 0.8720 0.9114 0.9194 0.8866
(0.8395) (0.6149) (0.6225) (0.6479) (0.7729) (0.7340)

(30,30) 0.5 0.9506 0.6428 0.8124 0.8228 0.9448 0.9501
(2.3298) (1.3805) (1.4109) (1.2717) (2.1510) (2.0452)

1 0.9522 0.9426 0.9244 0.9382 0.9480 0.9618
(0.9229) (0.7415) (0.7481) (0.7346) (0.8728) (0.8678)
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Table 1 (continued)

(n,m) k Coverage probability (Expected length)

CIδ(gci) CIδ(pb) CIδ(bs) CIδ(m.HR) CIδ(MCMC) CIδ(HPD)

2 0.9510 0.8972 0.9082 0.9298 0.9462 0.9482
(0.6990) (0.5770) (0.5819) (0.5820) (0.6621) (0.6506)

2.5 0.9482 0.8918 0.9064 0.9280 0.9452 0.9476
(0.6787) (0.5581) (0.5629) (0.5625) (0.6430) (0.6287)

4 0.9532 0.8776 0.9036 0.9212 0.9476 0.9394
(0.6526) (0.5364) (0.5429) (0.5370) (0.6171) (0.5991)

9 0.9446 0.8602 0.8814 0.9036 0.9080 0.8784
(0.6365) (0.5187) (0.5246) (0.5207) (0.6040) (0.5835)

(30,50) 0.5 0.9574 0.6856 0.8760 0.8416 0.9530 0.9634
(1.7122) (1.2865) (1.3262) (1.0347) (1.6309) (1.5927)

1 0.9400 0.9356 0.9210 0.9240 0.9360 0.9500
(0.8011) (0.6768) (0.6822) (0.6526) (0.7652) (0.7591)

2 0.9494 0.8848 0.8996 0.9226 0.9452 0.9448
(0.6690) (0.5518) (0.5568) (0.5556) (0.6354) (0.6203)

2.5 0.9462 0.8812 0.8948 0.9160 0.9452 0.9418
(0.6581) (0.5399) (0.5455) (0.5440) (0.6246) (0.6074)

4 0.9450 0.8696 0.8880 0.9098 0.9414 0.9382
(0.6447) (0.5297) (0.5359) (0.5289) (0.6095) (0.5897)

9 0.9498 0.8608 0.8878 0.9056 0.9214 0.8936
(0.6306) (0.5144) (0.5208) (0.5170) (0.5981) (0.5769)

(50,50) 0.5 0.9520 0.6502 0.8596 0.8202 0.9474 0.9504
(1.6289) (1.2294) (1.2703) (0.9739) (1.5586) (1.5103)

1 0.9474 0.9368 0.9330 0.9278 0.9456 0.9552
(0.6699) (0.6106) (0.6165) (0.5626) (0.6485) (0.6460)

2 0.9456 0.9058 0.9208 0.9304 0.9460 0.9480
(0.5171) (0.4724) (0.4766) (0.4489) (0.5010) (0.4951)

2.5 0.9512 0.8900 0.9178 0.9264 0.9448 0.9450
(0.4992) (0.4545) (0.4586) (0.4319) (0.4840) (0.4770)

4 0.9558 0.8844 0.9154 0.9228 0.9482 0.9412
(0.4796) (0.4384) (0.4432) (0.4119) (0.4640) (0.4552)

9 0.9458 0.8744 0.9082 0.9148 0.9132 0.8908
(0.4695) (0.4246) (0.4299) (0.4008) (0.4564) (0.4463)

(50,100) 0.5 0.9532 0.7166 0.9172 0.8386 0.9518 0.9580
(1.1384) (1.1032) (1.1514) (0.7422) (1.1119) (1.0987)

1 0.9584 0.9364 0.9448 0.9346 0.9538 0.9610
(0.5672) (0.5404) (0.5448) (0.4843) (0.5522) (0.5486)

2 0.9480 0.8898 0.9176 0.9244 0.9460 0.9484
(0.4897) (0.4464) (0.4505) (0.4230) (0.4759) (0.4684)

2.5 0.9518 0.8820 0.9098 0.9116 0.9496 0.9442
(0.4814) (0.4380) (0.4425) (0.4145) (0.4668) (0.4581)
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Table 1 (continued)

(n,m) k Coverage probability (Expected length)

CIδ(gci) CIδ(pb) CIδ(bs) CIδ(m.HR) CIδ(MCMC) CIδ(HPD)

4 0.9494 0.8734 0.9082 0.9164 0.9466 0.9418
(0.4700) (0.4309) (0.4361) (0.4041) (0.4567) (0.4471)

9 0.9486 0.8704 0.9006 0.9074 – –
(0.4648) (0.4206) (0.4253) (0.3974) – –

(100,100) 0.5 0.9488 0.6768 0.9102 0.8198 0.9468 0.9472
(1.0705) (1.0617) (1.1132) (0.6829) (1.0486) (1.0308)

1 0.9496 0.9362 0.9548 0.9266 0.9496 0.9524
(0.4523) (0.4660) (0.4692) (0.3949) (0.4453) (0.4440)

2 0.9434 0.9076 0.9346 0.9256 0.9444 0.9460
(0.3514) (0.3558) (0.3584) (0.3152) (0.3461) (0.3437)

2.5 0.9514 0.9060 0.9386 0.9286 0.9486 0.9492
(0.3394) (0.3435) (0.3462) (0.3032) (0.3341) (0.3313)

4 0.9532 0.9004 0.9390 0.9270 0.9516 0.9484
(0.3269) (0.3344) (0.3376) (0.2896) (0.3214) (0.3179)

9 0.9514 0.8954 0.9336 0.9224 – –
(0.3188) (0.3223) (0.3250) (0.2809) –

Figure 1 Graphs to compare the performance of the methods with varying difference between CVs in
terms of (A) coverage probability and (B) expected length.

Full-size DOI: 10.7717/peerj.11676/fig-1

EMPIRICAL APPLICATION OF THE DERIVED CONFIDENCE
INTERVALS
Example 1
Wind speed data set were collected at 90-meter wind energy potential stations in Trad
and Chonburi provinces in 2016 by the Department of Alternative Energy Development
and Efficiency, Ministry of Energy (https://www.dede.go.th/ewt_news.php?nid=47706).
These are coastal provinces in eastern Thailand that have been identified as potential areas
for harvesting wind energy. Figure 3 shows Q-Q plots of the Weibull distributions of the
data from the two provinces. Furthermore, the Akaike Information Criterion (AIC) and

La-ongkaew et al. (2021), PeerJ, DOI 10.7717/peerj.11676 14/24

https://peerj.com
https://doi.org/10.7717/peerj.11676/fig-1
https://www.dede.go.th/ewt_news.php?nid=47706
http://dx.doi.org/10.7717/peerj.11676


Table 2 Comparison results of the 95% two-sided confidence intervals for the difference between the
coefficients of variation ofWeibull distributions for a= 2.

(n,m) k Coverage probability (Expected length)

CIδ(gci) CIδ(pb) CIδ(bs) CIδ(m.HR) CIδ(MCMC) CIδ(HPD)

(10,10) 0.5 0.9512 0.6242 0.6852 0.8266 0.9368 0.9466
(7.9720) (1.6763) (1.6970) (2.3414) (5.2853) (4.5489)

1 0.9514 0.9630 0.9034 0.9632 0.9338 0.9674
(2.3568) (1.1613) (1.1622) (1.3561) (1.8368) (1.7938)

2 0.9430 0.8992 0.8744 0.9330 0.9300 0.9482
(1.7036) (0.9226) (0.9261) (1.0758) (1.3570) (1.2881)

2.5 0.9476 0.8730 0.8622 0.9128 0.9348 0.9396
(1.6354) (0.8877) (0.8907) (1.0342) (1.3011) (1.2200)

4 0.9474 0.8532 0.8490 0.8958 0.9294 0.9290
(1.5569) (0.8388) (0.8411) (0.9825) (1.2356) (1.1332)

9 0.9472 0.8552 0.8830 0.9058 0.9402 0.9388
(0.6355) (0.5167) (0.5229) (0.5159) (0.5988) (0.5770)

(10,20) 0.5 0.9500 0.7112 0.8002 0.8624 0.9398 0.9596
(3.6607) (1.5948) (1.1618) (1.7329) (3.0961) (2.9601)

1 0.9502 0.9366 0.9000 0.9358 0.9394 0.9576
(1.8261) (1.0249) (1.0273) (1.1529) (1.4955) (1.451)

2 0.9512 0.8626 0.8586 0.9088 0.9380 0.9370
(1.5731) (0.8627) (0.8655) (1.0039) (1.2633) (1.1696)

2.5 0.9470 0.8464 0.8390 0.8936 0.9330 0.9260
(1.5644) (0.8484) (0.8518) (0.9886) (1.2476) (1.1432)

4 0.9604 0.8326 0.8300 0.8782 0.9324 0.9186
(1.5208) (0.8193) (0.8219) (0.9596) (1.2102) (1.0956)

9 0.9544 0.8356 0.8326 0.8840 0.9382 0.9204
(1.5123) (0.8095) (0.8134) (0.9496) (1.1960) (1.0712)

(20,20) 0.5 0.9538 0.6378 0.7808 0.8274 0.9440 0.9484
(3.2994) (1.5021) (1.5258) (1.5847) (2.8817) (2.6754)

1 0.9478 0.9510 0.9156 0.9420 0.9402 0.9598
(1.2330) (0.8735) (0.8781) (0.9134) (1.1231) (1.1132)

2 0.9514 0.9008 0.9038 0.9346 0.9420 0.9526
(0.9275) (0.6855) (0.6899) (0.7258) (0.8490) (0.8271)

2.5 0.9512 0.8846 0.8936 0.9220 0.9414 0.9460
(0.8922) (0.6606) (0.6657) (0.6971) (0.8163) (0.7900)

4 0.9506 0.8738 0.8844 0.9186 0.9430 0.9468
(0.8582) (0.6286) (0.6334) (0.6660) (0.7847) (0.7507)

9 0.9486 0.8564 0.8692 0.9058 0.9370 0.9314
(0.8336) (0.6079) (0.6133) (0.6444) (0.7584) (0.7186)

(30,30) 0.5 0.9540 0.6384 0.8140 0.8240 0.9494 0.9486
(2.3309) (1.3775) (1.4077) (1.2727) (2.1542) (2.0485)

1 0.9482 0.9486 0.9278 0.9346 0.9458 0.9600
(0.9231) (0.7463) (0.7532) (0.7347) (0.8719) (0.8667)
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Table 2 (continued)

(n,m) k Coverage probability (Expected length)

CIδ(gci) CIδ(pb) CIδ(bs) CIδ(m.HR) CIδ(MCMC) CIδ(HPD)

2 0.9570 0.9056 0.9134 0.9316 0.9508 0.9520
(0.7005) (0.5752) (0.5798) (0.5827) (0.6629) (0.6512)

2.5 0.9568 0.8922 0.9074 0.9314 0.9530 0.9536
(0.6806) (0.5584) (0.5636) (0.5635) (0.6437) (0.6293)

4 0.9484 0.8700 0.8902 0.9090 0.9404 0.9376
(0.6537) (0.5371) (0.5435) (0.5374) (0.6176) (0.5992)

9 0.9528 0.8602 0.8876 0.9068 0.9436 0.9378
(0.6341) (0.5199) (0.5262) (0.5194) (0.5916) (0.5747)

(30,50) 0.5 0.9532 0.6688 0.8768 0.8408 0.9496 0.9568
(1.7003) (1.2713) (1.3092) (1.0311) (1.6218) (1.5842)

1 0.9540 0.9416 0.9306 0.9352 0.9500 0.9576
(0.8051) (0.6830) (0.6899) (0.6549) (0.7671) (0.7609)

2 0.9504 0.8884 0.9036 0.9200 0.9464 0.9444
(0.6717) (0.5544) (0.5595) (0.5569) (0.6366) (0.6212)

2.5 0.9512 0.8738 0.8988 0.9168 0.9462 0.9412
(0.6576) (0.5405) (0.5464) (0.5436) (0.6227) (0.6055)

4 0.9528 0.8776 0.8914 0.9124 0.9474 0.9436
(0.6435) (0.5277) (0.5341) (0.5288) (0.6088) (0.5888)

9 0.9472 0.8552 0.8830 0.9058 0.9402 0.9388
(0.6355) (0.5167) (0.5229) (0.5159) (0.5988) (0.5770)

(50,50) 0.5 0.9532 0.6506 0.8538 0.8144 0.9484 0.9532
(1.6366) (1.2485) (0.9732) (0.9766) (1.5637) (1.5147)

1 0.9498 0.9378 0.9380 0.9338 0.9470 0.9564
(0.6698) (0.6120) (0.6178) (0.5627) (0.6484) (0.6458)

2 0.9512 0.9012 0.9158 0.9288 0.9476 0.9486
(0.5152) (0.4690) (0.4729) (0.4476) (0.4990) (0.4931)

2.5 0.9498 0.8882 0.9198 0.9300 0.9478 0.9500
(0.4994) (0.4542) (0.4588) (0.4320) (0.4834) (0.4764)

4 0.9484 0.8852 0.9108 0.9212 0.9464 0.9436
(0.4791) (0.4367) (0.4416) (0.4116) (0.4637) (0.4549)

9 0.9496 0.8812 0.9072 0.9142 0.9446 0.9430
(0.4689) (0.4254) (0.4299) (0.4005) (0.4520) (0.4416)

(50,100) 0.5 0.9546 0.7092 0.9182 0.8404 0.9522 0.9566
(1.1315) (1.1025) (1.1526) (0.7399) (1.1044) (1.0913)

1 0.9506 0.9314 0.9384 0.9272 0.9508 0.9562
(0.5698) (0.5402) (0.5444) (0.4860) (0.5548) (0.5511)

2 0.9450 0.8936 0.9102 0.9134 0.9414 0.9390
(0.4902) (0.4502) (0.4552) (0.4232) (0.4749) (0.4670)

2.5 0.9530 0.8856 0.9162 0.9254 0.9524 0.9490
(0.4802) (0.4380) (0.4432) (0.4141) (0.4659) (0.4572)

4 0.9512 0.8882 0.9138 0.9198 0.9470 0.9454
(0.4730) (0.4317) (0.4369) (0.4052) (0.4579) (0.4482)

9 0.9504 0.8750 0.9034 0.9094 – –

(continued on next page)
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Table 2 (continued)

(n,m) k Coverage probability (Expected length)

CIδ(gci) CIδ(pb) CIδ(bs) CIδ(m.HR) CIδ(MCMC) CIδ(HPD)

(0.4658) (0.4256) (0.4319) (0.3979) – –
(100,100) 0.5 0.9468 0.6818 0.9048 0.8158 0.9496 0.9468

(1.0733) (1.0585) (1.1081) (0.6835) (1.0506) (1.0325)
1 0.9498 0.9374 0.9524 0.9300 0.9496 0.9512

(0.4518) (0.4644) (0.4673) (0.3944) (0.4446) (0.4432)
2 0.9552 0.9142 0.9438 0.9364 0.9538 0.9544

(0.3505) (0.3527) (0.3548) (0.3145) (0.3449) (0.3424)
2.5 0.9530 0.9043 0.9424 0.9294 0.9504 0.9504

(0.3393) (0.3447) (0.3475) (0.3032) (0.3340) (0.3310)
4 0.9472 0.8916 0.9320 0.9166 0.9446 0.9428

(0.3259) (0.3323) (0.3351) (0.2889) (0.3206) (0.3170)
9 0.9484 0.8944 0.9304 0.9170 – –

(0.3189) (0.3253) (0.3286) (0.2810) –

Figure 2 Graphs to compare the performance of the methods with varying sample size in terms of (A)
coverage probability and (B) expected length.

Full-size DOI: 10.7717/peerj.11676/fig-2

Bayesian Information Criterion (BIC) values reported in Table 3 indicate that these two
datasets fitWeibull distributions because the latter have the smallest values for both criteria.
The statistical summary of the estimates of the parameters for these datasets is (n,m) =
(12,11), âX = 1.7621, âY = 4.5839, k̂X = 1.4832, k̂Y = 9.0794, λ̂X = 0.6860 and λ̂Y = 0.1317,
while the actual difference between the coefficients of variation of the two Weibull
distributions δ̂ = 0.5543. The confidence intervals based on the proposed methods are
given in Table 4. The results show that the Bayesian-HPD interval performed well in terms
of the coverage probability and expected length when the sample sizes are small, which
supports the simulation results. Finally, Fig. 4 shows a trace plot of the generated δ value.

Example 2
Data on wind speeds measured at 90-meter wind energy potential stations in the
southern and northeastern regions of Thailand were collected in April–May, 2019
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Figure 3 TheWeibull Q-Q plot for the wind speed data of two provinces, Thailand: (A) Trad Province
(B) Chonburi Province.

Full-size DOI: 10.7717/peerj.11676/fig-3

Table 3 The AIC and BIC values of the wind speed data of Trad province and Chonburi province.

Method Trad Chonburi

AIC BIC AIC BIC

Weibull 37.0272 37.9970 22.8054 23.6011
Exponential 37.2675 37.7524 56.2471 56.6450
Gamma 37.5735 38.5433 24.0780 24.8737
Log-normal 39.1594 40.1292 24.3327 25.1285

Table 4 The 95% confidence intervals for the difference between the coefficients of variation of the
wind speed data of Trad and Chonburi provinces, Thailand.

Method Confidence intervals for δ

Lower Upper Length

GCI 0.3316 1.1013 0.7697
MOVER 0.2398 0.8689 0.6291
PB 0.2081 0.8036 0.5155
BS 0.2531 0.8555 0.6024
MCMC 0.2912 1.0095 0.7183
HPD 0.2600 0.9216 0.6616

by the Department of Alternative Energy Development and Efficiency, Ministry of
Energy (https://www.dede.go.th/more_news.php?cid=501). The summary statistics for
the southern region are n = 12, âX = 2.5334, k̂X = 2.3956 and λ̂X = 0.4441 and the
northeastern region are m = 20, âY = 4.4608, k̂Y = 3.8457 and λ̂Y = 0.2906. The actual
difference between the coefficients of variation of theWeibull distributions of these datasets
δ̂= 0.1538. Weibull Q-Q plots of these data are shown in Fig. 5 and the correctness of
fitting the data to Weibull distributions in terms of the smallest AIC and BIC values are
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Figure 4 Plot of generated δ of example 1 vs. iteration of the MCMC algorithm.
Full-size DOI: 10.7717/peerj.11676/fig-4

Table 5 The AIC and BIC values of the wind speed data of the southern and northeastern regions of
Thailand.

Method Southern Northeastern

AIC BIC AIC BIC

Weibull 37.9176 38.8871 68.3758 70.3673
Exponential 45.4623 45.9472 97.6711 98.6669
Gamma 39.2535 75.5790 71.5482 73.5397
Log-normal 41.5439 42.5137 73.5875 40.2233

reported in Table 5. The 95% confidence intervals for δ by applying the six methods
(Table 6) indicate that the Bayesian-HPD interval performed well in terms of the coverage
probability and expected length when the difference between the coefficients of variation
was small, which is once again consistent with the simulation study results. Finally, the
trace plot of the generated δ value are presented in Fig. 6.
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Figure 5 TheWeibull Q-Q plot for the wind speed data of two Thailand’s regions: (A) Southern (B)
Northeastern.

Full-size DOI: 10.7717/peerj.11676/fig-5

Table 6 The 95% confidence intervals for the difference between the coefficients of variation of the
wind speed data of the southern and northeastern regions of Thailand.

Method Confidence intervals for δ

Lower Upper Length

GCI −0.0270 0.4807 0.5077
MOVER −0.0678 0.3755 0.4435
PB −0.0450 0.3763 0.4213
BS −0.0553 0.3630 0.4183
MCMC −0.0241 0.4727 0.4768
HPD −0.0445 0.4267 0.4712

DISCUSSION
It can be seen from the results of the study that GCI performed well in almost all cases
since its coverage probability was greater than or close to the nominal confidence level.
For the Bayesian methods, Bayesian-MCMC and Bayesian-HPD interval produced similar
results and performed well when kY (the difference between the coefficients of variation)
was small, zero, or negative. For large sample sizes, the Bayesian methods were not suitable
when kY was large. Moreover, the expected length of the Bayesian-HPD interval was always
shorter than Bayesian-MCMC. In relation to the expected lengths, they tended to decrease
when the sample sizes and/or kY increased.

CONCLUSIONS
This paper proposed six methods for deriving the confidence interval for the difference
between the coefficients of variation of Weibull distributions: the GCI method, the
Bayesian-MCMC method, the Bayesian-HPD interval, MOVER based on Hendricks and
Robey’s confidence interval, the percentile bootstrapmethod, and the bootstrap confidence
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Figure 6 Plot of generated δ of example 2 vs. iteration of the MCMC algorithm.
Full-size DOI: 10.7717/peerj.11676/fig-6

interval with standard errors. The performances of these methods were compared using the
coverage probability and the expected length. The results of simulation studies showed that
the GCI method and the Bayesian-HPD method were the best in different scenarios. The
Bayesian-HPDwas preferable when shape parameter kY was small. The percentile bootstrap
method can be used when the sample sizes are small and kY = 1. However, MOVER based
on Hendricks and Robey’s confidence interval and the bootstrap confidence interval with
standard errors are not recommended since these methods yielded coverage probabilities
under the nominal confidence level of 0.95 for almost all cases.
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