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Background. Several mammalian species have experienced contractions in distribution
following European settlement and development of the North American continent. For
example, local populations of North American martens (American marten, Martes
americana; Pacific marten, M. caurina) have experienced substantial reductions in
distribution and some extant populations are small and geographically isolated. The
Humboldt marten (M. c. humboldtensis) is a subspecies of Pacific marten that occurs in
coastal Oregon and northern California and was recently designated as federally
threatened, following a reduction in distribution that has resulted in small and
geographically isolated populations. Unlike martens that occur in snow-associated regions,
vegetation associations appear to differ widely between Humboldt marten populations. We
expect current distributions to represent realized niches, but estimating factors associated
with long-term occurrence is challenging for rare and little-known species. Here, we assess
the predicted distribution of Humboldt martens and interpret our findings as hypotheses
correlated with the subspecies’ niche to inform strategic conservation actions. Methods.
We modeled Humboldt marten distribution using a maximum entropy (Maxent) approach.
We spatially-thinned 10,229 marten locations collected from 1996–2020 by applying a
minimum distance of 500-m between locations, resulting in 384 locations used to assess
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correlations of marten occurrence with biotic and abiotic variables. We independently
optimized the spatial scale of each variable and focused development of model variables
on biotic associations (e.g., hypothesized relationships with forest conditions), given that
abiotic factors such as precipitation are largely static and not altered within a
management context. Results. Humboldt marten locations were positively associated
with increased shrub cover (salal (Gautheria shallon)), mast producing trees (e.g., tanoak,
Notholithocarpus densiflorus), increased pine (Pinus sp.)proportion of total basal area, and
annual precipitation at home-range spatial scales, areas with low and high amounts of
canopy cover and slope, and cooler August temperatures. Unlike other recent literature,
we found little evidence that Humboldt martens were associated with old-growth structural
indices. This case study provides an example of how limited information on rare or lesser-
known species can lead to differing interpretations, emphasizing the need for study-level
replication in ecology. Conservation efforts and our assessment of potential risks to
Humboldt marten populations would benefit from continued survey effort to clarify range
extent, population sizes, and fine-scale habitat use.
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29 Abstract

30 Background. Several mammalian species have experienced contractions in distribution 

31 following European settlement and development of the North American continent. For example, 

32 local populations of North American martens (American marten, Martes americana; Pacific 

33 marten, M. caurina) have experienced substantial reductions in distribution and some extant 

34 populations are small and geographically isolated. The Humboldt marten (M. c. humboldtensis) 

35 is a subspecies of Pacific marten that occurs in coastal Oregon and northern California and was 

36 recently designated as federally threatened, following a reduction in distribution that has 

37 resulted in small and geographically isolated populations. Unlike martens that occur in snow-

38 associated regions, vegetation associations appear to differ widely between Humboldt marten 

39 populations. We expect current distributions to represent realized niches, but estimating factors 

40 associated with long-term occurrence is challenging for rare and little-known species. Here, we 

41 assess the predicted distribution of Humboldt martens and interpret our findings as hypotheses 

42 correlated with the subspecies’ niche to inform strategic conservation actions. 

43 Methods. We modeled Humboldt marten distribution using a maximum entropy (Maxent) 

44 approach. We spatially-thinned 10,229 marten locations collected from 1996–2020 by applying 

45 a minimum distance of 500-m between locations, resulting in 384 locations used to assess 

46 correlations of marten occurrence with biotic and abiotic variables. We independently optimized 

47 the spatial scale of each variable and focused development of model variables on biotic 

48 associations (e.g., hypothesized relationships with forest conditions), given that abiotic factors 

49 such as precipitation are largely static and not altered within a management context.

50 Results. Humboldt marten locations were positively associated with increased shrub cover 

51 (salal (Gautheria shallon)), mast producing trees (e.g., tanoak, Notholithocarpus densiflorus), 

52 increased pine (Pinus sp.) proportion of total basal area, and annual precipitation at home-range 

53 spatial scales, areas with low and high amounts of canopy cover and slope, and cooler August 

54 temperatures. Unlike other recent literature, we found little evidence that Humboldt martens 
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55 were associated with old-growth structural indices. This case study provides an example of how 

56 limited information on rare or lesser-known species can lead to differing interpretations, 

57 emphasizing the need for study-level replication in ecology. Conservation efforts and our 

58 assessment of potential risks to Humboldt marten populations would benefit from continued 

59 survey effort to clarify range extent, population sizes, and fine-scale habitat use. 

60

61 Key words: California, distribution model, habitat relationships, Humboldt marten, Martes 

62 caurina humboltensis, Maxent, rare species, Oregon, Pacific marten

63

64 Introduction

65 Modeling predicted distributions of rare or declining species can direct conservation 

66 efforts, thus creating accurate predictions is important but challenging. For instance, 

67 constriction of the range available to a species – their realized niche – is the 

68 actualization of used conditions, but such conditions may change (Colwell & Rangel 

69 2009). Contemporary location information may further associate a species with 

70 conditions that were unaffected by prior agents of population decline, but not with 

71 favored characteristics where the species resided prior (Caughley 1994). For instance, 

72 bison (Bison bison) were historically widely distributed throughout the Great Plains of 

73 North America (Shaw 1995), yet a contemporary species distribution model would 

74 associate bison occurrence with conditions where the few relict population reside. 

75 Conditions present for bison in Yellowstone National Park, such as extremely cold 

76 winters and thermal geysers, are uncharacteristic of the conditions where populations 

77 historically occurred. Challenges are more pronounced for understudied species 
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78 (Raphael & Molina 2007), but spatial models may help predict occurrence (Sofaer et al. 

79 2019). 

80 Humboldt martens (M. c. humboldtensis) are a distinct subspecies that 

81 historically occurred throughout coastal forests of northern California and Oregon 

82 (Schwartz et al. 2020). Humboldt martens were thought to be increasingly rare almost a 

83 century ago (Grinnell & Dixon 1926) and were considered to be extirpated in California 

84 and extremely rare in Oregon for the latter half of the 20th century (Zielinski et al. 2001). 

85 In 1996, the Humboldt marten was rediscovered in California (Zielinski & Golightly 

86 1996). Subsequent research efforts over the last two decades have elucidated some 

87 aspects of Humboldt marten ecology and demography (e.g., Delheimer et al. In press; 

88 Linnell et al. 2018), including surveys to evaluate contemporary Humboldt marten 

89 distribution (e.g., Gamblin 2019; Moriarty et al. 2019). Although such investigations 

90 have improved our knowledge of where Humboldt martens occur, the full geographic 

91 extent of contemporary distribution remains unknown, although it appears to compose a 

92 fraction of the historical distribution (USFWS 2020). This putative range contraction has 

93 resulted in apparently small and isolated populations (USFWS 2019), which has 

94 engendered substantial concern for species’ persistence. Consequently, Humboldt 

95 martens were listed as Endangered under the state of California’s Endangered Species 

96 Act (CDFW 2019) and as Threatened under the federal Endangered Species Act as a 

97 “coastal distinct population segment of Pacific martens" (USFWS 2020). 

98 Clarifying contemporary Humboldt marten distribution by identifying areas where 

99 martens may occur that have not been surveyed and predicting future distribution (e.g., 

100 identifying areas where martens may not occur but could colonize) is urgently needed 
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101 for conservation planning. However, distribution modeling is constrained by apparent 

102 non-stationary associations with vegetation among Humboldt marten populations, which 

103 also contradicts the prevailing paradigm for vegetation associations of North American 

104 martens. For instance, it has been generally recognized that North American martens  

105 occur in mature forests characterized by dense canopy cover, presence of large 

106 diameter and decadent trees and snags, and abundant coarse woody debris 

107 (Thompson et al. 2012). Although initial investigations primarily associated Humboldt 

108 martens with similar conditions (Slauson et al. 2007), subsequent studies have 

109 indicated that Humboldt martens also occur in young forests (<80 years old) 

110 characterized by modest canopy cover and relatively small diameter trees with dense 

111 shrub cover (Eriksson et al. 2019; Moriarty et al. 2019). A dense and spatially-extensive 

112 shrub layer was associated with marten use or occurrence in most studies (Eriksson et 

113 al. 2019; Gamblin 2019; Moriarty et al. 2019; Slauson et al. 2007). Similarly, European 

114 pine martens (Martes martes) have long been considered a habitat specialist associated 

115 with older forests (Brainerd & Rolstad 2002; Storch et al. 1990), yet have recently been 

116 documented in a wide variety of habitat types including shrublands, grasslands, and 

117 agricultural areas (Balestrieri et al. 2016; Lombardini et al. 2015; Manzo et al. 2018; 

118 Moll et al. 2016).

119 Observations that are limited in space or time may not identify the conditions 

120 necessary for population persistence, which could result in a misrepresentation of a 

121 species’ niche. A previous range-wide Humboldt marten distribution model Slauson et 

122 al. (2019) emphasized a strong correlation between Humboldt marten occurrence and 

123 an “old-growth structural index” (OGSI) variable, which is a composite index of factors 
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124 considered common to old-growth forests in the region, including density of large live 

125 trees, stand age, snags and downed wood, and diversity of tree sizes (Davis et al. 

126 2015). Nonetheless, their model relied on modest number of detections from 1996–

127 2010 with poor coverage outside of northern California (USFWS 2019). Since 2010, we 

128 initiated large-scale surveys for Humboldt martens that greatly increased the spatial 

129 extent and number of Humboldt marten detections in both California and Oregon (e.g., 

130 Barry 2018; Gamblin 2019; Linnell et al. 2018; Moriarty et al. 2019). Recent research 

131 efforts suggest associations between OGSI and Humboldt marten distribution are less 

132 clear. A potential mismatch in previously-predicted associations between vegetation and 

133 Humboldt marten distribution could lead to a “wicked problem” by focusing management 

134 or restoration in areas that may not benefit the species across its range (Gutiérrez 

135 2020). 

136 Here, our objective was to create a contemporary range-wide model of predicted 

137 Humboldt marten distribution facilitated by including recent location data collected from 

138 broad-scale randomized surveys throughout the historic range, combined with more 

139 recent and accurate vegetation layers (e.g., shrub layers). Our goal was to predict 

140 factors contributing to Humboldt marten distribution and to highlight areas for future 

141 surveys and conservation efforts.  

142

143 Materials & Methods

144 Study Area

145 We collected data throughout coastal northern California and Oregon. We 

146 included the four regions where Humboldt martens have been described - the Central 
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147 Coastal Oregon, Southern Coastal Oregon, California-Oregon Border, and Northern 

148 Coastal California populations (USFWS 2019; Fig. 1). Surveys in California occurred in 

149 both near-coastal and montane areas (Klamath Mountains, California Coast Range) that 

150 received substantial precipitation (100-300 cm annual precipitation) with cooler (7-10°C) 

151 temperatures and drier summers dominated with fog and low cloud moisture (Rastogi et 

152 al. 2016). Forest types included a mix of coniferous and hardwood with a spatially-

153 extensive shrub understory and dominant tree species included redwood (Sequoia 

154 sempervirens) along the coast and Douglas-fir (Pseudotsuga menziesii) in the 

155 mountains (Whittaker 1960). 

156 Surveys in Oregon similarly occurred in both near-coastal and montane areas 

157 (Oregon Coast Range) where dominant forest types included Sitka spruce (Picea 

158 sitchensis) and shore pine (Pinus contorta) along the coast and western hemlock 

159 (Tsuga heterophylla) slightly inland (Franklin & Dyrness 1973). The Sitka spruce zone 

160 was characterized by a wet and moderately warm maritime climate with average annual 

161 temperatures of 10-11 °C, average annual precipitation of 200-300 cm, and frequent fog 

162 and cloud cover. The western hemlock zone, which was often co-dominated by 

163 Douglas-fir, was somewhat cooler (7-10 °C average annual temperature) and drier 

164 (150-300 cm annual precipitation) with fairly extensive summer fog and low cloud cover 

165 (Dye et al. 2020). 

166 Common conifer species intermixed included western hemlock, Port Orford cedar 

167 (Chamaecyparis lawsoniana), and western redcedar (Thuja plicata). Hardwood trees 

168 included tanoak (Notholithocarpus densiflora), giant chinquapin (Castanopsis 

169 chrysophylla), coastal live oak (Quercus agrifolia), canyon live oak (Q. chrysolepis), 
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170 California bay (Umbellularia californica), red alder (Alnus rubra), bigleaf maple (Acer 

171 macrophyllum), and Pacific madrone (Arbutus menziesii). Dominant shrubs throughout 

172 the study area included salal (Gautheria shallon), evergreen huckleberry (Vaccinium 

173 ovatum), Pacific rhododendron (Rhododendron macrophyllum), and red huckleberry (V. 

174 parvifolium).

175   

176 Marten locations

177 We used spatially-referenced Humboldt marten locations collected between 1996 and 

178 2020 in all known regions with martens. We excluded locations occurring in areas 

179 modified by fire or timber harvest after the date of observation and prior to 2016, the 

180 date represented by our vegetation data. If multiple locations occurred within a 500-m x 

181 500-m cell within a created grid, we spatially-thinned locations to randomly include one 

182 in each cell, attempting to achieve spatial independence for modeling (Kramer-Schadt 

183 et al. 2013).  Priority for location retention from highest to lowest was: (1) rest and den 

184 locations from telemetry (Delheimer et al. In press; Linnell et al. 2018); (2) locations 

185 from scat dog detection surveys (Moriarty et al. 2018; Moriarty et al. 2019); and (3) 

186 locations from baited camera and/or track plate surveys (Barry 2018; Gamblin 2019; 

187 Moriarty et al. 2019; Slauson et al. 2012). We used presence-only data because older 

188 surveys (prior to 2014) were often missing detection histories from non-detection 

189 locations.

190 For the data for which the authors were responsible, our protocols were reviewed 

191 and approved by the USDA Forest Service Research and Development Institutional 

192 Care and Use Committee (permits 2015-002, 2017-005) or Humboldt State University 
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193 Institutional Care and Use Committee (permit 16/17.W.05-A). We obtained Scientific 

194 Take Permits for hair snares and samples collected through the Oregon Department of 

195 Fish and Wildlife (ODFW 119-15, 128-16, 033-16, 109-19, 107-20). Older verified 

196 survey data were provided by the US Fish and Wildlife Service with no additional 

197 information.

198

199 Modeling approach

200 Our modeling approach included Humboldt marten locations, biotic and abiotic predictor 

201 variables, and randomly generated pseudo-absence points (n = 10,000). We used a 

202 minimum convex polygon (MCP) around Humboldt marten locations buffered by 10 km 

203 to define the modeling region (Fig. 1b). We chose a 10 km  buffer because it 

204 approximated the upper quartile of daily marten movement (Moriarty et al. 2017). We 

205 projected our model to available vegetation data from Gradient Nearest Neighbor (GNN) 

206 data supplied by the Landscape Ecology, Modeling, Mapping and Analysis lab (Bell et 

207 al. 2021; Bell et al. 2020), which included the coastal and Klamath level-3 eco-provinces 

208 (U.S. Environmental Protection Agency 2013). We removed urban areas and water from 

209 the background data (Davis et al. 2016). We summarized the range, average, and 

210 standard deviation for each variable within the modeling region and study area (Table 1, 

211 Fig. 1).
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212

213 Biotic variables

214 Biotic variables in our models included forest structure and composition, forest age, 

215 canopy cover, OGSI, percent pine, percent mast, and predicted shrub cover, as 

216 described below. 

217 We used the 2016 version of GNN (Ohmann & Gregory 2002) to incorporate 

218 forest structure variables including forest age, canopy percent cover, OGSI, and percent 

219 pine. Forest age was the basal area-weighted age based on field-recorded or modeled 

220 ages of dominant and codominant trees. Canopy percent cover was calculated using 

221 the Forest Vegetation Simulator (Crookston & Stage 1999). Here, OGSI was a slightly 

222 different composite index from the one used in Slauson et al. (2019) as it excluded 

223 stand age. The index ranged from 0-100 was based from 4 elements: density of large 

224 diameter live trees per hectare, density of large diameter snags per hectare, percentage 

225 of downed wood greater than 25 cm in diameter, and an index of tree diameter diversity 

226 computed from tree densities in different diameter classes (Davis et al. 2015). For live 

227 trees and snags, “large diameter” was dependent on forest type and was defined for 

228 twelve vegetative zones, each zone with a unique minimum diameter threshold (i.e., 

229 ranging 50-100 cm for live trees, 50-75 cm for snags (Davis et al. (2015); see 

230 Supplemental information (Item S1) for more information on integration of the OGSI 

231 variable into our model. 

232 We created a variable called “percent pine”, which was the combined percentage 

233 of total basal area of shore pine, Jeffery pine (P. jefferii), and knobcone pine (P. 

234 attenuata) from GNN. This variable was included because martens have been detected 
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235 in sparse shore pine communities in the Oregon Central Coast population (Eriksson et 

236 al. 2019; Linnell et al. 2018), and in areas with serpentine soils characterized by sparse 

237 cover of Jeffery and knobcone pine, stunted tree growth, and dense shrub understories 

238 (Harrison et al. 2006; Kruckeberg 1986; Safford et al. 2005; Slauson et al. 2019). We 

239 visually inspected the congruence of the serpentine soil layer created by the US Fish 

240 and Wildlife Service (Schrott & Shinn 2020) with our percent pine layer, confirming 

241 overlap between the two variables.

242 Humboldt martens have been associated with dense shrub cover throughout 

243 their range (Moriarty et al. 2019; Slauson et al. 2007).  Salal and evergreen huckleberry 

244 appear particularly important, as the berries of each occur in Humboldt marten diets and 

245 provide food for marten prey species (Eriksson et al. 2019; Manlick et al. 2019; Moriarty 

246 et al. 2019). We modeled probabilities of species occurrence of salal and evergreen 

247 huckleberry, creating the model for evergreen huckleberry following methods published 

248 for salal and other shrub species (Prevéy et al. 2020a; Prevéy et al. 2020b). We related 

249 locations to contemporary (1981-2010) bioclimatic variables from the AdaptWest project 

250 (Wang et al. 2016) to depict the probability of species occurrence (1-100%). Humboldt 

251 marten diet is dominated by animals (e.g., passerines, ground squirrels) that feed on 

252 berries and mast and Humboldt martens also directly consume berries (Eriksson et al. 

253 2019; Manlick et al. 2019; Slauson & Zielinski 2017). The “mast” variable represented 

254 hardwood tree and shrub species that produce nuts, seeds, buds, or fruits eaten by 

255 wildlife and was estimated using the 2016 GNN layer as the percent of total basal area 

256 comprised of tanoak, giant chinquapin, coastal live oak, canyon live oak, and California 

257 bay. 
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258

259 Abiotic variables

260 Abiotic variables included temperature (°C), precipitation (cm), cloud cover (%), coastal 

261 proximity, percent slope, and topographic position index. We used 30-year normal 

262 PRISM variables of Average Annual Precipitation converted to cm and Maximum 

263 Temperature in August at an 800-m scale (1981-2010, PRISM Climate Group, Oregon 

264 State University, http://prism.oregonstate.edu, created 10/17/2019). We explored annual 

265 data for temperature (2010-2018), but the available 4 km resolution produced artifacts in 

266 the model.

267 We created models with the variable Coastal Proximity, which uses PRISM data 

268 and combines coastal proximity and temperature advection influenced by terrain (Daly 

269 et al. 2003) modified for the western United States (Daly et al. 2008). We derived 

270 percent slope and topographic position index from US Geological Survey digital 

271 elevation models. Topographic position index is an indicator of slope position and 

272 landform category; it is the difference between the elevation at a single cell and the 

273 average elevation of the user-defined radius around that cell (Jenness 2006).

274

275 Scale optimization

276 Given that martens select habitat at multiple scales (e.g., broad-scale landscape 

277 features (1st order selection sensu Johnson 1980) and fine-scale features within home 

278 ranges (4th order selection; e.g., Minta et al. 1999), we optimized the spatial scale of 

279 each variable included in the model. We smoothed variables using the extract function 

280 in package raster in R (Hijmans 2020; R Core Team 2020) with a radius of 50 m, 270 m, 
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281 742 m, and 1170 m. Our smallest scale (50 m, 0.81 ha) provided local and fine scale 

282 conditions. We assumed 270 m (20 ha) approximated the size of a Humboldt marten 

283 core area, similar to optimized scales of vegetation characteristics used in predicting 

284 conditions for marten rest structures elsewhere in California (Tweedy et al. 2019).  The 

285 scale of 742 m (174 ha) represented an approximate female Humboldt marten home 

286 range size, calculated as the average of female home range estimates (173 ha) from 

287 two previous studies (Linnell et al. 2018; Supplemental Data S1; PSW 2019).Our 

288 broadest scale was based on the largest size of a Humboldt marten male home range 

289 (1170 m, 428 ha, Supplemental Data S1), assuming a male would overlap multiple 

290 females and could be interpreted as the smallest unit of population level selection 

291 (Linnell et al. 2018; PSW 2019). We used individual univariate linear models (glm) for 

292 each spatial scale using our training location data and a random background sample of 

293 9,600 points (25 times the location data) within the MCP (Supplemental Data S2). 

294 Similar to prior examples (McGarigal et al. 2016; Wasserman et al. 2010; Zeller et al. 

295 2017), we selected the scale for each variable that had the most extreme, and thus the 

296 most predictive, coefficient. We also visually inspected the fit of each spatial scale using 

297 boxplots (Supplemental Figs. S1, S2, S3).

298 We provided boxplots to visually estimate whether our final variables were similar 

299 between all marten locations, thinned marten locations, available surveyed locations 

300 without detections (non-detection), and random locations (Fig. 2).

301

302 Predicted distribution
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303 We used Maxent modeling software v3.4.1 (Phillips et al. 2006) to estimate the relative 

304 probability of Humboldt marten presence within the modeling regions (Merow et al. 

305 2013). Maxent uses a machine learning process to develop algorithms that relate 

306 environmental conditions at documented species presence locations to that of the 

307 surrounding background environment in which they occurred (Elith et al. 2011; Phillips & 

308 Dudík 2008). We excluded variables with highly correlated predictors (|Pearson 

309 coefficient| > 0.6), selecting the variable that was most interpretable for managers 

310 (Table S2). During this process, we considered the variance inflation (Table S3), which 

311 allows for evaluation of correlation and multicollinearity. Variance inflation factors equal 

312 to 1 are not correlated and factors greater than 5 are highly correlated as determined by 

313 (1/(1-R i
2)), where Ri

2 is squared multiple correlation of the variable i (Velleman & 

314 Welsch 1981). 

315 Within each model iteration, we selected the bootstrap option with 10 replicates, 

316 random seed, and 500 iterations. We trained our models using a random subset of 75% 

317 of presence locations and tested these using the remaining 25% with logistic output. We 

318 used the default of 10,000 random background samples. We varied the response 

319 functions to include linear, product, and quadratic features. We selected the “auto 

320 features” option for all runs, which allows Maxent to further limit the subset of response 

321 features from those selected by retaining only those with some effect.

322 We used percent contribution and permutation importance to determine 

323 importance of input variables in the final model. Halvorsen (2013) produced simulation 

324 results suggesting percent contribution can be more informative with uncorrelated 

325 environmental variables. This metric is often used to assess variable significance (e.g., 
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326 Warren et al. 2014). Searcy & Shaffer (2016) suggest that permutation importance 

327 provides better variable assessment when models and variables are correlated.

328 Species distribution maps were produced from all models using the maximum 

329 training sensitivity plus specificity threshold, which minimizes both false negatives and 

330 false positives. We evaluated the AUC statistic to determine model accuracy and fit to 

331 the testing data (Fielding & Bell 1997). The AUC statistic is a measure of the model’s 

332 predictive accuracy, producing an index value from 0.5 to 1, with values close to 0.5 

333 indicating poor discrimination and a value of 1 indicating perfect predictions (Elith et al. 

334 2006). We assessed variables using response curves, variable contributions, and 

335 jackknife tests. 

336 Because over-parameterized models tend to underestimate habitat availability 

337 when transferred to a new geography or time period, we used selection methods 

338 suggested by Warren & Seifert (2011). Maxent provides the option of reducing 

339 overfitting with a regularization multiplier that can be altered by the user to apply a 

340 penalty for each term included in the model (β regularization parameter) to prevent 

341 overcomplexity or overfitting (Merow et al. 2013; Morales et al. 2017). A higher 

342 regularization multiplier will reduce the number of covariates in the model, becoming 

343 more lenient with an increased sample size (Merow et al. 2013). We did not include 

344 model replicates, an option in the interface, to output the required data (lambda file) and 

345 set output to logistic. We altered the Regularization Multiplier from 0.5 to 4 for each 0.5 

346 increment (e.g., Radosavljevic & Anderson (2014). 

347 We ranked candidate models using Akaike’s Information Criterion corrected for 

348 small sample sizes (AICc; Burnham & Anderson 2002). We considered the model with 
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349 the lowest AICc value to be our top model with those with ΔAICc<2 to be competitive 

350 models.

351 For our top model, we generated predicted-to-expected (P/E) ratio curves for our 

352 model using only the testing data to evaluate its predictive performance, which was 

353 based on the shape of the curves, a continuous Boyce index (Boyce et al. 2002), and 

354 Spearman rank statistics. We used the predicted-to-expected curve to inform our 

355 suitability thresholds following Hirzel et al. (2006), including predicted unsuitable (P/E 

356 and confidence intervals 0-1), marginal (P/E > 1 but overlapping confidence intervals), 

357 and suitable (P/E and confidence intervals > 1). 

358

359 Results

360 Locations

361 We compiled 10,229 Humboldt marten locations collected during 1996-2020 (542 baited 

362 station, 263 detection dog team, 831 VHF telemetry, 8,537 GPS telemetry, 15 roadkill, 

363 and 41 others). Our GPS data represented locations taken every 2.5-5 minutes on 7 

364 individuals within the Central Coast (Linnell et al. 2018), and we did not display those 

365 clustered data. We spatially-thinned locations, 384 locations remained and were spread 

366 among regions approximately in proportion to the area in each designated region as 

367 follows: Central Coastal Oregon (n = 77 locations, 6% of the designated Extant 

368 Population Area), Southern Coastal Oregon (n = 77 locations, 37% of the EPA), 

369 California-Oregon Border (n = 33 locations, 3% of the EPA), and Northern Coastal 

370 California (n = 192 locations, 54% of the EPA) populations (Fig. 1). There were 5 

371 locations that did not occur within the boundaries of the designated populations 
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372 (USFWS 2019). Location types included den or rest structure locations (18%), 

373 genetically verified scats or telemetry locations (32%), and baited camera or track plate 

374 locations (50%).

375 The thinned locations had similar medians and data distributions to the complete 

376 location dataset except for mast and precipitation where the medians were slightly lower 

377 for the thinned locations (Fig. 2). Non-detection locations had similar medians and data 

378 distributions to random locations, with the most notable difference between medians for 

379 salal (Table 1, Fig. 2). Differences between non-detection and random locations were 

380 likely due to clustered sampling efforts (Fig. 1b).

381

382 Distribution modeling

383 Our model included 8 variables after excluding correlated variables (Table S2, Table 

384 S3). Variables in our model were optimized at the home range spatial scale (1,170 m) 

385 except OGSI (50 m), but differences between scales were modest (Figs. S1-S3). The 

386 top model had a Regularization Multiplier of 1.5. Predictor variables, in order of percent 

387 contribution, included a positive relationship with salal (23.3%), percent pine (22.5%), 

388 average annual precipitation (21.6%), canopy cover (18.7%), and mast (5.4%) followed 

389 by a negative relationship with average maximum August temperature (4.7%), percent 

390 slope (2.7%), and OGSI (1.1%, Table 2). Permutation importance was similar with the 

391 top four variables highly contributing - but with a slightly modified order of percent pine 

392 (30.3%), average annual precipitation (25.3%), canopy cover (20.2%), and salal (15.5%; 

393 Table 2). The OGSI variable contributed least for both metrics.
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394 We interpreted Maxent’s univariate response curves and provide the marginal 

395 plots as a supplemental figure (Fig. S4). Marten locations were correlated with both low 

396 and high amounts of canopy cover and percent slope (quadratic response, Fig. 3). We 

397 suspect these could be biologically correlated in that extensive flat areas in the Central 

398 Coast also have low tree canopy cover, but high shrub density. Moderate amounts of 

399 canopy cover (e.g., 5-50%) appeared to be negatively correlated with marten locations. 

400 Predicted marten distribution was positively correlated with salal with some likelihood of 

401 a threshold at high values (Fig. 3), percentage of pine (Fig. 3), average annual 

402 precipitation (Fig. 3), and mast (Fig. 3). There was a negative correlation between 

403 marten locations and August temperature (Fig. 3) and a slightly negative or neutral 

404 relationship between marten locations and OGSI (Fig. 3). 

405 The predicted versus expected curve of our final model delineated unsuitable 

406 areas as <14%, suitable areas as 15-30%, and predicted highly suitable at >30% 

407 predicted probability (Fig. 4) with an AUC value on the test data at 92.1%. The model 

408 depicted southern Oregon and northern California as having the largest extent for 

409 predicted marten distribution, including areas south of the current known population 

410 (Fig. 5).  

411

412 Discussion

413 We developed a range-wide species distribution model for the Humboldt marten based 

414 on extensive survey effort and incorporation of contemporary vegetation and climatic 

415 conditions. Our model is complementary, but not similar, to other Humboldt marten 

416 distribution models (e.g., Slauson et al. 2019b), which could lead to confusion when 
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417 attempting to understand Humboldt habitat associations. Instead of interpreting 

418 differences between models as a conflict, we posit this as evidence of the conservation 

419 challenge described by Caughley (1994) and representative of the difficulty in 

420 establishing patterns of causality from observational studies. Nonetheless, our model 

421 predicted areas where Humboldt martens are known to occur and identified areas of 

422 potential occurrence outside of known population extents, which can be placed within 

423 an ecological theory framework for managers. As with all models, there are limitations 

424 associated with our predictions, and a clear assessment of these constraints is critical 

425 for model results to be accurately used to inform management decisions (Sofaer et al. 

426 2019). 

427 The role of biotic interactions in shaping the distribution of species has been 

428 reported (e.g., Forchhammer et al. 2005; Guisan & Thuiller 2005), yet evidence of the 

429 importance of biotic variables alongside abiotic variables for predicting distributions at 

430 larger spatial scales has been largely lacking (e.g., Wisz et al. 2013). High amounts of 

431 shrub cover appears to be the most prevalent component of Humboldt marten locations 

432 in both California (Slauson & Zielinski 2009, Slauson et al. 2007) and Oregon (Moriarty 

433 et al. 2019). Both salal and mast (including mast-producing shrubs) had a strong 

434 contribution to our model. Although associations with shrub cover or mast are generally 

435 uncharacteristic of martens, European pine martens may occur in areas of dense 

436 shrubs (Lombardini et al. 2015) and American marten population numbers in New York 

437 appear correlated with mast in hardwood forests (Jensen et al. 2012). Our finding that 

438 Humboldt marten distribution was strongly correlated with canopy cover is consistent 

439 with previous marten research (Bissonette et al. 1997, Hargis et al. 1999), although our 
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440 response was quadratic, suggesting marten locations associated with both low and high 

441 levels of canopy cover. Marten populations are typically associated only with relatively 

442 dense and increasing canopy cover (Shirk et al. 2014) and we posit that a quadratic 

443 response to canopy cover by Humboldt martens may be a function of shrub cover. In 

444 areas with relatively low canopy cover but dense shrubs, shrub cover may functionally 

445 provide increased protection from predators (Hawley & Newby 1957). Although 

446 additional information is needed to describe fine-scale vegetation associations, forest 

447 conditions with a dense understory layer of shrub and mast-producing species 

448 represent achievable targets that can guide management or restoration.

449 Biotic variables influencing predicted Humboldt marten distribution in our model 

450 were consistent with previous literature with some exceptions, most notably forest age 

451 and OGSI. Within our model, the predicted relationship between Humboldt marten 

452 distribution and higher OGSI values was not only weak but often negative 

453 (Supplemental Item S1). The OGSI variable may, in fact, represent an interpretive 

454 mismatch with shrub cover – some areas where Humboldt martens occur (e.g., mature 

455 Douglas fir forest; Slauson et al. 2007) are characterized by both older forest conditions 

456 (i.e., high OGSI values) and substantial shrub cover, while other areas (e.g., serpentine 

457 or coastal pine forests; Eriksson et al. 2019, Moriarty et al. 2019) are characterized by 

458 substantial shrub cover, but not older forest conditions (i.e., low OGSI values). As an 

459 example, much of the putative distribution of Humboldt martens in coastal Oregon and 

460 California is dominated by mature western hemlock forests with high OGSI values, yet 

461 Humboldt martens are not strongly associated with such areas (Moriarty et al. 2019), 

462 possibly because hemlocks are a shade-tolerant species that prohibit understory growth 
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463 (Kerns & Ohmann 2004). When examining our marten locations in a model only with the 

464 components of OGSI, downed wood was the most influential variable (Supplemental 

465 Item S1). We suspect the differences between models resulted from non-stationarity in 

466 vegetation associations that were only revealed by increased survey effort across a 

467 broader geographic scope. 

468 Range limit theorems have long postulated the importance of elevation, altitude, 

469 and weather in determining the upper limits of species distributions (e.g., Darwin 1859). 

470 Precipitation was one of the top 3 predictive variables in all model simulations and 

471 abiotic factors such as increased precipitation, proximity to the coast, and cool 

472 temperatures likely influence vegetation type and composition. If these variables are 

473 causally linked to marten occurrence, a plausible mechanism is that cooler wetter 

474 conditions result in dense vegetation growth, which likely aids martens in avoiding 

475 predators. Coupled with berries and mast that some shrubs provide and a suspected 

476 increased availability of prey items that eat berries (e.g., birds, rodents), such areas 

477 may provide exceptional, if uncharacteristic, marten habitat (Eriksson et al. 2019). As a 

478 potential mechanism, the abundance of huckleberries have been attributed to increased 

479 reproduction and population growth for grizzly bears (Ursus arctos) over a 32-year 

480 investigation (McLellan 2015). Species’ distributions may also be strongly influenced by 

481 less-apparent factors such as interspecific interactions with predators or competitors 

482 (Siren 2020). As an example, spotted owls (Strix occidentalis) closely align with old-

483 growth forest conditions which have been characterized with relatively high accuracy 

484 (Davis et al. 2016), yet spotted owl population viability is dramatically decreased with 

485 presence of barred owls (S. varia) due to interspecific competition and predation (Diller 
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486 et al. 2016; Dugger et al. 2016; Wiens et al. 2014). Although few examples exist for 

487 carnivores, a recent evaluation suggests that while lynx (Lynx lynx) distributions are 

488 closely-tied to deep snow, the influence of reducing bobcat (L. rufus) competition was 

489 stronger than the influence of snow itself (Siren 2020). A directed research effort would 

490 be necessary to understand the relative importance of vegetation structures, vegetation 

491 types, prey, predation, and competition for Humboldt marten persistence.

492 Our results provide predictions for habitat components but describing optimal 

493 habitat would be best informed by measures of survival and fecundity. Future 

494 endeavors could develop site-specific models, ideally using telemetry data that are 

495 biologically linked with fitness (e.g., long-lived adult female rest and den structures) to 

496 address predicted habitat. We lack enough information regarding where Humboldt 

497 martens resided historically to compare with our contemporary distribution (Loehle 

498 2020), and we are generally ignorant of population densities, causal associations of 

499 population declines, and population limitations. Such an understanding is essential to 

500 describe expectations of future range (Brown et al. 1996). Finally, the lack of 

501 consistency among Humboldt marten studies is suggestive of imperfect knowledge of 

502 what components constitute Humboldt marten habitat. To avoid differing views for rare 

503 species conservation (e.g., Gutiérrez 2020; Jones et al. 2020), amassing information 

504 collaboratively with a goal of prospective meta-analyses and study-level replication will 

505 be essential (Facka & Moriarty 2017; Nichols et al. 2019).

506

507 Conclusions
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508 Based on our modeling and an evaluation of available evidence, we conclude that the 

509 most consistent range-wide characteristic with Humboldt marten distributions are forest 

510 associations with extensive dense shrub cover or complex understory vegetation, which 

511 may reflect an association with increased food availability or predation escape cover. An 

512 understanding of the strength of these interactions and factors that limit populations is 

513 needed to make informed conservation decisions. An adaptive management framework 

514 with integrated research components may allow for near-term conservation decision 

515 making. 

516
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Figure 1
Our study area and modelling region for Humboldt martens (Martes caurina
humboldtensis) included all of coastal Oregon and northern California.

We modeled Humboldt marten predicted distributions in forested lands (Panel A, green
mask) in 2 ecoregions [left]. We created a minimum convex polygon of known locations
buffered by 10-km (hatched area). We compiled 10,229 marten locations, displaying 1,692
marten locations that were not GPS derived and clustered (icon color) from 5,153 surveyed
sites with non-detections in light gray, collected during 1996-2020 (panel B). We spatially
thinned locations to approximately 500m apart, prioritizing den and rest locations and
resulting in 384 locations (black dots, panel C).
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Figure 2
We investigate the range of variables in our thinned dataset compared to all marten
locations and detection/non-detection data.

To provide the range of values observed in this study, we depict boxplots for the variables in
the top model showing the thinned marten data (Marten), all non-GPS marten locations
(Marten_DB), non-detected but surveyed locations (Non-detection), and random locations
within the minimum convex polygon (9,600 random locations).
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Figure 3
We depict predicted relationships between Humboldt marten locations and each of the
variables within our final model.

Here, each curve is the predicted probability of presence with no conflicting influence of
potentially correlated variables. Humboldt marten locations were correlated with both low
and high amounts of canopy cover and percent slope (quadratic response). Predicted
distribution was positively correlated with predicted salal (Gaultheria shallon) distribution,
percentage of pine, precipitation, and mast. We observed a negative correlation between
marten locations and August temperature. We observed a slight negative relationship
between marten locations and the old growth structural index. Our figure order matches the
percent contribution values reported in Table 2. The curves reveal the mean response (black)
and standard deviation (gray) for 10 replicate Maxent runs.
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Figure 4
Our predicted suitable transitions for Humboldt marten (Martes caurina humboldtensis)
range.

We present mean predicted vs. expected curve (solid black line) from our model replicates,
showing 95-percent confidence intervals (gray-shaded vertical bars). The P/E = 1 threshold is
where the curve crosses the random chance line (horizontal orange line), and the blue
dashed vertical lines are the 95-percent confidence intervals. We used the predicted-to-
expected curve to inform our suitability thresholds following Hirzel et al. (2006), including
predicted unsuitable (P/E and confidence intervals 0-1), marginal (P/E > 1 but overlapping
confidence intervals), and suitable (P/E and confidence intervals > 1; map depicted in Fig. 5).
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Figure 5
We display our modeled predicted range for Humboldt marten (Martes caurina
humboldtensis).

For predicted range, we followed Hirzel et al. (2006) with predicted versus expected ratios
transitioning between predicted highly suitable (green), suitable (orange), and marginal or
not predicted suitable (gray). Marten location information was displayed (black dots). We
zoomed to population extents to provide increased visual resolution within the Central
Oregon Coast (Panel 3a), South coast (Panel 3b), and northern California (Panel 3c).
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Table 1(on next page)

Data ranges, means, and standard deviations for the model region, the contemporary
Humboldt marten distribution, and at Humboldt marten locations.

We depict individual layer statistics within our Humboldt marten (Martes caurina

humboldtensis) model region in coastal Oregon and northern California. We display the
variable, optimized spatial scale with a radius in meters, value range from the coastal
ecoregions, means and standard deviation (SD) for the model region, minimum convex
polygon around all known marten locations (MCP), and values from spatially thinned marten
locations (n = 384), our layer source, and a description of that variable. We only considered
variables with < 60% correlation in our final model (Table S2).
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1 Table 1:
2 Data ranges, means, and standard deviations for the model region, the contemporary Humboldt marten distribution, and at 
3 Humboldt marten locations.
4 We depict individual layer statistics within our Humboldt marten (Martes caurina humboldtensis) model region in coastal Oregon and 

5 northern California. We display the variable, optimized spatial scale with a radius in meters, value range from the coastal ecoregions, 

6 means and standard deviation (SD) for the model region, minimum convex polygon around all known marten locations (MCP), and 

7 values from spatially thinned marten locations (n = 384), our layer source, and a description of that variable. We only considered 

8 variables with < 60% correlation in our final model (Table S2).  

Variable Scale
Value 
Range

Model 
Region 
(Mean ± 

SD)

Minimum 
convex 
polygon 
(Mean ± 

SD)

Marten 
Locations 
(Mean ± 

SD)

Source Description

Forest age, 
years

270 0 – 712 95.5 ± 43 104.3 ± 49.4 109.8 ± 69.6
2016 
GNN

Basal area weighted stand age 
based on field recorded or modeled 
ages of dominant/codominant trees

Canopy cover 
(%)

1170 2 – 99 65.9 ± 13 66.4 ± 14 71.3 ± 18.6
2016 
GNN

Canopy cover percentage of all live 
trees

Coastal 
proximity 

50 2 – 700
511.7 ± 
193.1

516.3 ± 
203.1

361.8 ± 
197.9

PRISM
Optimal path length from the 
coastline accounting for terrain 
blockage (Daly et al. 2008)

Diameter 
diversity index 

1170 26 – 811 433.9 ± 103
437.6 ± 
111.7

459.4 ± 
123.6

2016 
GNN

Diameter diversity index - measure 
of stand structure based on tree 
densities in diff. DBH classes (x100)

Percent downed 
wood 

270 0 – 797 69.3 ± 54.7 70.9 ± 50 68.5 ± 60.1
2016 
GNN 

(created)

Created within GNN to estimated 
percentage of large downed wood, a 
component of OGSI

Salal 1170 0 – 100 35.7 ± 30.9 50.7 ± 32.3 72.7 ± 17.8 Prevéy
Probability of Gautheria shallon 
species occurrence (Prevéy et al. 
2020)
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Masting 
vegetation 

1170 0 – 72 5.9 ± 7.4 5.2 ± 6.7 9.3 ± 9
2016 
GNN

Percent of stand basal comprised of 
tanoak (Notholithocarpus 
densiflorus; LIDE), giant chinquapin 
(Castanopsis chrysophylla; CHCH), 
coastal live oak (Quercus agrifolia; 
QUAG), canyon live oak (Quercus 
chrysolepis; QUCH), and California 
bay (Umbellularia californica; UMCA) 
(mast producing evergreen 
hardwoods, indicator of prey 
abundance)

Old growth 
structural index 

50 0 – 100 32.7 ± 15.8 33.2 ± 16.1 33.8 ± 16.9
2016 
GNN

Old-growth structure index based on 
abundance of large live trees, snags, 
down wood, and ddi

Percent pine 1170 0 – 94 1.2 ± 3.5 1.5 ± 4.5 10.9 ± 20.1
2016 
GNN

Percent of pixel basal area 
comprised of shore pine (Pinus 
contorta; PICO), Jefferey pine (Pinus 
jeffreyi; PIJE) and knobcone pine 
(Pinus attenuata; PIAT). We use this 
as an indicator of serpentine and 
coastal dune environments.

Percent slope 1170 0 – 74 33.8 ± 10.9 36.2 ± 10.6 31.7 ± 15.8
USGS 
DEM

Percent slope in degrees

Precipitation 1170 13 – 198 66.9 ± 27 70 ± 30.1 102.4 ± 30.5
2016 
GNN

Average annual precipitation 1981-
2010 (inches)

Large snag 
density 

742 0 – 48 4.9 ± 4.3 5.8 ± 4.6 6.9 ± 4.9
2016 
GNN 

(created)

Created within GNN to estimated 
density of large snags, a component 
of OGSI

Temperature 
(August max) 

1170 8 – 24 16.5 ± 2.3 16.1 ± 1.7 16.4 ± 1.7 PRISM
Average annual maximum 
temperature 1981-2010 (Celcius).

Topographic 
position index 

270
-149 – 

174
0.7 ± 26.7 1.1 ± 28.8 -0.3 ± 28.6

USGS 
DEM

Topographic position index - 
difference of cell elevation with 
mean of all cells w/in 450 m radius
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Large tree 
density 

1170 0 – 47 3.2 ± 3.5 4.4 ± 4.2 5.2 ± 5.9
2016 
GNN 

(created)

Created within GNN to estimated 
density of large trees, a component 
of OGSI

Huckleberry 1170 2 – 99 32.7 ± 24.6 39.1 ± 26 42.7 ± 27.2 Prevéy
Probability of species occurrence for 
Vaccinium ovatum (created)

9
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Table 2(on next page)

We show the percent contribution and permutation importance from our top Maxent
model.

We ordered variables by their percent contribution and report the optimized spatial scale
(focal radius in meters), the univariate response type, and whether the univariate dependent
plots were generally positively or negatively correlated with Humboldt marten (Martes

caurina humboldtensis) locations.
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1 Table 2:

2 We show the percent contribution and permutation importance from our top Maxent model. 

3 We ordered variables by their percent contribution and report the optimized spatial scale (focal radius in meters), the univariate 

4 response type, and whether the univariate dependent plots were generally positively or negatively correlated with Humboldt marten 

5 (Martes caurina humboldtensis) locations. 

Variable Scale Response

Univariate 

Relationship

Percent 

contribution

Permutation 

importance

Salal 1170 Quadratic + 23.3 15.5

Percent pine 1170 Product + 22.5 30.3

Precipitation_30-year average 1170 Product + 21.6 25.3

Canopy cover 1170 Quadratic + 18.7 20.2

Mast 1170 Product + 5.4 1.3

August temperature_30-year 

average 1170 Linear - 4.7 2.3

Percent slope 1170 Quadratic - 2.7 4.4

Old growth structural index 50 Linear - 1.2 0.7

6
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