Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N₂O emissions in farmland (#55062)

First submission

Guidance from your Editor

Please submit by 1 Feb 2021 for the benefit of the authors (and your \$200 publishing discount) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 6 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)

ī

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N₂O emissions in farmland

Xiao Wang 1, Ping Lu 2, Peiling Yang Corresp. 1

Corresponding Author: Peiling Yang Email address: cau_yangpeiling@163.com

Background. Soil N₂O emissions cause nonpoint-source pollution in farmland. The rates of soil biochemical reactions change depending on the moisture and temperature and thus affect the N₂O emissions. However, it remains unclear whether soil improvement measures change the response of N₂O emissions to soil moisture. **Methods.** To quantify the driving factors of N₂O emissions from farmland and explore the effects of different soil improvement measures on the N₂O emissions, three treatments (fertilization, fertilization) + biochar, control) were implemented in the field experiments during 2019-2020. **Results.** The results of this study show that N₂O emissions strongly depend on the deep soil moisture and temperature (20-80 cm), in addition to the surface soil moisture and temperature (0-20 cm). However, changes in the soil environment due to fertilization and biochar application significantly affect the N₂O emissions despite the strong correlation between the soil moisture and N₂O emissions. Therefore, we established a model of the correlation between the soil moisture and N₂O emissions based on theoretical analysis. The results show that the N₂O emissions exponentially increase with increasing soil moisture regardless of fertilization or biochar application. Furthermore, the N₂O emissions initially increase and then decrease with nitrification and denitrification, respectively. Urea significantly increases the N₂O emissions in farmland. The biochar application significantly mitigates the N₂O emissions induced by urea based on the sensitivity coefficient (SC_R of 1.02 and 14.74; SC_{ij} of 19.18 and 20.83), even if the soil moisture in the topsoil (0–20 cm) increases.

¹ College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China

² Southwest University, Chongqing, China

1 Effects of fertilizer and biochar applications on the

2 relationship among soil moisture, temperature, and

N₂O emissions in farmland

4 5

3

Xiao Wang¹, Ping Lu² and Peiling Yang¹*

6

- 7 1 College of Water Resources and Civil Engineering, China Agricultural University, Beijing
- 8 100083, China
- 9 ² College of textile and garment, Southwest University, Chongqing, 400715, China;
- 10 Corresponding Author:
- 11 Peiling Yang¹
- 12 17 east tsinghua road, haidian district, Beijing, 100083, China,
- 13 Email address: wangxiao0324@163.com

14 15

Abstract

- 16 **Background.** Soil, N₂O emissions cause nonpoint-source pollution in farmland. The rates of soil
- 17 biochemical reactions change depending on the moisture and temperature and thus affect the
- 18 N₂O emissions. However, it remains unclear whether soil improvement measures change the
- 19 response of N₂O emissions to soil moisture.
- 20 **Methods.** To quantify the driving factors of N₂O emissions from farmland and explore the
- 21 effects of different soil improvement measures on the N₂O emissions, three treatments
- 22 (fertilization, fertilization + biochar, control) were implemented in the field experiments.
- 23 **Results.** The results of this study show that N₂O emissions strongly depend on the deep soil
- 24 moisture and temperature (20–80 cm), in addition to the surface soil moisture and temperature
- 25 (0–20 cm). However, changes in the soil environment due to fertilization and biochar application
- 26 significantly affect the N₂O emissions despite the strong correlation between the soil moisture
- 27 and N₂O emissions. Therefore, we established a model of the correlation between the soil
- 28 moisture and N_2O emissions based on theoretical analysis. The results show that the N_2O
- 29 emissions exponentially increase with increasing soil moisture regardless of fertilization or
- 30 biochar application. Furthermore, the N₂O emissions initially increase and then decrease with
- 31 nitrification and denitrification, respectively. Urea significantly increases the N_2O emissions in
- 32 farmland. The biochar application significantly mitigates the $N_2\mathrm{O}$ emissions induced by urea
- based on the sensitivity coefficient (SC $_{\rm B}$ of 1.02 and 14.74; SC $_{\rm U}$ of 19.18 and 20.83), even if the
- 34 soil moisture in the topsoil (0–20 cm) increases.
- 35 Keywords: Biochar; N₂O emissions; Soil moisture; Soil temperature; Fertilization; sensitivity
- 36 coefficient; multivariate nonlinear fitting; Exponential fitting.

Introduction

37

Soil N₂O emissions, representing a significant N loss, are inevitable products of chemical fertilizer application (Zou et al. 2005). Based on statistics, greenhouse gas emissions from

54

55

56 57

58

59

60

61 62

63

64

65 66

67

68

69 70

71 72

73

74 75

76

77 78

79

40 agricultural sources account for 11% of the global greenhouse gas emissions and thus exceed the 2020 emission target (Zhao et al. 2016). Soil N₂O emissions do not only depend on the soil 41 characteristics (e.g., soil structure, available carbon sources, pH, and microbial activity) but also 42 on the environmental conditions (e.g., temperature and precipitation). Nitrifying and denitrifying 43 44 bacteria, affecting N2O emissions by nitrification and denitrification, are aerobic and anaerobic soil microorganisms, respectively (Case et al. 2012; Gul et al. 2015). Soil aeration is restricted by 45 soil moisture; therefore, when the soil moisture content changes, the soil microbial activity 46 (nitrifying bacteria, denitrifying bacteria) and N₂O emissions also change. Denitrifying bacteria 47 mainly produce N₂O emissions from farmland during precipitation. Under proper soil aeration, 48 N₂O emissions are primarily produced by nitrifying bacteria (Shu et al. 2017; Wu et al. 2013). 49 The soil temperature, another critical factor, directly influences the activities of the nitrifying and 50 denitrifying microorganisms and urea hydrolysis (Alvarez et al. 2018). Soil N₂O emissions 51 52 rapidly increase with increasing soil temperature (Sébastien et al. 2017).

At present, researchers have established the relationships among the soil temperature, moisture, and N₂O emissions to quantify the N₂O emissions on the farmland scale. The temperature response function (Q10) of N₂O is greater than that of N₂ under anaerobic conditions (Phillips et al. 2015). The soil temperature and water-filled pore space (WFPS) regulate the soil N₂O emissions. The soil N₂O emissions and mean water content of the surface soil during the dry period are positively correlated (Saarnio et al. 2013). Weerden et al. (Weerden et al. 2012) also reported a pronounced linear correlation between the N₂O emissions and WFPS. A similar conclusion was drawn by (Wu et al. 2013). The relationship between the N₂O emissions and soil moisture has been described using an exponential first-order kinetics model in many studies (Prado et al. 2006; Weitz et al. 2001; Xue et al. 2012). However, it is difficult to clarify the response of the N₂O emissions to the increased WFPS using the above-mentioned models (linear correlation or exponential model). The N₂O emissions increase and reach a plateau when the WFPS is ~60%–70%. At the same time, the denitrification was maximal. When WFPS was >75%, a more anaerobic environment, the N₂O emissions decrease (Prado et al. 2006). This empirical model cannot predict the N₂O emissions at soil moisture concentration above 75% because the rates of the biochemical reactions (e.g., nitrification, denitrification, immobilization, and mineralization) are related to the variation in the soil moisture. Meanwhile, most studies did not consider the effect of the substrate on this process. In other words, it remains unclear if the response of the soil N₂O emissions to moisture and temperature would change with a change of the soil substrate characteristics such as the soil carbon and nitrogen concentrations. Thus, we still need to characterize the effect of exogenous organic matter improvement on the response (between N₂O emissions, soil moisture, and temperature) by establishing model.

The application of nitrogen fertilizer to the soil notably promotes N_2O emissions because it increases the substrate volume available for nitrification and denitrification. Exogenous carbon provides energy for microbial proliferation and enzyme secretion (Alfred et al. 2018; Henrique et al. 2015). The mixing of exogenous carbon with the soil significantly increases the soil C/N ratio and promotes the immobilization of inorganic nitrogen (Baggs et al. 2000). Studies have shown

that exogenous carbon improvement indeed reduces soil N_2O emissions effectively (Bruun et al. 2014; Case et al. 2012; Kettunen et al. 2006; Ruser et al. 2006; Singh et al. 2010). However, it remains unclear whether fertilization or the application of exogenous carbon changes the response of N_2O emissions to soil moisture. Therefore, it is important to study the effect of soil improvement (fertilization or addition of exogenous carbon) on the soil N_2O emission process to prevent farmland gas pollution and facilitate sustainable agricultural development.

Biochar, a form of exogenous carbon, is produced by the pyrolysis of straw and branches. The amendment with biochar remarkably affects the physical soil properties (Nanda et al. 2016) as well as biochemical reactions (Gul et al. 2015; Henrique et al. 2015) and thus affects C and N cycles in soil. Biochar amendment of soil has many physical effects; for example, it improves the water holding capacity of the soil (Major et al. 2012), nitrate retention (Ghulam et al. 2017; Zhang et al. 2010), and soil aeration (Alfred et al. 2018). Biochar amendment significantly changes the nitrification and denitrification processes. Because the improvement of the water holding capacity of the soil due to biochar application is the primary factor inhibiting N₂O emissions (Basso et al. 2013). Thus, biochar application is a C resource and it is important to explore the effect of exogenous carbon on the N₂O emissions.

The aim of this work was to explore the effects of different soil improvement measures on the N_2O emissions. The central hypothesis was that the response of N_2O to soil moisture and temperature is independent of fertilization or the application of biochar. Thus, we conducted field experiments for three months to 1) explore the response of soil N_2O emissions to soil moisture and temperature under different conditions (no fertilization, fertilization + biochar and 2) investigate the effects of fertilization and application of biochar on the relationship among soil moisture, temperature, and N_2O emissions.

Materials & Methods

Experimental site

The experiments were conducted between 2019-2020 at the experimental station of the China Agricultural University, China (latitude: 39°42′07.8″N, longitude: 116°41′48.0″E, altitude: 24 m) in loam soil (9.6% clay, 52.6% silt, and 37.8% sand). The mean temperature was 26.6 °C and the precipitation was 358 mm (April to September) in 2019. The mean temperature was 28.4 °C and the precipitation was 377 mm (July to September) in 2020. The experimental soil had a soil bulk density of 1.38 g cm⁻³ and the field capacity of the 0–20 cm soil layer was 22.87 % according to the method from Dane and Jacob (Dane & Jacob 2002).

Biochar amendments

Biochar was produced by pyrolysis (450 °C) of maize straw and used for the field experiment. The biochar had a pH of 8.2, total C content of 657 g kg⁻¹, total N content of 9 g kg⁻¹, available K of 16 g kg⁻¹, available P of 0.8 g kg⁻¹, and density of 0.297 g cm⁻³. The biochar was evenly applied to the surface soil (30 t ha⁻¹; top 20 cm of the soil) in April 2019 before sowing

maize. The initial soil had a pH of 8.14, SOC of 29.71 g kg⁻¹, SON of 2.3, NH₄⁺-N of 6.48 mg kg⁻¹, NO₃⁻-N of 28.00 mg kg⁻¹, available K of 38.14 g kg⁻¹, and available P of 1.70 g kg⁻¹.

Experimental Design

The maize cultivar Zhengdan 958 is widely used in China. Maize was planted on April 10, 2019 and June 15, 2020, with a 0.5 m line spacing and 0.3 m between plants and harvested on September 5 in 2019 and September 25 in 2020. A 1 m gap was left between adjacent plots. The experiment was carried out in three replicates; the plot size was 30 m × 6.5 m. This experiment included the following treatments: (1) RU: fertilization with urea, irrigation with reclaimed water; (2) BRU: soil amendment with 30 t ha⁻¹ biochar, fertilization with urea, and irrigation with reclaimed water; and (3) CK: irrigation with reclaimed water.

The N fertilizer (urea; 300 kg N ha⁻¹) was applied as follows: 40% before sowing, 30% during the silking stage, and 30% during the filling stage. The P (calcium superphosphate; 40 kg P ha⁻¹) and K (potassium sulfate; 80 kg K ha⁻¹) fertilizers were applied before sowing. The total irrigation amount for each treatment was 230 mm in 2019 and 250 mm in 2020, respectively.

The soil temperature and water content (0–80 cm) were measured with an ET-100 (Insentek, China). The WFPS was calculated with the following equation:

136
$$WFPS = \left(\frac{\theta_m \cdot \rho_0}{\rho_{H_2O} \cdot \rho_s}\right) \cdot 100\%, \quad (1)$$

where $\theta_{\rm m}$ is the gravimetric water content (mg mg⁻¹), ρ_0 is the bulk soil density (mg m⁻³), $\rho_{\rm H2O}$ is the density of water (mg m⁻³), and $\rho_{\rm S}$ is soil particle density (mg m⁻³).

Gas collection and analysis

The N_2O fluxes were measured at every plot using a static closed chamber method (Qi et al. 2015). The sampling chamber consisted of two parts: a soil ring without top and bottom (50 cm in diameter and 30 cm high) and a removable cover (50 cm in diameter and 50 cm high). The soil ring was directly inserted into the soil approximately 25 cm below the soil surface, leaving 5 cm to the soil surface, and the removable cover was placed on top during the sampling and was removed afterward. Two fans with diameters of 10 cm were installed on the sidewall of each cover to create turbulent airflow when the chamber was closed. Three gas samples were obtained during each treatment and sampling period, that is, three replicates of one treatment. The soil temperature from 9:00 to 11:00 a.m. was close to the daily mean soil temperature. Thus, we took gas samples during this period. The air temperature inside the static closed chamber was also measured. Gas samples (50 ml each) were collected in four time intervals (0, 10, 20, and 30 min) using 50 ml plastic syringes. The N_2O fluxes were measured after rainfall, fertilization, or every two days. The N_2O was analyzed using a gas chromatograph (GC 7890 A, Agilent, USA) and electron capture detector (ECD) within 48 h. The N_2O daily emissions were calculated with the following equation:

$$F = \rho \times V/A \times (dc/dt) \times 273/(273 + T), \tag{2}$$

where F is the N_2O flux (g m⁻² h⁻¹), ρ is the density of the gas in a standardized state (g m⁻³), V is the volume of the chamber (m³), A is the cross-sectional area of the chamber (m²), dc/dt is the rate of gas accumulation (μ g kg⁻¹ h⁻¹), and T is the chamber temperature (°C).

The cumulative N_2O emissions (kg ha⁻¹) were calculated by using the linear interpolation method.

Chemical analyses

The pH values of the biochar and soil were determined with a pH electrode (Thermo Orion, 420A plus). The biochar/deionized water and soil/deionized water ratios were 1:30 w/w and 1:10 w/w, respectively, after being stirred for 1.5 min and equilibrated for 1 h. The C and N concentrations of the biochar and soil were determined using an elemental analyzer (Flash 2000, Thermo Fisher, USA). The available P content was determined with an ultraviolet–visible spectrophotometer (TU-1901 UV–Vis, Beijing Puxi Instrument Company, China). The available K content was measured with a flame photometer (FAAS; Zennit 700P, Analytik Jena AG, Germany). The NH₄+-N and NO₃--N concentrations were measured using segmented flow analysis (SFA; Futura, Alliance, France).

Model

 N_2O emissions are the result of soil biochemical reactions, and these reactions are slow. N_2O emission at a particular time may arise from the cumulative effects of water and temperature in the previous period. Therefore, the lag effects should be considered. We assume that the N_2O emission during sampling is caused by the influence of soil moisture and temperature in the previous 24 h. If sampling occurs at 9:00 am on July 23, the N_2O flux is affected by the soil moisture (or temperature) between 10:00 am on July 22 and 9:00 am on July 23. ET-100 can monitor a series of soil moistures and temperatures hourly. Therefore, we established a function between N_2O flux and the average of soil moisture (or temperature) in the past 24 h. This function was created to calculate the daily soil moisture and temperature at 9:00 as the node.

A) Relationship among the soil temperature, water content, and N₂O emissions

Principal component analysis is a statistical method. Based on orthogonal transformation, it transformed a group of correlated variables into a group of linearly unrelated variables. The transformed variables are called principal components (Stacklies et al. 2007). Through principal component analysis, we have synthesized numerous indexes and eliminated information overlapping of the sample (Granato et al. 2018; He et al. 2018; Imaizumi & Kato 2018). The expression of the principal component was as follows:

196
$$W1 = a \cdot W_{10}^* + b \cdot W_{20}^* + c \cdot W_{40}^*$$
 (3)

197
$$T1 = d \cdot T_{10}^* + e \cdot T_{20}^* + f \cdot T_{40}^*, \tag{4}$$

where W1 or T1 are the principal components obtained by extracting the soil water content or temperature from the 10, 20, and 40 cm soil layers, respectively; W_{10}^* , W_{20}^* , W_{40}^* , T_{10}^* , T_{20}^* , and T_{40}^* are the standardized soil water contents and temperatures corresponding to the 10, 20. and 40 cm soil layers, respectively; and a, b, c, d, e, and f are the coefficients of the standardized values, respectively.

Because the principal component 1 (PC1) accounts for more than 70% of the variation, only PC1 of the soil moisture content (or temperature) was used for multivariate nonlinear fitting. Table 1 shows that the PC1 covers the soil moisture content and temperature information of the 10, 20, and 40 cm soil layers. The moisture content and temperature of the 20 cm soil layer contribute the most to the PC1.

The parameter F_N^* was obtained by standardizing the daily N_2O emissions and fitting with W1 and T1:

$$F_N^*(W1,T1) = z_0 + k1 * W1 + k2 * T1 + k3 * W1^2 + k4 * T1^2 + k5 * W1 \cdot T1,$$
 (5)

- where k1 (k2, k3, k4, k5) is the coefficient and z_0 is the constant.
- Table 2 shows the value of coefficient in Eq. (5).

Equations (3) and (4) were substituted into Eq. (5) to obtain:

219
$$F^* \left(W_{10}^*, W_{20}^*, W_{40}^*, T_{10}^*, T_{20}^*, T_{40}^*\right) = z_0 + k_1 \cdot a \cdot W_{10}^* + k_1 \cdot b \cdot W_{20}^* + k_1 \cdot c \cdot W_{40}^* + k_2 \cdot d \cdot T_{10}^*$$

220 $+ k_2 \cdot e \cdot T_{20}^* + k_2 \cdot f \cdot T_{40}^* + k_3 \cdot \left(a \cdot W_{10}^* + b \cdot W_{20}^* + c \cdot W_{40}^*\right)^2 + k_4 \cdot \left(d \cdot T_{10}^* + e \cdot T_{20}^* + f \cdot T_{40}^*\right)^2 + k_5 \cdot \left(a \cdot W_{10}^* + b \cdot W_{20}^* + c \cdot W_{40}^*\right) \cdot \left(d \cdot T_{10}^* + e \cdot T_{20}^* + f \cdot T_{40}^*\right)$

221 (6)

B) Response of the N₂O emissions to WFPS

We assumed that the N_2O emissions exponentially increase with increasing WFPS and that the emission rate of N_2O initially increases and then decreases. Thus, dDE/dW initially is positive and then negative. The model of the N_2O emissions can be obtained as follows:

$$\frac{1}{DE}\frac{dDE}{dW} = B - AW, \tag{7}$$

where DE represents the daily emissions of N₂O (kg hm⁻²), W is the WFPS, and A and B are constants.

To illuminate the mitigation of the N_2O emissions due to biochar amendment, we adopted the sensitivity coefficient (SC) to express the effect of the change in the soil water content on the N_2O emissions (Tan et al. 2017). The smaller SC is, the smaller is the response of the N_2O emissions to the change in the soil water content. The SC can be calculated as:

$$SC = \frac{\sum(\Delta DE/DE_0)}{\sum(\Delta W/W_0)},$$
 (8)

where ΔDE is the variation in the N_2O emissions between the BRU/RU and CK treatments, ΔW is the variation in the WFPS between the BRU/RU and CK treatments, and DE_0 and W_0 , represent the N_2O emissions and WFPS of treatment CK, respectively.

Equation (9), obtained by integrating Eq. (7), is a numerical model describing the increase in the N_2O emissions for different WFPS values under irrigation.

$$DE = e^{-aW^2 + bW + c}, (9)$$

where a is A/2, b is B, and c is an integral constant.

Statistical analysis

The data were analyzed with SPSS20.0 software. Variance analysis (ANOVA) was carried out by using the General Linear Model Univariate procedure. The analysis of significant differences (p < 0.05) between treatments was carried out using Tukey's range test. We also prepared figures and fitted the models using OriginPro 2019.

Results

Changes in the soil water content and temperature

The experimental area was irrigated with 60 mm reclaimed water after sowing. The next irrigation was conducted at the seeding stage. We observed a drastic fluctuation of the soil water content above a depth of 20 cm during each treatment. Such a fluctuation did not occur in the 60 and 80 cm soil layers. The average soil water content at 10 cm was ~1.31%, -0.04%, and 3.18% higher than that at 20 cm after the RU, BRU, and CK treatments, respectively (Fig. 1). The average soil water content at 20 cm was ~11.56%, 9.94%, and 17.89% higher than that at 40 cm after the RU, BRU, and CK treatments during 2019-2020, respectively. The average soil water content in the 20 cm soil layer of the BRU treatment was ~7.10% and 8.26% higher than that of the RU and CK treatments in 2019, respectively. And The average soil water content (20 cm) in BRU was ~15.69 % and 22.25 % higher than in RU and CK treatments in 2020. Thus, we can conclude that the soil amendment with biochar significantly promotes the water holding capacity.

Figure 1: Variation in the soil water content above a depth of 80 cm depth in the maize growth stage; (A), (B), and (C) show the soil water content of RU, BRU, and CK in 2019; (D), (E), and (F) show the soil water content of RU, BRU, and CK in 2020.

The variation in the soil temperature in the maize growth stage for each treatment is shown in Fig. 2. The temperature of the surface soil is higher than that of the deep soil. Although the temperature difference between each treatment above was not pronounced in 2020, the accumulative temperature difference between BRU and RU, BRU and CK were 463.24 and 455.46°C above 10 cm in 2019, respectively (Fig. 2). The accumulative temperature difference between BRU and RU, BRU and CK were 539.93 and 484.22°C in 20 cm, respectively. This can be explained by the remarkable heat-absorption of biochar, which increases the surface soil temperature.

Figure 2: Variation in the soil temperature above a depth of 80 cm in the maize growth stage; (A), (B), and (C) show the soil water content of RU, BRU, and CK in 2019; (D), (E), and (F) show the soil water content of RU, BRU, and CK in 2020.

Soil N2O emissions

Chemical fertilizer application significantly promotes the soil N₂O emissions (Fig. 3). The difference in the N₂O emissions between these treatments is not pronounced on June 13 and July 3 in 2019. However, the emission flux of N₂O is significantly higher for RU than for the BRU and CK treatments after fertilization. The cumulative N₂O emissions after the RU treatment are 3.61 kg ha⁻¹ compared with 1.72 and 1.59 kg ha⁻¹ for the BRU and CK treatments in 2019, respectively. The increment of N₂O emissions for RU treatment significantly were pronounced compared with CK treatment in 2020. And biochar application significantly alleviated N₂O emissions for the two year. The cumulative N₂O emissions were 8.96, 5.94, and 1.58 kg ha⁻¹ for RU, and BRU, and CK treatments in 2020, respectively.

Figure 3: N_2O emission flux in the maize growth stage. (A) and (B) show the N_2O emissions in 2019 and 2020, respectively.

Relationship among the soil water content, temperature, and N2O emissions

The soil N_2O emissions significantly correlate with the soil water content at a depth above 40 cm in all treatments (Table 1). The correlation between the soil N_2O emissions and soil temperature of RU and BRU at depths above 40 cm is also pronounced. Both the soil water content and temperature affect the soil N_2O emissions. Thus, it is imperative to analyze the coupled effect of the soil water content and temperature on the N_2O emissions.

Table 1: Correlation among the soil water content, temperature, and N₂O emissions.

Based on Table 1, the soil water content and temperature at a depth above 80 cm affect the N_2O emissions. The correlations between the soil water content and temperature and N_2O emissions is pronounced at depths of 0–40 cm, while it is weak in the 60–80 cm soil layer. To simplify the calculation, we performed principal components analysis on the moisture content

and temperature in the 10, 20, and 40 cm soil layers. Table 2 and Table 3 show the value of coefficient in Eq. (3)-(5), respectively.

Table 2: Coefficient of PC1.

Table 3: Coefficient of multiple nonlinear regression.

Compared with a single soil layer (10, 20, or 40 cm), the soil N_2O emissions can be more accurately predicted by combining the moisture contents and temperatures of the three soil layers [Eq. (6)]. The water contents and temperatures of the three soil layers affect the N_2O emissions to different degrees. Therefore, we believe that the soil N_2O emissions are due to the combined effect of the moisture content and temperature of the 0–40 cm soil layer. It is not adequate to fit the three treatments with one regression equation (R^2 , 0.51 in 2019). When multivariate nonlinear fitting was applied to the three treatments, an R^2 value above 0.60 was obtained (Fig. 4). The results show that the N_2O emissions of the RU treatment are significantly higher than those of the BRU and CK treatments (Fig. 3), indicating that the change of the soil environment (two or more variables) significantly affects the response of the soil N_2O emissions to the moisture content and temperature.

Figure 4: N₂O emission observations and MNF-DR analysis during the growing period of maize; (A), (B), (C), and (D) show the MNF-DR analysis for RU + BRU + CK, RU, BRU, and CK treatment in 2019; (E), (F), (G), and (H) show the MNF-DR analysis for RU + BRU + CK, RU, BRU, and CK treatment in 2020.

When the soil environment was changed due to fertilization and biochar amendment, the accuracy of multivariate nonlinear fitting significantly decreased based on dimensionality reduction analysis (MNF-DR). This is due to the changes in soil biochemical reaction rate caused by fertilization or biochar amendment (Bruun et al. 2014; Saarnio et al. 2013) and changes in the response of the N_2O emissions to the moisture content and temperature. After the biochar application, the surface soil moisture content and temperature were higher than those of the RU and CK treatments, but the N_2O emissions were significantly lower than those of the RU treatment (Figs 1–3). Therefore, the N_2O emissions differently respond to changes in the water content and temperature under different conditions (fertilization, biochar amendment). Because the same volume was used for fertilization and biochar application in this experiment, studies should be carried out in the future to determine if the effects of the soil moisture and temperature on the N_2O emissions change depending on the amount of applied fertilizer or biochar.

 The soil moisture content and temperature data for the 0–40 cm soil layer were synthesized using MNF-DR analysis. The predictions are more stable than those based on the surface soil moisture content and temperature only. However, with MNF-DR analysis, only the N_2O emissions at the farmland scale can be predicted from the perspective of statistics. The N_2O emission trends depending on changes in the water content or temperature at the microscale

cannot be explained. Therefore, a N₂O emission model based on theoretical analysis should be proposed.

Studies have also suggested that the soil water content (or temperature) at 5 cm can be identified as the single trigger for N₂O emission (Lognoul et al. 2019). We acknowledge that most N₂O emissions originate from biochemical reactions in the topsoil, but some N₂O emissions still arise from deep soil. Deep soils also produce N₂O via nitrification and denitrification. The N₂O in the deep soil will diffuse to the surface, and the rate of diffusion depends on the soil moisture content and the N₂O concentration gradient (Shcherbak & Robertson 2019). Furthermore, storage fluxes occurred in the deep soil. Lognoul et al. (2019) assumed that storage fluxes were negligible. However, the soil moisture content and temperature in the 0-40 cm soil layer were significantly correlated with N₂O emissions; therefore, it is not accurate to identify physical factors from topsoil as the single trigger for N₂O emissions.

The correlation between the WFPS and N₂O emissions

The emission rate of N_2O increases with increasing soil moisture content based on this field experiment, while the increase in the N_2O emissions slows down after the WFPS exceeds 80%. Previous studies showed that the N_2O emissions increase until the WFPS reaches ~75% (Lan et al. 2013). However, the N_2O emissions rate decreases when the soil water content exceeds a WFPS of 75% (Prado et al. 2006) because the anaerobic environment accelerates the reduction of N_2O to N_2 in the soil (Wu et al. 2013). The soil represents a N_2O sink when the WFPS is below 25% (Flechard et al. 2007; Goldberg & Gebauer 2008; Wu et al. 2013).

Thus, we assume that the rate of N_2O emissions varies with the WFPS. The rate of N_2O emissions is low at a low WFPS. The N_2O emission rate then sharply increases with increasing WFPS. When the WFPS exceeds a particular value, the increase in the soil N_2O emissions slows down despite the continuous increase in the WFPS. The WFPS ranges from 0 to 1; the emitted nitrous oxide responds to a variation in the WFPS.

The soil was amended with biochar at a depth above 20 cm and we fitted the model for the 20 cm soil layer to reduce the influence of soil water evaporation. For each treatment, the N₂O emissions were plotted against the WFPS (Fig. 5). These values were fitted using Eq. (9), yielding a strong positive correlation (Table 4). Thus, Eq. (8) explains the N₂O emissions well. The N₂O emissions significantly increase with increasing WFPS after fertilization (Fig. 6). However, this increase slows down remarkably after biochar application (Fig. 6). To quantify the effect of biochar on the N₂O emissions, the SC [Eq. (9)] was determined, which has been applied in many previous studies (Engel et al. 2017; Joby & Mahanthesh 2019; Tan et al. 2017). The SC of RU versus CK (SC_U) is 19.18 and 20.83 in 2019, respectively. and The SC of BRU versus CK (SC_B) is 1.02 in 2019 and 14.74 in 2020, respectively. Biochar significantly reduces the sensitivity of the N₂O emissions to the soil water content, which efficiently inhibits the N loss.

Figure 5: Observed and simulated N₂O emissions during the growth period of maize; (A), (B), and (C) show the observations for RU, BRU, and CK treatment in 2019; (D), (E), and (F) show the observations for RU, BRU, and CK treatment in 2020.

Table 4: Coefficients, determinative factor, and F value of Eq. (4).

Discussion

N₂O is an intermediate product that forms during both denitrification and nitrification (Dobbie & Smith 2001). Soil moisture is the most critical factor governing N₂O and NO when mineral N sources in soil are limited (Prado et al. 2006). N₂O emissions increase until the WFPS reaches ~72% (Schmidt et al. 2000), while other studies reported a threshold reaching up to 90% (Dobbie & Smith 2001). The positive correlation coefficient between the N₂O emissions and WFPS obtained in our study implies that an increase in the soil water content promotes the soil N₂O emissions (Table 1). The soil water content indirectly affects the soil N₂O emissions because the volumetric gas content affected by the WFPS is a vital driver of both nitrification and denitrification (Clough et al. 2017). Denitrification mainly occurs above a WFPS of 60%-70%, whereas nitrification occurs at a WFPS of 35% and 60% (Bateman & Baggs 2005). Most N₂O originates from nitrification when the WFPS is below 60%, while an increased conversion from N₂O to N₂ occurs at higher soil water contents (Wu et al. 2013). Thus, the emission flux of the soil N₂O decreases when denitrification is dominating, although the cumulative N₂O emissions continue to increase (Figs 5–6). This conclusion agrees with the results of other studies in which a nonlinear N₂O emission response to N fertilizer addition was reported (Clairep 2005; Prado et al. 2006; Xue et al. 2012).

Figure 6: Determinants of soil N₂O emissions.

The soil N availability may have a significant impact on the N_2O emissions. The N fertilization, a direct measure of the increase in the soil N availability, promotes the N_2O emissions compared with the unfertilized control (Lei et al. 2005).

Biochar application leads to a significant increase in the soil water content in the topsoil (0–20 cm) relative to the unamended biochar treatments (Fig. 1). Many previous studies were carried out to improve the soil water holding capacity to enhance the water use efficiency in agricultural production (Basso et al. 2013; Oki 2006). Amendment with biochar significantly mitigates the soil N₂O emissions, particularly at a WFPS above 60% (Fig. 6). Previous work showed that the N₂O emissions from biochar-amended soil sharply reduce because the biochar decreases the N concentration available for nitrification and denitrification due to the adsorption of inorganic N (Arezoo et al. 2011; Cayuela et al. 2014; Stewart et al. 2013). Moreover, the response of the decreased N₂O emissions to temporary immobilization of available N derives from a high C:N ratio after biochar amendment (Baggs et al. 2000). The decreased N availability caused by biochar adsorption only partly explains the reduction of the N₂O emissions compared with the BRU and RU treatments. Because of the strong correlation between the WFPS and soil N₂O emissions, the amendment with biochar also mitigates the N₂O emissions by increasing the soil water content (Table 1). This result is consistent with the finding that the anaerobic

environment caused by a high soil water content increases the abundance of denitrifying bacteria and thus catalytically reduces N₂O to N₂ (Wu et al. 2013). Other studies showed that biochar significantly increases the soil N₂O emissions under increased N availability due to fertilization (Clough et al. 2010; Rajkovich et al. 2012). It is possible that incomplete nitrification occurs after amendment with biochar (Clough et al. 2017). Biochar does increase surface soil temperatures, which increases N₂O emissions. The effect of temperature on N₂O resulted from the promotion of the microbial activity. High temperatures could also enhance the denitrifying bacteria activity, promoting the conversion of N₂O to N₂. Nevertheless, biochar only increases the surface soil temperature (0-10 cm). The model shows that N₂O emission was affected by soil moisture (or temperature) above a 40 cm depth. Therefore, a small temperature increase does not have a significant impact on N₂O emissions.

Biochar enhances soil nitrogen and water immobilization, promotes crop photosynthesis, and increases crop yield (Macdonald et al. 2014; Zhao et al. 2014). Compared with straw returns, biochar can improve soil physical and chemical properties, enhance the effectiveness of water and fertilizers, and reduce chemical fertilizer pollution. However, expensive straw carbonization equipment restricts the market development of biochar and its implication, and the production rate of carbonization equipment does not reach the standard of large-scale production (Zhang et al. 2019). Therefore, producing biochar at a low cost and at a large scale is a challenge in developing agricultural ecology.

Conclusions

Our findings demonstrate that not only surface soil moisture and temperature (0–20 cm) affect the N_2O emissions but also deep soil moisture and temperature (20–80 cm). We performed MNF-DR analyses on the soil water contents and temperatures of three soil layers (10, 20, and 40 cm) to more accurately estimate the N_2O emissions. The soil moisture content and temperature data for the 0–40 cm soil layer could be synthesized using MNF-DR analysis, and the prediction results are more stable than those that are only based on the surface soil moisture content and temperature. However, changes in the soil environment, such as fertilization and biochar amendment, significantly influence the response of the N_2O emissions to the moisture content and temperature, thus reducing the prediction accuracy. Therefore, in the future, it should be determined whether MNF-DR analysis can indicate the effects of soil moisture and temperature on N_2O for different levels of fertilization or biochar application.

Our study demonstrates that the N_2O emissions exponentially increase with increasing WFPS. The exponential phase is a quadratic function with a negative quadratic coefficient. Thus, the emission rate of N_2O initially increases and then decreases. Equation (6) accurately predicts the soil N_2O emissions after urea application in the farmland; the urea application significantly increases the soil N_2O emissions.

The biochar addition does not only improve the topsoil (0-20 cm) water content and temperature but also reduces the N_2O emissions after urea application. The results show that the model [Eq. (4)] also reflects the dynamics of the N_2O emissions depending on the variation in

- 475 the soil water content after biochar amendment. The trend of the N₂O emissions is the same as
- 476 that based on urea application, that is, the emissions initially increase and then decrease. Thus,
- 477 the response of N₂O to the soil moisture and temperature after fertilization or biochar application
- 478 is the same, with a SC_B of 1.02 and SC_U value of 19.18 in 2019 and 14.74 and 20.83 in 2020.
- 479 The biochar amendment significantly reduces the effect of urea on the N₂O emissions. Our
- results can be used as references in research on the trends of N₂O emissions in farmland.

References

- Alfred O, Mulder J, Hale SE, Nurida NL, Cornelissen G, and Paz-Ferreiro J. 2018. The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. *Plos One* 13:e0196794-.
- Alvarez G, Shahzad T, Andanson L, Bahn M, and Fontaine S. 2018. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming. *Global Change Biology* 24.
- Arezoo T, Toosi., Clough TJ, Condron LM, Sherlock RR, Anderson CR, and Craigie RA. 2011.

 Biochar Incorporation into Pasture Soil Suppresses in situ Nitrous Oxide Emissions from Ruminant Urine Patches. *Journal of Environmental Quality* 40.
- Baggs EM, Watson CA, and Rees RM. 2000. The fate of nitrogen from incorporated cover crop and green manure residues. *Nutrient Cycling in Agroecosystems* 56:153-163.
- Basso AS, Miguez FE, Laird DA, Horton R, and Westgate M. 2013. Assessing potential of biochar for increasing water-holding capacity of sandy soils. *Global Change Biology Bioenergy* 5:132-143.
- Bateman EJ, and Baggs EM. 2005. Contributions of nitrification and denitrification to N 2 O emissions from soils at different water-filled pore space. *Biology and Fertility of Soils* 41.
- Bruun EW, Petersen CT, Hansen E, Holm JK, and Hauggaard Nielsen H. 2014. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. *Soil Use & Management* 30:109-118.
- Case SDC, Niall PM, David SR, and Jeanette W. 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil The role of soil aeration. *Soil Biology and Biochemistry* 51:0-0.
- Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, and Sánchez-Monedero MA. 2014. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. *Agriculture Ecosystems & Environment* 191:5-16.
- Clairep m. 2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. *Global Change Biology* 11:1712-1719.
- Clough TJ, Bertram JE, Ray JL, Condron LM, and Wells NS. 2010. Unweathered Wood Biochar
 Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil. Soil
 Science Society of America Journal 74.
 - Clough TJ, Lanigan GJ, Klein CAMD, Samad MS, and Richards KG. 2017. Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. *Scientific Reports* 7:Article number: 2185.
- Dane, and Jacob H. 2002. [SSSA Book Series] Methods of Soil Analysis: Part 4 Physical
 Methods || 2.1 Bulk Density and Linear Extensibility. Soil Science Society of America
 Journal.

- Dobbie KE, and Smith KA. 2001. The effects of temperature, water filled pore space and land use on N2O emissions from an imperfectly drained gleysol. *European Journal of Soil Science* 52:667-673.
- Engel M, Notarnicola C, Endrizzi S, and Bertoldi G. 2017. Snow model sensitivity analysis to understand spatial and temporal snow dynamics in a high - elevation catchment. *Hydrological Processes* 31.
 - Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, Amstel AV, Dasselaar PV, Soussana JF, Jones M, and Cliftonbrown J. 2007. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. *Agriculture, Ecosystems & Environment* 121:135-152.
 - Ghulam H, Diedrich S, Gerald M, Christoph M, and Claudia I. 2017. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. *Agriculture, Ecosystems & Environment*.
 - Goldberg SD, and Gebauer G. 2008. Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink. *Global Change Biology* 15:850-860.
 - Granato D, Santos JS, Escher GB, Ferreira BL, and Maggio RM. 2018. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. *Trends in Food Science & Technology* 72:83-90.
 - Gul S, Whalen JK, Thomas BW, Sachdeva V, and Deng H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. *Agriculture Ecosystems & Environment* 206:46-59.
 - He Z, Mao J, and Han X. 2018. Non-parametric estimation of particle size distribution from spectral extinction data with PCA approach. *Powder Technology* 325:510-518.
 - Henrique NE, Maia CMBdF, Carvalho MTdM, and Madari BEk. 2015. Biochar: pyrogenic carbon for agricultural use-a critical review. *Revista Brasileira De Ciência Do Solo* 39:321-344.
 - Imaizumi M, and Kato K. 2018. PCA-based estimation for functional linear regression with functional responses. *Journal of Multivariate Analysis* 163:15-36.
 - Joby M, and Mahanthesh B. 2019. Sensitivity analysis of radiative heat transfer in Casson and nano fluids under diffusion-thermo and heat absorption effects. *European Physical Journal Plus* 134.
 - Kettunen R, Sanna S, Pertti JM, and Jouko S. 2006. Increase of N2O Fluxes in Agricultural Peat and Sandy Soil under Elevated CO2Concentration: Concomitant Changes in Soil Moisture, Groundwater Table and Biomass Production of Phleum. *Nutrient Cycling in Agroecosystems* 74:175-189.
 - Kravchenko AN, Toosi ER, Guber AK, Ostrom NE, and Robertson GP. 2017. Hotspots of soil N2O emission enhanced through water absorption by plant residue. *Nature Geoscience* 10.
 - Lan T, Han Y, Roelcke M, Nieder R, and Cai Z. 2013. Processes leading to N 2 O and NO emissions from two different Chinese soils under different soil moisture contents. *Plant and Soil* 371.
 - Lei M, Ding W, and Cai Z. 2005. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. *Soil Biol Biochem* 37:2037-2045.
 - Lognoul M, Debacq A, Ligne AD, Dumont B, Manise T, Bodson B, Heinesch B, and Aubinet M. 2019. N 2 O flux short-term response to temperature and topsoil disturbance in a fertilized crop: An eddy covariance campaign. *Agricultural and Forest Meteorology* 271.
- Macdonald LM, Farrell M, Zwieten LV, and Krull ES. 2014. Plant growth responses to biochar addition: an Australian soils perspective. *Biology & Fertility of Soils* 50:1035-1045.

- Major, Julie, Rondon, Marco, Molina, Diego, Riha, J S, Lehmann, and Johannes. 2012. Nutrient
 Leaching in a Colombian Savanna Oxisol Amended with Biochar. *Journal of Environmental Quality* 41.
- Nanda S, Dalai AK, Berruti F, and Kozinski JA. 2016. Biochar as an Exceptional Bioresource for
 Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials.
 Waste & Biomass Valorization 7:201-235.
- Oki T. 2006. Global Hydrological Cycles and World Water Resources. *Science* 313:1068-1072. Phillips RL, Mcmillan A, Palmada T, Dando J, and Giltrap D. 2015. Temperature effects on N2O
- Phillips RL, Mcmillan A, Palmada T, Dando J, and Giltrap D. 2015. Temperature effects on N2
 and N2 denitrification end-products for a New Zealand pasture soil. New Zealand
 Journal of Agricultural Research 58:89-95.
 - Prado AD, Merino P, Estavillo JM, Pinto M, and González-Murua C. 2006. N2O and NO emissions from different N sources and under a range of soil water contents. *Nutrient Cycling in Agroecosystems* 74:229-243.
 - Qi D, Hui D, Wang J, Iwuozo S, Yu CL, Jima T, Smart D, Reddy C, Dennis S, and Hu S. 2015. Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee. *Plos One* 10:e0125406-.
 - Rajkovich S, Akio E, Kelly H, Charles H, Andrew RZ, and Johannes L. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology & Fertility of Soils 48:271-284.
 - Ruser R, Flessa H, Russow R, Schmidt G, Buegger F, and Munch JC. 2006. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. *Soil Biology & Biochemistry* 38:263-274.
 - Saarnio S, Heimonen K, and Kettunen R. 2013. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. *Soil Biology & Biochemistry* 58:99-106.
 - Schmidt U, Thöni H, and Kaupenjohann M. 2000. Using a boundary line approach to analyze N2O flux data from agricultural soils. *Nutrient Cycling in Agroecosystems* 57.
 - Sébastien FL, Suzanne EA, Mario ACC, and Dutilleul P. 2017. N 2 O and CO 2 dynamics in a pasture soil across the frozen period 1. *Canadian Journal of Soil Science* 97.
 - Shcherbak I, and Robertson GP. 2019. Nitrous Oxide (N2O) Emissions from Subsurface Soils of Agricultural Ecosystems. *Ecosystems*.
 - Shu KL, Suter H, Mosier AR, and Chen D. 2017. Using nitrification inhibitors to mitigate agricultural N2O emission: a double edged sword? *Global Change Biology* 23:485.
 - Singh BP, Hatton BJ, Singh B, Cowie AL, and Kathuria A. 2010. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. *Jenvironqual* 39:1224.
 - Stacklies W, Redestig H, Scholz M, Walther D, and Selbig J. 2007. pcaMethods a bioconductor package providing PCA methods for incomplete data. *Bioinformatics* 23:1164-1167.
 - Stewart CE, Zheng J, Botte J, and Cotrufo MF. 2013. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. *Global Change Biology Bioenergy* 5:153-164.
 - Tan J, Cui Y, and Luo Y. 2017. Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. *European Journal of Agronomy* 91:54-62.
- Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, and Richardson DJ. 2012. Biological
 sources and sinks of nitrous oxide and strategies to mitigate emissions. *Philosophical Transactions of the Royal Society B Biological Sciences* 367:1157-1168.
- Weerden TJVD, Kelliher FM, and Klein CAMD. 2012. Influence of pore size distribution and soil water content on nitrous oxide emissions. *Soil Research* 50.

627

628

629

630

631

632

633

634

635

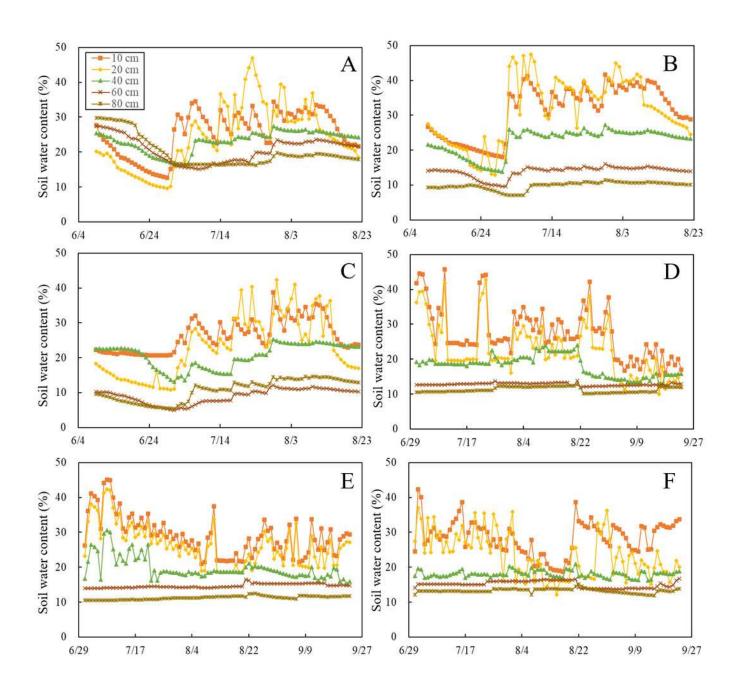
636

637

638

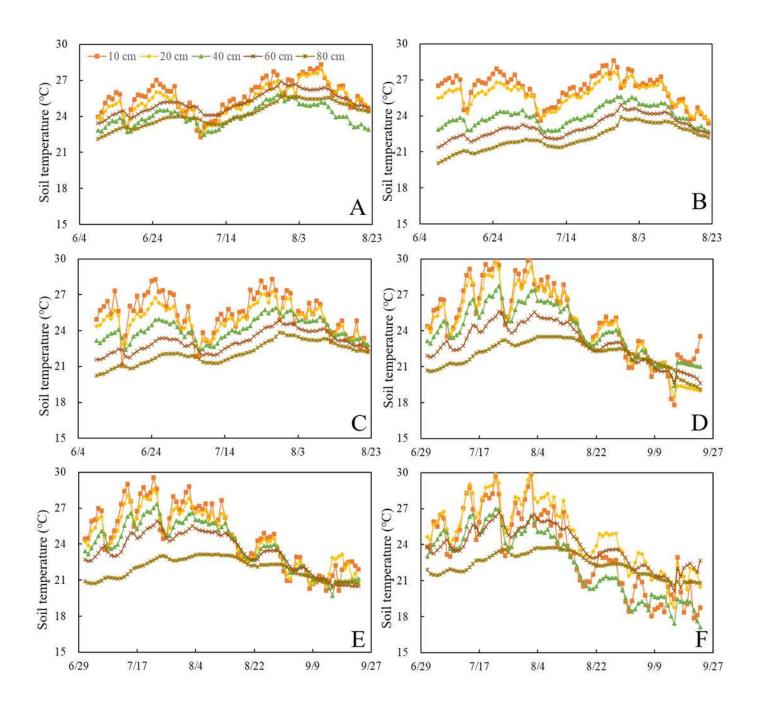
639

640

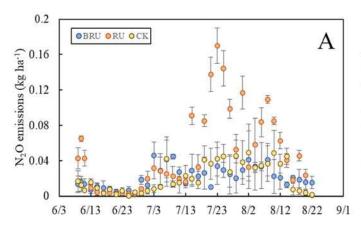

641 642

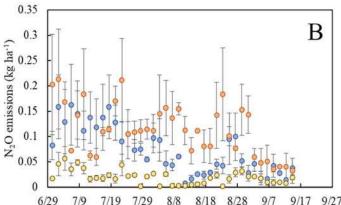
643

- 620 Weitz AM, Linder E, Frolking S, Crill PM, and Keller M, 2001, N2O emissions from humid 621 tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil 622 Biology & Biochemistry 33:0-1093.
- 623 Wu D, Dong W, Oenema O, Wang Y, Trebs I, and Hu C. 2013. N2O consumption by low-624 nitrogen soil and its regulation by water and oxygen. Soil Biology & Biochemistry 60:165-625
 - Xue YD, Yang PL, Luo YP, Li YK, Ren SM, Su YP, and Niu YT. 2012. Characteristics and Driven Factors of Nitrous Oxide and Carbon Dioxide Emissions in Soil Irrigated with Treated Wastewater. Journal of Integrative Agriculture 11:1354-1364.
 - Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, and Crowley D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment 139.
 - Zhang W, Cheng W, Meng J, Jin L, Wei G, and ZHao H. 2019. Study of Straw-Biochar on Utilization Potential, Industry Model and Developing Strategy in Northeast China. Scientia Agricultura Sinica 52:2406-2424.
 - Zhao X, Wang J, Wang S, and Xing G. 2014. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant & Soil 378:279-294.
 - Zhao Z, Han X, Shi Y, Wu W, and Meng F. 2016. Effect of nitrification and urease inhibitor on carbon sequestration and greenhouse gas emissions in winter wheat and summer maize rotation system in North China.
 - Zou J, Huang Y, Lu Y, Zheng X, and Wang Y. 2005. Direct emission factor for N2O from ricewinter wheat rotation systems in southeast China. Atmospheric Environment 39:4755-4765.

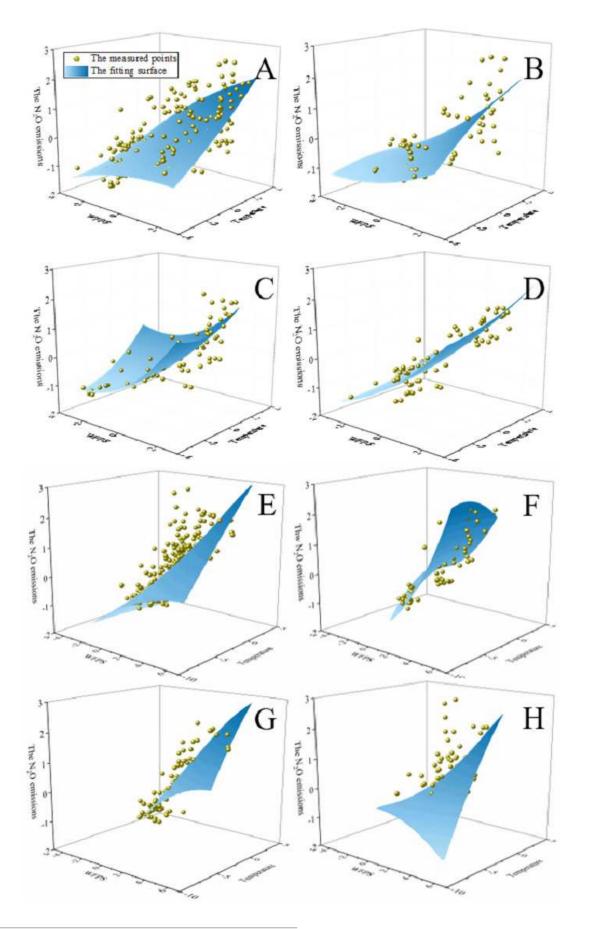


Variation in the soil water content above a depth of 80 cm depth in the maize growth stage

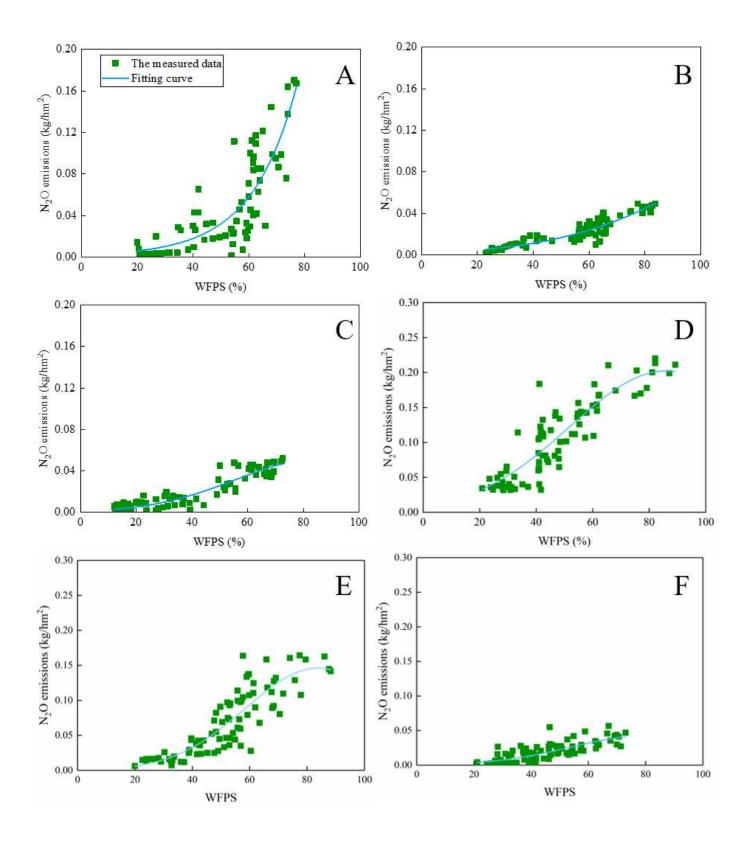


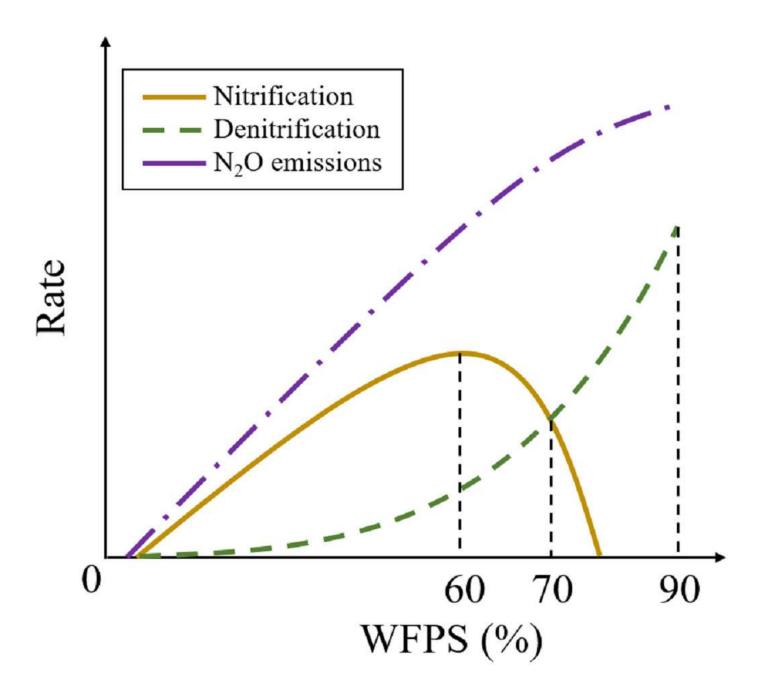

Variation in the soil temperature above a depth of 80 cm in the maize growth stage

 N_2O emission flux in the maize growth stage



 ${\rm N_2O}$ emission observations and MNF-DR analysis during the growing period of maize





Observed and simulated N_2O emissions during the growth period of maize

Determinants of soil N₂O emissions

Table 1(on next page)

Correlation among the soil water content, temperature, and $N_2\text{O}$ emissions

Table 1 Correlation among the soil water content, temperature, and N_2O emissions.

			wien umeng me	Soli Water Collecti	.,г	rize timberens.		
		Soil water content in different depth						
		10 cm	20 cm	40 cm	60 cm	80 cm		
	RU	0.564**	0.761**	0.465**	0.097	-0.310**		
2019	BRU	0.767**	0.883**	0.704**	0.427**	0.008		
	CK	0.834**	0.906**	0.701**	0.557**	0.341**		
	RU	0.886**	0.881**	0.423**	0.011	-0.120**		
2020	BRU	0.783**	0.805**	0.641**	-0.514**	-0.747**		
	CK	0.389**	0.775**	0.300**	-0.092	-0.083		
		Soil temperature in different depth						
		10 cm	20 cm	40 cm	60 cm	80 cm		
	RU	0.377**	0.437**	0.502**	0.494**	0.438**		
2019	BRU	0.667**	0.751**	0.309**	0.451**	0.478**		
	CK	0.087	0.274*	0.529**	0.666**	0.670**		
	RU	0.496**	0.551**	0.501**	0.494**	0.380**		
2020	BRU	0.568**	0.546**	0.512**	0.403**	-0.075		
	CK	0.297**	0.215*	0.327**	0.100	-0.076		

^{*, **} Significant at P < 0.05, 0.01 levels, respectively (least significant difference test)

Table 2(on next page)

Coefficient of PC1

1 2 3

4

Table 2 Coefficients of PC1

	a	b	c	d	e	f
2019	0.610	0.537	0.583	0.596	0.607	0.526
2020	0.622	0.615	0.486	0.585	0.573	0.573

5 The coefficients above represents using MNF-DR analyzed the total observed points (RU+BRU+CK).

6

7

Table 3(on next page)

Coefficient of multiple nonlinear regression

Table 3 Coefficients of multiple nonlinear regression.

	Treatment	z_0	k1	k2	k3	k4	k5	\mathbb{R}^2	F
	Total	0.023	0.276	0.301	-0.030	0.014	0.049	0.51	39.37*
2019	RU	-0.046	0.433	0.196	0.039	-0.022	0.058	0.61	19.91*
	BRU	-0.309	0.480	0.203	0.093	0.061	-0.044	0.73	33.34*
	CK	-0.186	0.529	0.146	0.054	0.017	0.015	0.84	65.22*
	Total	0.008	0.482	0.109	-0.016	-0.002	0.039	0.60	64.26*
2020	RU	0.022	0.492	0.056	0.065	-0.031	-0.054	0.80	55.30*
	BRU	0.098	0.490	0.208	-0.003	-0.015	0.045	0.75	43.45*
	CK	0.056	0.398	0.097	-0.030	-0.018	0.098	0.31	7.26

^{*}, ** Significant at P < 0.05, 0.01levels, respectively (least significant difference test); 'Total' represents fitting RU and BRU and CK treatment simultaneously; 'F' represents F value at significance analysis.

56

7

Table 4(on next page)

 ${\rm N_2O}$ emission observations and MNF-DR analysis during the growing period of maize

Table 4 Coefficients, determinative factor, and F value of Eq. (9)

	Treatment	a	b	c	\mathbb{R}^2	F value
	RU	-6.436*10 ⁻⁵	0.052	-6.218	0.70	153.90**
2019	BRU	-1.266*10-4	0.053	-6.365	0.81	535.23**
	CK	5.251*10-4	0.091	-6.898	0.85	411.30**
	RU	-4.282*10-4	0.074	-4.774	0.78	587.31**
2020	BRU	-7.811*10-4	0.131	-7.411	0.74	320.72**
	CK	-6.791*10-4	0.110	-7.594	0.59	165.93**

*, ** Significant at P < 0.05, 0.01 levels, respectively (least significant difference test)

/

6