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Background. Soil N,O emissions cause nonpoint-source pollution in farmland. The rates of

soil biochemical reactions change depending on the moisture and temperature and thus
affect the N,O emissions. However, it remains unclear whether soil improvement measures

change the response of N,O emissions to soil moisture. Methods. To quantify the driving
factors of N,O emissions from farmland and explore the effects of different soil
improvement measures on the N,O emissions, three treatments (fertilization, fertilization

+ biochar, control) were implemented in the field experiments during 2019-2020. Results.
The results of this study show that N,O emissions strongly depend on the deep soil

moisture and temperature (20-80 cm), in addition to the surface soil moisture and
temperature (0-20 cm). However, changes in the soil environment due to fertilization and
biochar application significantly affect the N,O emissions despite the strong correlation

between the soil moisture and N,O emissions. Therefore, we established a model of the
correlation between the soil moisture and N,O emissions based on theoretical analysis. The
results show that the N,O emissions exponentially increase with increasing soil moisture
regardless of fertilization or biochar application . Furthermore, the N,O emissions initially

increase and then decrease with nitrification and denitrification , respectively. Urea
significantly increases the N,O emissions in farmland. The biochar application significantly

mitigates the N,O emissions induced by urea based on the sensitivity coefficient (SC; of
1.02 and 14.74; SC, of 19.18 and 20.83), even if the soil moisture in the topsoil (0-20 cm)

increases.
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Abstract

Background. Soil N,O emissions cause nonpoint-source pollution in farmland. The rates of soil
biochemical reactions change depending on the moisture and temperature and thus affect the
N,O emissions. However, it remains unclear whether soil improvement measures change the
response of N,O emissions to soil moisture,

Methods. To quantify the driving factors of N,O emissions from farmland and explore the
effects of different soil improvement measures on the N,O emissions, three treatments
(fertilization, fertilization + biochar, control) were implemented in the field experiments,
Results. The results of this study show that N,O emissions strongly depend on the deep soil
moisture and temperature (20—80 cm), in addition to the surface soil moisture and temperature
(0-20 cm). However, changes in the soil environment due to fertilization and biochar application
significantly affect the N,O emissions despite the strong correlation between the soil moisture
and N,O emissions. Therefore, we established a model of the correlation between the soil
moisture and N,O emissions based on theoretical analysis. The results show that the N,O
emissions exponentially increase with increasing soil moisture regardless of fertilization or
biochar application, Furthermore, the N,O emissions initially increase and then decrease with
nitrification and denitrification, respectively. Urea significantly increases the N,O emissions in
farmland. The biochar application significantly mitigates the N,O emissions induced by urea
based on the sensitivity coefficient (SCg of 1.02 and 14.74; SCy of 19.18 and 20.83), even if the
soil moisture in the topsoil (0—20 cm) increases.

Keywords: Biochar; N,O emissions; Soil moisture; Soil temperature; Fertilization; sensitivity
coefficient; multivariate nonlinear fitting; Exponential fitting.

Introduction
Soil N,O emissions, representing a significant N loss, are inevitable products of chemical
fertilizer application (Zou et al. 2005). Based on statistics, greenhouse gas emissions from
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agricultural sources account for 11% of the global greenhouse gas emissions and thus exceed the
2020 emission target (Zhao et al. 2016). Soil N,O emissions do not only depend on the soil
characteristics (e.g., soil structure, available carbon sources, pH, and microbial activity) but also
on the environmental conditions (e.g., temperature and precipitation). Nitrifying and denitrifying
bacteria, affecting N20 emissions by nitrification and denitrification, are aerobic and anaerobic
soil microorganisms, respectively (Case et al. 2012; Gul et al. 2015). Soil aeration is restricted by
soil moisture; therefore, when the soil moisture content changes, the soil microbial activity
(mitrifying bacteria,-denitrifying bacteria) and N,O emissions also change. Denitrifying bacteria
mainly produce N,O emissions from farmland during precipitation. Under proper soil aeration,
N,O emissions are primarily produced by nitrifying bacteria (Shu et al. 2017; Wu et al. 2013).
The soil temperature, another critical factor, directly influences the activities of the nitrifying and
denitrifying microorganisms and urea hydrolysis (Alvarez et al. 2018). Soil N,O emissions
rapidly increase with increasing soil temperature (Sébastien et al. 2017).

At present, researchers have established the relationships among the soil temperature,
moisture, and N,O emissions to quantify the N,O emissions on the farmland scale. The
temperature response function (Q10) of N,O is greater than that of N, under anaerobic conditions
(Phillips et al. 2015). The soil temperature and water-filled pore space (WFPS) regulate the soil
N,O emissions. The soil N,O emissions and mean water content of the surface soil during the
dry period are positively correlated (Saarnio et al. 2013). Weerden et al. (Weerden et al. 2012)
also reported a pronounced linear correlation between the N,O emissions and WFPS. A similar
conclusion was drawn by (Wu et al. 2013). The relationship between the N,O emissions and soil
moisture has been described using an exponential first-order kinetics model in many studies
(Prado et al. 2006; Weitz et al. 2001; Xue et al. 2012). However, it is difficult to clarify the
response of the N,O emissions to the increased WFPS using the above-mentioned models (linear
correlation or exponential model). The N,O emissions increase and reach a plateau when the
WEFPS is ~60%—70%. At the same time, the denitrification was maximal. When WFPS was
>75%, a more anaerobic environment, the N,O emissions decrease (Prado et al. 2006). This
empirical model cannot predict the N,O emissions at soil moisture concentration above 75%
because the rates of the biochemical reactions (e.g., nitrification, denitrification, immobilization,
and mineralization) are related to the variation in the soil moisture. Meanwhile, most studies did
not consider the effect of the substrate on this process. In other words, it remains unclear if the
response of the soil N,O emissions to moisture and temperature would change with a change of
the soil substrate characteristics such as the soil carbon and nitrogen concentrations. Thus, we
still need to characterize the effect of exogenous organic matter improvement on the response
(between N,O emissions, soil moisture, and temperature) by establishing model.

The application of nitrogen fertilizer to the soil notably promotes N,O emissions because it
increases the substrate volume available for nitrification and denitrification. Exogenous carbon
provides energy for microbial proliferation and enzyme secretion (Alfred et al. 2018; Henrique et
al. 2015). The mixing of exogenous carbon with the soil significantly increases the soil C/N ratio
and promotes the immobilization of inorganic nitrogen (Baggs et al. 2000). Studies have shown
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that exogenous carbon improvement indeed reduces soil N,O emissions effectively (Bruun et al.
2014; Case et al. 2012; Kettunen et al. 2006; Ruser et al. 2006; Singh et al. 2010). However, it
remains unclear whether fertilization or the application of exogenous carbon changes the
response of N,O emissions to soil moisture. Therefore, it is important to study the effect of soil
improvement (fertilization or addition of exogenous carbon) on the soil N,O emission process to
prevent farmland gas pollution and facilitate sustainable agricultural development.

Biochar, a form of exogenous carbon, is produced by the pyrolysis of straw and branches.
The amendment with biochar remarkably affects the physical soil properties (Nanda et al. 2016)
as well as biochemical reactions (Gul et al. 2015; Henrique et al. 2015) and thus affects C and N
cycles in soil. Biochar amendment of soil has many physical effects; for example, it improves the
water holding capacity of the soil (Major et al. 2012), nitrate retention (Ghulam et al. 2017,
Zhang et al. 2010), and soil aeration (Alfred et al. 2018). Biochar amendment significantly
changes the nitrification and denitrification processes. Because the improvement of the water
holding capacity of the soil due to biochar application is the primary factor inhibiting N,O
emissions (Basso et al. 2013). Thus, biochar application is a C resource and it is important to
explore the effect of exogenous carbon on the N,O emissions.

The aim of this work was to explore the effects of different soil improvement measures on
the N,O emissions. The central hypothesis was that the response of N,O to soil moisture and
temperature is independent of fertilization or the application of biochar. Thus, we conducted
field experiments for three months to 1) explore the response of soil N,O emissions to soil
moisture and temperature under different conditions (no fertilization, fertilization, fertilization +
biochar and 2) investigate the effects of fertilization and application of biochar on the
relationship among soil moisture, temperature, and N,O emissions.

Materials & Methods
Experimental site

The experiments were conducted between 2019-2020 at the experimental station of the
China Agricultural University, China (latitude: 39°42'07.8"N, longitude: 116°41'48.0"E, altitude:
24 m) in loam soil (9.6% clay, 52.6% silt, and 37.8% sand). The mean temperature was 26.6 ‘C
and the precipitation was 358 mm (April to September) in 2019. The mean temperature was 28.4
‘C and the precipitation was 377 mm (July to September) in 2020. The experimental soil had a
soil bulk density of 1.38 g cm™ and the field capacity of the 0-20 cm soil layer was 22.87 %
according to the method from Dane and Jacob (Dane & Jacob 2002),

Biochar amendments

Biochar was produced by pyrolysis (450 ‘C) of maize straw and used for the field
experiment. The biochar had a pH of 8.2, total C content of 657 g kg-!, total N content of 9 g kg-
I, available K of 16 g kg-!, available P of 0.8 g kg-!, and density of 0.297 g cm3. The biochar was
evenly applied to the surface soil (30 t ha'!; top 20 cm of the soil) in April 2019 before sowing
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maize. The initial soil had a pH of 8.14, SOC 0f 29.71 g kg'!, SON of 2.3, NH4*-N of 6.48 mg
kg!, NO;-N of 28.00 mg kg™!, available K of 38.14 g kg'!, and available P of 1.70 g kg™

Experimental Design

The maize cultivar Zhengdan 958 is widely used in China. Maize was planted on April 10,
2019 and June 15, 2020, with a 0.5 m line spacing and 0.3 m between plants and harvested on
September 5 in 2019 and September 25 in 2020. A 1 m gap was left between adjacent plots, The
experiment was carried out in three replicates; the plot size was 30 m x 6.5 m. This experiment
included the following treatments: (1) RU: fertilization with urea, irrigation with reclaimed
water; (2) BRU: soil amendment with 30 t ha™! biochar, fertilization with urea, and irrigation
with reclaimed water; and (3) CK: irrigation with reclaimed water.

The N fertilizer (urea; 300 kg N ha') was applied as follows: 40% before sowing, 30%
during the silking stage, and 30% during the filling stage. The P (calcium superphosphate; 40 kg
P ha'') and K (potassium sulfate; 80 kg K ha!) fertilizers were applied before sowing. The total
irrigation amount for each treatment was 230 mm in 2019 and 250 mm in 2020, respectively.

The soil temperature and water content (0—80 cm) were measured with an ET-100
(Insentek, China). The WFPS was calculated with the following equation:

WFPS = ( ) 100%, (1)

Om " Po

szO " Ps

where 0,, is the gravimetric water content (mg mg!), py is the bulk soil density (mg m3), piao is
the density of water (mg m), and p; is soil particle density (mg m-3).

Gas collection and analysis

The N,O fluxes were measured at every plot using a static closed chamber method (Qi et al.
2015). The sampling chamber consisted of two parts: a soil ring without top and bottom (50 cm
in diameter and 30 cm high) and a removable cover (50 cm in diameter and 50 cm high). The soil
ring was directly inserted into the soil approximately 25 cm below the soil surface, leaving 5 cm
to the soil surface, and the removable cover was placed on top during the sampling and was
removed afterward. Two fans with diameters of 10 cm were installed on the sidewall of each
cover to create turbulent airflow when the chamber was closed. Three gas samples were obtained
during each treatment and sampling period, that is, three replicates of one treatment. The soil
temperature from 9:00 to 11:00 a.m. was close to the daily mean soil temperature, Thus, we took
gas samples during this period. The air temperature inside the static closed chamber was also
measured. Gas samples (50 ml each) were collected in four time intervals (0, 10, 20, and 30 min)
using 50 ml plastic syringes. The N,O fluxes were measured after rainfall, fertilization, or every
two days. The N,O was analyzed using a gas chromatograph (GC 7890 A, Agilent, USA) and
electron capture detector (ECD) within 48 h. The N,0O daily emissions were calculated with the
following equation:

F=pxV/AX(dc/dt) x 273/(273 +T), )
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where F is the N,O flux (g m? h'), p is the density of the gas in a standardized state (g m3), V is
the volume of the chamber (m?), A is the cross-sectional area of the chamber (m?), dc/dt is the
rate of gas accumulation (ug kg™! h'!), and T is the chamber temperature (°C).

The cumulative N,O emissions (kg ha-') were calculated by using the linear interpolation
method.

Chemical analyses

The pH values of the biochar and soil were determined with a pH electrode (Thermo Orion,
420A plus). The biochar/deionized water and soil/deionized water ratios were 1:30 w/w and 1:10
w/w, respectively, after being stirred for 1.5 min and equilibrated for 1 h. The C and N
concentrations of the biochar and soil were determined using an elemental analyzer (Flash 2000,
Thermo Fisher, USA). The available P content was determined with an ultraviolet—visible
spectrophotometer (TU-1901 UV—Vis, Beijing Puxi Instrument Company, China). The available
K content was measured with a flame photometer (FAAS; Zennit 700P, Analytik Jena AG,
Germany). The NH4"-N and NO;5™-N concentrations were measured using segmented flow
analysis (SFA; Futura, Alliance, France).

Model

N,O emissions are the result of soil biochemical reactions, and these reactions are slow.
N,O emission at a particular time may arise from the cumulative effects of water and
temperature in the previous period. Therefore, the lag effects should be considered. We assume
that the N,O emission during sampling is caused by the influence of soil moisture and
temperature in the previous 24 h. If sampling occurs at 9:00 am on July 23, the N,O flux is
affected by the soil moisture (or temperature) between 10:00 am on July 22 and 9:00 am on July
23. ET-100 can monitor a series of soil moistures and temperatures hourly. Therefore, we
established a function between N,O flux and the average of soil moisture (or temperature) in the
past 24 h. This function was created to calculate the daily soil moisture and temperature at 9:00
as the node.

A) Relationship among the soil temperature, water content, and N,O emissions

Principal component analysis is a statistical method. Based on orthogonal transformation, it
transformed a group of correlated variables into a group of linearly unrelated variables. The
transformed variables are called principal components (Stacklies et al. 2007). Through principal
component analysis, we have synthesized numerous indexes and eliminated information
overlapping of the sample (Granato et al. 2018; He et al. 2018; Imaizumi & Kato 2018). The
expression of the principal component was as follows:
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where W1 or T1 are the principal components obtained by extracting the soil water content
or temperature from the 10, 20, and 40 c¢m soil layers, respectively; W1o*, Wao", Wao™, Tio", Tao',
and Ty4," are the standardized soil water contents and temperatures corresponding to the 10, 20.
and 40 cm soil layers, respectively; and a, b, c, d, e, and f are the coefficients of the standardized
values, respectively.

Because the principal component 1 (PC1) accounts for more than 70% of the variation, only
PC1 of the soil moisture content (or temperature) was used for multivariate nonlinear fitting.
Table 1 shows that the PC1 covers the soil moisture content and temperature information of the
10, 20, and 40 cm soil layers. The moisture content and temperature of the 20 cm soil layer
contribute the most to the PC1.

The parameter F*y was obtained by standardizing the daily N,O emissions and fitting with
W1 and T1:

Fr(W1T1) =z + k1 * W1+ k2 *T1+ k3 +W1% + k4 «T1> + k5« W1-T1,  (5)

where k1 (k2, k3, k4, k5) is the coefficient and z, is the constant.
Table 2 shows the value of coefficient in Eq. (5).

Equations (3) and (4) were substituted into Eq. (5) to obtain:

F* (W1*0vWz*o'W4*0rT1*0'T2*0:T4*0) =zgt+ ki aWig+ky b Wy+kycWy+ky-d-Tp
* * * \2 * * * * * *
(6)

B) Response of the N,O emissions to WFPS

We assumed that the N,O emissions exponentially increase with increasing WFPS and that
the emission rate of N,O initially increases and then decreases. Thus, dDE/ dW initially is
positive and then negative. The model of the N,O emissions can be obtained as follows:

1 dDE
=S = B AW, (7)

DE dw

where DE represents the daily emissions of N,O (kg hm2), W is the WFPS, and A and B
are constants.

To illuminate the mitigation of the N,O emissions due to biochar amendment, we adopted
the sensitivity coefficient (SC) to express the effect of the change in the soil water content on the
N,O emissions (Tan et al. 2017). The smaller SC is, the smaller is the response of the N,O
emissions to the change in the soil water content. The SC can be calculated as:

Peer] reviewing PDF | (2020:11:55062:0:2:NEW 16 Dec 2020)



PeerJ

237
238

239
240
241
242
243
244
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Y (ADE/DE,)
= Z(aw/w,)> (8)

where ADE is the variation in the N,O emissions between the BRU/RU and CK treatments,
AW is the variation in the WFPS between the BRU/RU and CK treatments, and DE, and W,
represent the N,O emissions and WFPS of treatment CK, respectively.
Equation (9), obtained by integrating Eq. (7), is a numerical model describing the increase in the
N,O emissions for different WFPS values under irrigation.

2
DE:e—aW +bW+C’ (9)

where a is A/2, b is B, and c is an integral constant.

Statistical analysis

The data were analyzed with SPSS20.0 software. Variance analysis (ANOVA) was carried
out by using the General Linear Model Univariate procedure. The analysis of significant
differences (p < 0.05) between treatments was carried out using Tukey’s range test. We also
prepared figures and fitted the models using OriginPro 2019.

Results
Changes in the soil water content and temperature

The experimental area was irrigated with 60 mm reclaimed water after sowing. The next
irrigation was conducted at the seeding stage. We-observed-a drastic fluctuation of the soil water
content above a depth of 20 cm during each treatment. Such a fluctuation did not occur in the 60
and 80 cm soil layers. The average soil water content at 10 cm was ~1.31%, -0.04%, and 3.18%
higher than that at 20 cm after the RU, BRU, and CK treatments, respectively (Fig. 1). The
average soil water content at 20 cm was ~11.56%, 9.94%, and 17.89% higher than that at 40 cm
after the RU, BRU, and CK treatments during 2019-2020, respectively. The average soil water
content in the 20 cm soil layer of the BRU treatment was ~7.10% and 8.26% higher than that of
the RU and CK treatments in 2019, respectively. And-The average soil water content (20 cm) in
BRU was ~15.69 % and 22.25 % higher than in RU and CK treatments in 2020. Thus, we can
conclude that the soil amendment with biochar significantly promotes the water holding
capacity.

Figure 1: Variation in the soil water content above a depth of 80 cm depth in the maize

growth stage; (A), (B), and (C) show the soil water content of RU, BRU, and CK in 2019; (D),
(E), and (F) show the soil water content of RU, BRU, and CK in 2020.
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The variation in the soil temperature in the maize growth stage for each treatment is shown
in Fig. 2. The temperature of the surface soil is higher than that of the deep soil. Although the
temperature difference between each treatment above was not pronounced in 2020, the
accumulative temperature difference between BRU and RU, BRU and CK were 463.24 and

455.46"Cabove 10 cm in 2019, respectively (Fig. 2). The accumulative temperature difference

between BRU and RU, BRU and CK were 539.93 and 484.22°Cin 20 c¢m, respectively. This can
be explained by the remarkable heat-absorption of biochar, which increases the surface soil
temperature.

Figure 2: Variation in the soil temperature above a depth of 80 cm in the maize growth stage;
(A), (B), and (C) show the soil water content of RU, BRU, and CK in 2019; (D), (E), and (F)
show the soil water content of RU, BRU, and CK in 2020.

Soil N,O emissions

Chemical fertilizer application significantly promotes the soil N,O emissions (Fig. 3). The
difference in the N,O emissions between these treatments is not pronounced on June 13 and July
3 in 2019. However, the emission flux of N,O is significantly higher for RU than for the BRU
and CK treatments after fertilization. The cumulative N,O emissions after the RU treatment are
3.61 kg ha'! compared with 1.72 and 1.59 kg ha™! for the BRU and CK treatments in 2019,
respectively. The increment of N,O emissions for RU treatment significantly were pronounced
compared with CK treatment in 2020. And biochar application significantly alleviated N,O
emissions for the two year. The cumulative N,O emissions were 8.96, 5.94, and 1.58 kg ha! for
RU, and BRU, and CK treatments in 2020, respectively.

Figure 3: N,O emission flux in the maize growth stage. (A) and (B) show the N,O emissions in
2019 and 2020, respectively.

Relationship among the soil water content, temperature, and N,O emissions

The soil N,O emissions significantly correlate with the soil water content at a depth above
40 cm in all treatments (Table 1). The correlation between the soil N,O emissions and soil
temperature of RU and BRU at depths above 40 cm is also pronounced. Both the soil water
content and temperature affect the soil N,O emissions. Thus, it is imperative to analyze the
coupled effect of the soil water content and temperature on the N,O emissions.

Table 1: Correlation among the soil water content, temperature, and N,O emissions.

Based on Table 1, the soil water content and temperature at a depth above 80 cm affect the
N,O emissions. The correlations between the soil water content and temperature and N,O
emissions is pronounced at depths of 0—40 cm, while it is weak in the 60—80 cm soil layer. To
simplify the calculation, we performed principal components analysis on the moisture content
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and temperature in the 10, 20, and 40 cm soil layers. Table 2 and Table 3 show the value of
coefficient in Eq. (3)-(5), respectively.
Table 2: Coefficient of PCI.

Table 3: Coefficient of multiple nonlinear regression.

Compared with a single soil layer (10, 20, or 40 cm), the soil N,O emissions can be more
accurately predicted by combining the moisture contents and temperatures of the three soil layers
[Eq. (6)]. The water contents and temperatures of the three soil layers affect the N,O emissions
to different degrees. Therefore, we believe that the soil N,O emissions are due to the combined
effect of the moisture content and temperature of the 0—40 cm soil layer. It is not adequate to fit
the three treatments with one regression equation (R?, 0.51 in 2019). When multivariate
nonlinear fitting was applied to the three treatments, an R? value above 0.60 was obtained (Fig.
4). The results show that the N,O emissions of the RU treatment are significantly higher than
those of the BRU and CK treatments (Fig. 3), indicating that the change of the soil environment
(two or more variables) significantly affects the response of the soil N,O emissions to the
moisture content and temperature.

Figure 4: N,O emission observations and MNF-DR analysis during the growing period of
maize; (A), (B), (C), and (D) show the MNF-DR analysis for RU + BRU + CK, RU, BRU, and
CK treatment in 2019; (E), (F), (G), and (H) show the MNF-DR analysis for RU + BRU + CK,

RU, BRU, and CK treatment in 2020.

When the soil environment was changed due to fertilization and biochar amendment, the
accuracy of multivariate nonlinear fitting significantly decreased based on dimensionality
reduction analysis (MNF-DR). This is due to the changes in soil biochemical reaction rate caused
by fertilization or biochar amendment (Bruun et al. 2014; Saarnio et al. 2013) and changes in the
response of the N,O emissions to the moisture content and temperature. After the biochar
application, the surface soil moisture content and temperature were higher than those of the RU
and CK treatments, but the N,O emissions were significantly lower than those of the RU
treatment (Figs 1-3). Therefore, the N,O emissions differently respond to changes in the water
content and temperature under different conditions (fertilization, biochar amendment). Because
the same volume was used for fertilization and biochar application in this experiment, studies
should be carried out in the future to determine if the effects of the soil moisture and temperature
on the N,O emissions change depending on the amount of applied fertilizer or biochar.

The soil moisture content and temperature data for the 0—40 cm soil layer were synthesized
using MNF-DR analysis. The predictions are more stable than those based on the surface soil
moisture content and temperature only. However, with MNF-DR analysis, only the N,O
emissions at the farmland scale can be predicted from the perspective of statistics. The N,O
emission trends depending on changes in the water content or temperature at the microscale
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cannot be explained. Therefore, a N,O emission model based on theoretical analysis should be
proposed.

Studies have also suggested that the soil water content (or temperature) at 5 cm can be
identified as the single trigger for N,O emission (Lognoul et al. 2019). We acknowledge that
most N,O emissions originate from biochemical reactions in the topsoil, but some N,O emissions
still arise from deep soil. Deep soils also produce N,O via nitrification and denitrification. The
N,O in the deep soil will diffuse to the surface, and the rate of diffusion depends on the soil
moisture content and the N,O concentration gradient (Shcherbak & Robertson 2019).
Furthermore, storage fluxes occurred in the deep soil. Lognoul et al. (2019) assumed that storage
fluxes were negligible. However, the soil moisture content and temperature in the 0-40 cm soil
layer were significantly correlated with N,O emissions; therefore, it is not accurate to identify
physical factors from topsoil as the single trigger for N,O emissions.

The correlation between the WFPS and N,O emissions

The emission rate of N,O increases with increasing soil moisture content based on this field
experiment, while the increase in the N,O emissions slows down after the WFPS exceeds 80%.
Previous studies showed that the N,O emissions increase until the WFPS reaches ~75% (Lan et
al. 2013). However, the N,O emissions rate decreases when the soil water content exceeds a
WEPS of 75% (Prado et al. 2006) because the anaerobic environment accelerates the reduction
of N,O to N, in the soil (Wu et al. 2013). The soil represents a N,O sink when the WFPS is
below 25% (Flechard et al. 2007; Goldberg & Gebauer 2008; Wu et al. 2013).

Thus, we assume that the rate of N,O emissions varies with the WFPS. The rate of N,O
emissions is low at a low WFPS. The N,O emission rate then sharply increases with increasing
WEFPS. When the WFPS exceeds a particular value, the increase in the soil N,O emissions slows
down despite the continuous increase in the WFPS. The WFPS ranges from 0 to 1; the emitted
nitrous oxide responds to a variation in the WFPS.

The soil was amended with biochar at a depth above 20 cm and we fitted the model for the
20 cm soil layer to reduce the influence of soil water evaporation. For each treatment, the N,O
emissions were plotted against the WFPS (Fig. 5). These values were fitted using Eq. (9),
yielding a strong positive correlation (Table 4). Thus, Eq. (8) explains the N,O emissions well.
The N,O emissions significantly increase with increasing WFPS after fertilization (Fig. 6).
However, this increase slows down remarkably after biochar application (Fig. 6). To quantify the
effect of biochar on the N,O emissions, the SC [Eq. (9)] was determined, which has been applied
in many previous studies (Engel et al. 2017; Joby & Mahanthesh 2019; Tan et al. 2017). The SC
of RU versus CK (SCyp) is 19.18 and 20.83 in 2019, respectively. and The SC of BRU versus CK
(SCp) is 1.02 in 2019 and 14.74 in 2020, respectively. Biochar significantly reduces the
sensitivity of the N,O emissions to the soil water content, which efficiently inhibits the N loss.

Figure 5: Observed and simulated N,O emissions during the growth period of maize; (A), (B),

and (C) show the observations for RU, BRU, and CK treatment in 2019; (D), (E), and (F) show
the observations for RU, BRU, and CK treatment in 2020.
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Table 4: Coefficients, determinative factor, and F value of Eq. (4).

Discussion

N,O is an intermediate product that forms during both denitrification and nitrification
(Dobbie & Smith 2001). Soil moisture is the most critical factor governing N,O and NO when
mineral N sources in soil are limited (Prado et al. 2006). N,O emissions increase until the WFPS
reaches ~72% (Schmidt et al. 2000), while other studies reported a threshold reaching up to 90%
(Dobbie & Smith 2001). The positive correlation coefficient between the N,O emissions and
WEPS obtained in our study implies that an increase in the soil water content promotes the soil
N,O emissions (Table 1). The soil water content indirectly affects the soil N,O emissions
because the volumetric gas content affected by the WFPS is a vital driver of both nitrification
and denitrification (Clough et al. 2017). Denitrification mainly occurs above a WFPS of 60%—
70%, whereas nitrification occurs at a WFPS of 35% and 60% (Bateman & Baggs 2005). Most
N,O originates from nitrification when the WFPS is below 60%, while an increased conversion
from N,O to N, occurs at higher soil water contents (Wu et al. 2013). Thus, the emission flux of
the soil N,O decreases when denitrification is dominating, although the cumulative N,O
emissions continue to increase (Figs 5—6). This conclusion agrees with the results of other
studies in which a nonlinear N,O emission response to N fertilizer addition was reported (Clairep
2005; Prado et al. 2006; Xue et al. 2012).

Figure 6: Determinants of soil N,O emissions.

The soil N availability may have a significant impact on the N,O emissions. The N
fertilization, a direct measure of the increase in the soil N availability, promotes the N,O
emissions compared with the unfertilized control (Lei et al. 2005).

Biochar application leads to a significant increase in the soil water content in the topsoil (0—
20 cm) relative to the unamended biochar treatments (Fig. 1). Many previous studies were
carried out to improve the soil water holding capacity to enhance the water use efficiency in
agricultural production (Basso et al. 2013; Oki 2006). Amendment with biochar significantly
mitigates the soil N,O emissions, particularly at a WFPS above 60% (Fig. 6). Previous work
showed that the N,O emissions from biochar-amended soil sharply reduce because the biochar
decreases the N concentration available for nitrification and denitrification due to the adsorption
of inorganic N (Arezoo et al. 2011; Cayuela et al. 2014; Stewart et al. 2013). Moreover, the
response of the decreased N,O emissions to temporary immobilization of available N derives
from a high C:N ratio after biochar amendment (Baggs et al. 2000). The decreased N availability
caused by biochar adsorption only partly explains the reduction of the N,O emissions compared
with the BRU and RU treatments. Because of the strong correlation between the WFPS and soil
N,O emissions, the amendment with biochar also mitigates the N,O emissions by increasing the
soil water content (Table 1). This result is consistent with the finding that the anaerobic
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environment caused by a high soil water content increases the abundance of denitrifying bacteria
and thus catalytically reduces N,O to N, (Wu et al. 2013). Other studies showed that biochar
significantly increases the soil N,O emissions under increased N availability due to fertilization
(Clough et al. 2010; Rajkovich et al. 2012). It is possible that incomplete nitrification occurs
after amendment with biochar (Clough et al. 2017). Biochar does increase surface soil
temperatures, which increases N,O emissions. The effect of temperature on N,O resulted from
the promotion of the microbial activity. High temperatures could also enhance the denitrifying
bacteria activity, promoting the conversion of N,O to N,. Nevertheless, biochar only increases
the surface soil temperature (0-10 cm). The model shows that N,O emission was affected by soil
moisture (or temperature) above a 40 cm depth. Therefore, a small temperature increase does not
have a significant impact on N,O emissions.

Biochar enhances soil nitrogen and water immobilization, promotes crop photosynthesis,
and increases crop yield (Macdonald et al. 2014; Zhao et al. 2014). Compared with straw returns,
biochar can improve soil physical and chemical properties, enhance the effectiveness of water
and fertilizers, and reduce chemical fertilizer pollution. However, expensive straw carbonization
equipment restricts the market development of biochar and its implication, and the production
rate of carbonization equipment does not reach the standard of large-scale production (Zhang et
al. 2019). Therefore, producing biochar at a low cost and at a large scale is a challenge in
developing agricultural ecology.

Conclusions

Our findings demonstrate that not only surface soil moisture and temperature (0—20 cm)
affect the N,O emissions but also deep soil moisture and temperature (20-80 cm). We performed
MNF-DR analyses on the soil water contents and temperatures of three soil layers (10, 20, and
40 cm) to more accurately estimate the N,O emissions. The soil moisture content and
temperature data for the 0—40 cm soil layer could be synthesized using MNF-DR analysis, and
the prediction results are more stable than those that are only based on the surface soil moisture
content and temperature. However, changes in the soil environment, such as fertilization and
biochar amendment, significantly influence the response of the N,O emissions to the moisture
content and temperature, thus reducing the prediction accuracy. Therefore, in the future, it should
be determined whether MNF-DR analysis can indicate the effects of soil moisture and
temperature on N,O for different levels of fertilization or biochar application.

Our study demonstrates that the N,O emissions exponentially increase with increasing
WEPS. The exponential phase is a quadratic function with a negative quadratic coefficient. Thus,
the emission rate of N,O initially increases and then decreases. Equation (6) accurately predicts
the soil N,O emissions after urea application in the farmland; the urea application significantly
increases the soil N,O emissions.

The biochar addition does not only improve the topsoil (0—20 cm) water content and
temperature but also reduces the N,O emissions after urea application. The results show that the
model [Eq. (4)] also reflects the dynamics of the N,O emissions depending on the variation in

Peer] reviewing PDF | (2020:11:55062:0:2:NEW 16 Dec 2020)


Obaid
Inserted Text
write conclusion directly or rephrase this sentence


PeerJ

475
476
477
478
479
480
481

482

483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

the soil water content after biochar amendment. The trend of the N,O emissions is the same as
that based on urea application, that is, the emissions initially increase and then decrease. Thus,
the response of N,O to the soil moisture and temperature after fertilization or biochar application
is the same, with a SCy of 1.02 and SCy value of 19.18 in 2019 and 14.74 and 20.83 in 2020.
The biochar amendment significantly reduces the effect of urea on the N,O emissions. Our
results can be used as references in research on the trends of N,O emissions in farmland.
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Figure 1

Variation in the soil water content above a depth of 80 cm depth in the maize growth
stage
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Figure 2

Variation in the soil temperature above a depth of 80 cm in the maize growth stage

L7
(=1
e

=

—=—10 cm ——20 cm —+—40 cm —*—60 cm —=—80 cm

L b2
e -1
T T

Soil temperature (°C)
ra

6/4 6/24 7/14 8/3 823 6/4 6/24 7/14 8/3 8/23

d

=
e
=

o 27 o 27
=]
2 f
[F]
24 24
2 5
5 2.
o
2, g
g.21 - 21
2 —
= 18 A 18
78]
15 15
30 30
= 5 DT
° °
£ 2 22
E :
5 5
o 21 291
g g
& g
218 218
15 : : : ‘ 15 : s - -
629 M7 8/4 822 9/9 927 6/29 M7 8/4 8122 9/9 927

Peer] reviewing PDF | (2020:11:55062:0:2:NEW 16 Dec 2020)



PeerJ Manuscript to be reviewed

Figure 3

N,O emission flux in the maize growth stage
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Figure 4

N,O emission observations and MNF-DR analysis during the growing period of maize
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Figure 5

Observed and simulated N,O emissions during the growth period of maize
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Figure 6

Determinants of soil N,O emissions
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Table 1l(on next page)

Correlation among the soil water content, temperature, and N,O emissions

Peer] reviewing PDF | (2020:11:55062:0:2:NEW 16 Dec 2020)



PeerJ Manuscript to be reviewed

1
2
3
4 Table 1 Correlation among the soil water content, temperature, and N,O emissions.
Soil water content in different depth
10 cm 20 cm 40 cm 60 cm 80 cm
RU  0.564** 0.761** 0.465** 0.097 -0.310%*
2019 BRU 0.767*%* 0.883** 0.704%** 0.427** 0.008
CK  0.834%* 0.906** 0.701%** 0.557** 0.341%**
RU  0.886** 0.881%** 0.423%*%* 0.011 -0.120%*
2020 BRU 0.783%*%* 0.805** 0.641%** -0.514%%* -0.747%*
CK  0.389%* 0.775%%* 0.300%** -0.092 -0.083
Soil temperature in different depth
10 cm 20 cm 40 cm 60 cm 80 cm
RU  0.377** 0.437** 0.502%** 0.494** 0.438**
2019 BRU 0.667** 0.751** 0.309** 0.451** 0.478**
CK 0.087 0.274* 0.529** 0.666** 0.670**
RU  0.496** 0.551** 0.501** 0.494** 0.380**
2020 BRU 0.568** 0.546%** 0.512%** 0.403** -0.075
CK 0.297** 0.215* 0.327** 0.100 -0.076
5 x, %= Significant at P < 0.05, 0.01levels, respectively (least significant difference test)
6
7
8
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Table 2(on next page)

Coefficient of PC1
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1

2

3

4 Table 2 Coefficients of PC1

a b c d e f

2019 0.610 0.537 0.583 0.596 0.607 0.526
2020 0.622 0.615 0.486 0.585 0.573 0.573

5  The coefficients above represents using MNF-DR analyzed the total observed points (RU+BRU-+CK).

6

7

8
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Table 3(on next page)

Coefficient of multiple nonlinear regression
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1
2
3 Table 3 Coefficients of multiple nonlinear regression.
Treatment Zo kl k2 k3 k4 k5 R? F
Total 0.023 0.276 0.301 -0.030 0.014 0.049 0.51 39.37*
2019 RU -0.046 0.433 0.196 0.039 -0.022 0.058 0.61 19.91*
BRU -0.309 0.480 0.203 0.093 0.061 -0.044 0.73  33.34*
CK -0.186 0.529 0.146 0.054 0.017 0.015 0.84 65.22*
Total 0.008 0.482 0.109 -0.016 -0.002 0.039 0.60 64.26*
2020 RU 0.022 0.492 0.056 0.065 -0.031 -0.054 0.80  55.30*
BRU 0.098 0.490 0.208 -0.003 -0.015 0.045 0.75 43.45*
CK 0.056 0.398 0.097 -0.030 -0.018 0.098 0.31 7.26
4 «, =x Significant at P < 0.05, 0.01levels, respectively (least significant difference test); ‘Total’ represents fitting RU and BRU and
5  CK treatment simultaneously; ‘F’ represents F value at significance analysis.
6
7
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Table 4(on next page)

N,O emission observations and MNF-DR analysis during the growing period of maize
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1
2
3
4
5 Table 4 Coefficients, determinative factor, and F value of Eq. (9)
Treatment a b c R? F value
RU -6.436*107 0.052 -6.218 0.70 153.90%*
2019 BRU -1.266*10 0.053 -6.365 0.81 535.23**
CK 5.251*10* 0.091 -6.898 0.85 411.30%*
RU -4.282%104 0.074 -4.774 0.78 587.31%%*
2020 BRU -7.811*%104 0.131 -7.411 0.74 320.72%*
CK -6.791*104 0.110 -7.594 0.59 165.93%*
6 x, *x Significant at P < 0.05, 0.01levels, respectively (least significant difference test)
7
8
9
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