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ABSTRACT
The recovery of marine life from the end-Permian mass extinction event provides
a test-case for biodiversification models in general, but few studies have addressed
this episode in its full length and ecological context. This study analyses the recovery
of marine level-bottom communities from the end-Permian mass extinction event
over a period of 15 Ma, with a main focus on the previously neglected main phase
during the Middle Triassic. Our analyses are based on faunas from 37 lithological units
representing different environmental settings, ranging from lagoons to inner, mid-
and outer ramps. Our dataset comprises 1562 species, which belong to 13 higher taxa
and 12 ecological guilds. The diversification pattern of most taxa and guilds shows an
initial Early Triassic lag phase that is followed by a hyperbolic diversity increase during
the Bithynian (early middle Anisian) and became damped later in the Middle Triassic.
The hyperbolic diversity increase is not predicted bymodels that suggest environmental
causes for the initial lag phase.We therefore advocate amodel in which diversification is
primarily driven by the intensity of biotic interactions. Accordingly, the Early Triassic
lag phase represents the time when the reduced species richness in the wake of the
end-Permian mass extinction was insufficient for stimulating major diversifications,
whereas the Anisian main diversification event started when self-accelerating processes
became effective and stopped when niche-crowding prevented further diversification.
Biotic interactions that might drive this pattern include interspecific competition
but also habitat construction, ecosystem engineering and new options for trophic
relationships. The latter factors are discussed in the context of the resurgence of large
carbonate platforms, which occurred simultaneously with the diversification of benthic
communities. These did not only provide new hardground habitats for a variety of
epifaunal taxa, but also new options for grazing gastropods that supposedly fed from
microalgae growing on dasycladaceans and other macroalgae.Whereas we do not claim
that changing environmental conditions were generally unimportant for the recovery
of marine level-bottom communities, we note that their actual role can only be assessed
when tested against predictions of the biotic model.

Subjects Marine Biology, Paleontology, Taxonomy, Zoology
Keywords Biotic recovery, Diversification, Palaeoecology, Middle Triassic, End-Permian mass
extinction

How to cite this article Friesenbichler E, Hautmann M, Bucher H. 2021. The main stage of recovery after the end-Permian mass ex-
tinction: taxonomic rediversification and ecologic reorganization of marine level-bottom communities during the Middle Triassic. PeerJ
9:e11654 http://doi.org/10.7717/peerj.11654

https://peerj.com
mailto:evelyn.friesenbichler@pim.uzh.ch
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11654


INTRODUCTION
The end-Permian mass extinction was the most severe extinction event in Earth’s history
and witnessed the extinction of 81% (Stanley, 2016) to 96% (Raup, 1979) of marine species.
The aftermath of this event provides a unique test case to study how life rediversified after
such a massive loss of species richness and which evolutionary processes were involved. In
this study, these processes were analyzed in the ecological context in which they occurred.
Previous studies with a similar scope concentrated on the Early Triassic (e.g., Schubert &
Bottjer, 1995; Twitchett & Wignall, 1996;Hofmann, Hautmann & Bucher, 2013;Hofmann et
al., 2013; Hofmann, Hautmann & Bucher, 2015; Foster et al., 2015; Hautmann et al., 2015;
Foster et al., 2017; Foster, Danise & Twitchett, 2017), the time interval of ca. 5 Ma after the
end-Permian mass extinction. These studies revealed, among other things, that (1) the
recovery of the nekton (e.g., ammonoids and conodonts; Orchard, 2007; Brayard et al.,
2009; Brayard & Bucher, 2015) is remarkably different from that of the benthos (Hofmann,
Hautmann & Bucher, 2013; Hofmann et al., 2013; Hofmann et al., 2014; Friesenbichler et
al., 2019), (2) the main recovery phase of the benthos did not start before the Middle
Triassic (Nützel, 2005; Hautmann, 2007; Hofmann et al., 2014; Friesenbichler et al., 2021),
(3) benthic ecosystem recovery was not completed before the end of the Middle Triassic
(Hausmann & Nützel, 2015) and (4) the resurgence of large carbonate platforms and the
recovery of reefs during the Middle Triassic (e.g., Gaetani et al., 1981; Senowbari-Daryan
et al., 1993; Flügel, 2002) possibly played an important role in the shift of taxonomic
composition of benthic communities (Friesenbichler et al., 2019). Despite the fact that
the Middle Triassic was obviously a crucial time for the recovery of benthic marine
communities, corresponding studies (e.g., Payne, 2005; Payne et al., 2006a; Payne et al.,
2006b; Song et al., 2011; Velledits et al., 2011; Foster & Sebe, 2017; Friesenbichler et al., 2019;
Friesenbichler et al., 2021) are still scarce. Relevant questions in the ecological-evolutionary
context include: Was the delay in benthic recovery caused by adverse environmental
conditions during the Early Triassic (e.g., Hallam, 1991; Wignall & Twitchett, 1996; Pruss
& Bottjer, 2004; Song et al., 2014), or is it an intrinsic aspect of the diversification dynamics
in a largely vacated ecospace (Hautmann et al., 2015)? How did community structures,
ecological guilds and ecosystems change during the Middle Triassic, and how did these
changes translate into observed diversification patterns? Did the resurgence of large
carbonate platforms affect the guild structure, and if yes, which evolutionary processes
were involved in the colonization of this new habitat type? What was the relative role of
biotic processes such as interspecific competition, habitat alteration, ecosystem engineering
and niche construction versus abiotic environmental conditions as controlling factors in
diversification and ecosystem evolution? To which diversification model do the empirical
patterns conform, and which conclusions does this imply for the diversification of life in
general?

MATERIALS & METHODS
This study is based on data of macroinvertebrate occurrences compiled at the species level
from palaeontological studies on Early and Middle Triassic lithological units (Data S1).
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We preferred this approach over using data from the Palaeobiology Database because it
allowed us to control the correctness of the data. The evaluated studies include primarily
monographs with well documented faunal lists, but we also considered studies that
provide detailed information about macroinvertebrate occurrences including taxonomic
assignments. Prime criteria for our selection of studies are the quality of documentation
and the coverage of time intervals and environments. Moreover, we sought to include the
most diverse lithological unit of each time interval as representatives for the maximum
diversity that was possible at a given stage of recovery (see below).

We did not include any species for which we haven’t studied the original description and
figures. Taxa reported from thin sections or polished slabs were not considered because
taxonomic assignments of these taxa were in most cases difficult to verify. The complete
dataset includes 37 lithological units comprising 1562 species belonging to gastropods (695
species), bivalves (587 species), brachiopods (147 species), crinoids (33 species), echinoids
(31 species), crustaceans (25 species), ophiuroids (12 species), scaphopods (nine species),
serpulids (eight species), microconchids (six species), asteroids (four species), bryozoans
(four species) and polyplacophores (one species; Data S1). Our approach led to a certain
overemphasis of European lithological units (27) in comparison to those from Asia (five)
and America (five units from the USA), but the prevailing cosmopolitism of marine faunas
of this time (Kristan-Tollmann & Tollmann, 1982; Schubert & Bottjer, 1995) justifies the
priority of the quality of the documentation over geographic coverage.

Data preparation
The investigated lithological units represent different environments (Data S1). Investigated
environments include lagoons (including carbonate platform interiors), inner ramps
(above the fair-weather wave base), mid-ramps (between the fair-weather wave base and
the storm wave base) and outer ramps (below the storm wave base). The assignment of
faunas to a particular environment is based on the information given by the original authors
or inferred from the geological and sedimentological context. Studies on lithological units
that represent a range of different environments were only considered if the distribution
of species within these environments was clear. Therefore, we did not include the Ladinian
part of the Cassian Formation (Italy; Urlichs, 2017) in our analyses, although it probably
represents the highest benthic diversity of this time interval.

From the collected studies, fossil lists were compiled for each lithological unit. If
information about one lithological unit was taken from more than one study, attention
was paid on possible synonyms.

Each species was assigned to an ecological guild, usually based on information given by
the original authors. In cases where such information was missing, the ecology was inferred
from functional morphology, mode of life of Recent species and information from the
literature. Species included in this study represent shallow to moderately deep infaunal
suspension-feeders, shallow infaunal deposit-feeders, deep infaunal suspension-feeders,
endobyssate suspension-feeders, epibyssate suspension-feeders, free-lying suspension-
feeders, cemented epifaunal suspension-feeders, pedunculate suspension-feeders, epifaunal
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Table 1 List of ecological guilds and representing taxa.

Ecological guild Taxa

Shallow to moderately deep infaunal suspension-
feeders

Bivalves, inarticulate brachiopods

Shallow infaunal deposit-feeders Bivalves, scaphopods
Deep infaunal suspension-feeders Bivalves
Endobyssate suspension-feeders Bivalves
Epibyssate suspension-feeders Bivalves
Free-lying epifaunal suspension-feeders Bivalves
Cemented epifaunal suspension-feeders Bivalves, serpulids, inarticulate

brachiopods, bryozoans, microconchids
Pedunculate suspension-feeders Articulate brachiopods
Epifaunal herbivores and/or detritus-feeders Gastropods, echinoids, polyplacophors
Epifaunal carnivores Asteroids, crustaceans
Erected epifaunal suspension-feeders Crinoids
Epifaunal detrivore-suspension-feeders Ophiuroids

herbivores and/or detritus feeders, epifaunal carnivores, erected epifaunal suspension-
feeders and epifaunal detrivore-suspension-feeders (Table 1). Gastropods, echinoids and
ophiuroids were collectively assigned to epifaunal herbivores and/or detritus-feeders and
epifaunal detrivore-suspension-feeders, respectively. We are aware that this might be an
over-generalization, but the shell morphology of these taxa does not provide evidence for
more specialized feeding in extinct species, and the ecology of Recent species justifies this
assignment for most species. Species with uncertain ecology were considered for calculating
species richness but were not included in the ecological analyses.

Time resolution is provided at the substage level. For lithological units that extend across
substages, we assumed constant diversity across substages if the literature suggests that this
assumption is justified (e.g., data from the Germanic basin; Schmidt, 1928; Schmidt, 1938).

Data analyses
Conventional diversity studies (e.g., Sepkoski, 1984; Sepkoski, 1997) through deep time have
relied on higher taxonomic levels (genera, families, orders) as surrogates for the species
level; however this approach may cause a strong bias (Benton, 2001). Unfortunately,
compiling reliable global species level curves is virtually impossible because of the higher
incompleteness of the fossil record for species than for higher taxa and the necessity
of eliminating synonyms. We suggest here a feasible solution for circumventing these
problems. We use the maximum species richness among all lithological units in a given
time interval as a surrogate for the potentially highest recovery stage that biosphere could
reach at this time point after the end-Permian mass extinction (Figs. 1 and 2). In other
words, for each substage and ecological guild, the lithological unit that contains the highest
number of species was used as a reference point. Using this approach, synonyms are not a
major issue because it is irrelevant for the diversity of a given lithological unit whether the
same species is described from another lithological unit under a different name.
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Figure 1 Maximum species richness throughout the Early andMiddle Triassic. The Longobardian is
palish to indicate that the decrease of species richness is not a primary signal. Light grey bars on top indi-
cate the number of lithological units representing each time interval. In cases where information does not
come from all lithological units representing the corresponding time interval, the actual number of litho-
logical units from which information comes from is indicated by dark grey bars. Abbreviations: A, Aegean;
B, Bithynian; D, Dienerian; Fassan, Fassanian; G, Griesbachian; I, Induan; Illyr, Illyrian; Longobard, Lon-
gobardian; Pel, Pelsonian; Smith, Smithian. Absolute ages according to Cohen et al., (2013, updated) and
Ovtcharova et al. (2015). Information about the relative duration of substages come from Nawrocki &
Szulc (2000), Götz, Szulc & Feist-Burkhardt (2005), Galfetti et al. (2007), Ovtcharova et al. (2006) andWid-
mann et al. (2020). Symbols for ecological guilds redrawn after Aberhan (1994). See text for further expla-
nation.

Full-size DOI: 10.7717/peerj.11654/fig-1
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Figure 2 Maximum species richness in different environments. (A) lagoons, (B) inner ramps, (C) mid-
ramps and (D) outer ramps. The Longobardian is palish to indicate that the decrease of species richness
is not a primary signal. Light grey bars on top indicate the number of lithological units representing each
time interval. In cases where information does not come from all lithological units representing the cor-
responding time interval, the actual number of lithological units from which information comes from is
indicated by dark grey bars. Due to our data selection, the following guilds are not shown in this figure
although reported in polished slabs: shallow infaunal deposit-feeders in late Griesbachian-Smithian and
middle Spathian inner ramps (one species, respectively) and Smithian mid-ramps (one species), cemented
epifaunal suspension-feeders in early-middle Spathian inner ramps (one species) and Dienerian-Smithian
outer ramps (two species), epifaunal herbivores and/or detritus-feeders in early-middle Spathian (two
species) and late Pelsonian-early Illyrian (five species) outer ramps. Abbreviations: Spath, Spathian. Fur-
ther abbreviations, symbols for ecological guilds and information about the relative duration of substages
as in Fig. 1. See text for further explanation.

Full-size DOI: 10.7717/peerj.11654/fig-2
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Figure 3 Guild-species diversity throughout the Early andMiddle Triassic. Bars on top indicate the
number of lithological units representing each time interval. Abbreviations, symbols for ecological guilds
and information about the relative duration of substages as in Fig. 1. See text for further explanation.

Full-size DOI: 10.7717/peerj.11654/fig-3

Furthermore, we investigated relative changes in the ecological composition throughout
the Early and Middle Triassic (Figs. 3 and 4). For this purpose, the guild-species diversity
(number of species per guild) for each substage was calculated. To do so, we summarized
the number of species that occurred in all lithological units per substage. The sum of
species was corrected for double counts, meaning that a species that occurred in several
lithological units per substage was only counted once.

RESULTS
Figure 1 shows the huge differences in species richness between Early and Middle Triassic
benthic communities that hold across different environments (Fig. 2). The apparent
decrease of species richness in the Longobardian (late Ladinian; Figs. 1 and 2) is an artefact
of the scarcity of data that would disappear e.g., if time-resolved data from the Ladinian part
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Figure 4 Guild-species diversity of different environments. (A) lagoons, (B) inner ramps, (C) mid-
ramps and (D) outer ramps. Bars on top indicate the number of lithological units representing each time
interval. Due to our data selection, the following guilds are not shown in this figure although reported in
polished slabs: shallow infaunal deposit-feeders in late Griesbachian-Smithian and middle Spathian inner
ramps (one species, respectively) and Smithian mid-ramps (one species), cemented epifaunal suspension-
feeders in early-middle Spathian inner ramps (one species) and Dienerian-Smithian outer ramps (two
species), epifaunal herbivores and/or detritus-feeders in early-middle Spathian (two species) and late
Pelsonian-early Illyrian (five species) outer ramps. Abbreviations as in Figs. 1 and 2. Symbols for ecologi-
cal guilds and information about the relative duration of substages as in Fig. 1. See text for further expla-
nation.

Full-size DOI: 10.7717/peerj.11654/fig-4

of the Cassian Formation were available (see Methods). Currently, only one lithological
unit represents the middle and late Longobardian in Figs. 1 and 2. Scarce data may also
underlie changes in guild-species diversity seen in the Smithian (early Olenekian) and the
Aegean (early Anisian; Fig. 3).

Epifaunal herbivores and/or detritus feeders (i.e., gastropods) diversified most quickly
in the Middle Triassic. Shallow to moderately deep and deep infaunal, endobyssate,
epibyssate, free-lying, cemented and pedunculate suspension-feeders as well as shallow
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Figure 5 Maximum species richness throughout the Early andMiddle Triassic of ecological guilds.
(A–B) epifaunal herbivores and/or detritus-feeders, (C–D) shallow to moderately deep infaunal
suspension-feeders, endobyssate suspension-feeders, epibyssate suspension-feeders and pedunculate
suspension-feeders, (E-F) shallow infaunal deposit-feeders, deep infaunal suspension-feeders, free-lying
suspension-feeders and cemented microcarnivores, (continued on next page. . . )

Full-size DOI: 10.7717/peerj.11654/fig-5
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Figure 5 (. . .continued)
(G-H) cemented epifaunal suspension-feeders, erected epifaunal suspension-feeders, epifaunal carnivores
and epifaunal-detrivore-suspension-feeders. Number of species illustrated with linear scale (A, C, E and
G) and logarithmic scale (B, D, F and H). Filled symbols represent faunas that are more or as diverse as
older ones, whereas empty symbols represent faunas that are less diverse than older ones. Abbreviations
as in Fig. 1 and Fig. 2. Information about the relative duration of substages as in Fig. 1. See text for further
explanation.

infaunal deposit-feeders started diversifying at the same time (Fig. 5) but their species
richness levelled out at lower plateaus.

Bivalves, gastropods and brachiopods were the most diverse taxa in Early and Middle
Triassic benthic communities (Data S1). Bivalves had a relatively low and constant species
richness throughout the Early Triassic and diversified quickly in the Bithynian (early
middle Anisian) followed by a plateau (Figs. 6A and 7). Except for the Smithian Sinbad
Formation, the species richness of gastropods was low in the Early Triassic and started
to increase rapidly in the Bithynian and their species richness started to exceed that of
bivalves from the Pelsonian (late middle Anisian) onwards (Figs. 6B and 7). Brachiopods
also diversified in the Bithynian but not to the same extent as bivalves and gastropods
did, and their species richness maintained a Middle Triassic plateau (Fig. 6C and Fig. 7).
Especially gastropods but also brachiopods were relatively diverse in lithological units that
are associated with carbonate platforms (red lines in Figs. 6B and 6C). Figure 6D shows a
change in taxonomic composition from bivalve-dominated Early Triassic to increasingly
more gastropod-dominated Middle Triassic faunas. Almost all lithological units associated
with carbonate platforms are dominated by gastropods, which was already noticed by
Friesenbichler et al. (2019).

The guild-species diversity of epifaunal herbivores and/or detritus-feeders (i.e.,
gastropods) changed strongest among all ecological guilds during the studied time interval.
During the Early Triassic they were the third most diverse guild but they started to diversify
quickly during the Bithynian and became almost instantaneously the dominating guild in
Middle Triassic benthic communities (Fig. 3). The only environment where this trend is
not observed are outer ramps, where their species richness remained constant (Figs. 2D
and 4D). Figures 5A and 5B show that their rapid diversification started in the Bithynian
and continued throughout the Anisian.

Epibyssate suspension-feeders (chiefly pteriomorphian bivalves) were the most diverse
guild in the Induan and the Spathian (late Olenekian). During the Bithynian their absolute
richness increased whereas their relative richness decreased (Figs. 1 and 3, 5C, 5D) and
continued to decrease slightly throughout theMiddle Triassic. This decrease is also apparent
in lagoons, inner and mid-ramps, whereas in outer ramps their relative diversity increased
slightly (Fig. 4).

Shallow to moderately deep infaunal suspension-feeders (bivalves and inarticulate
brachiopods) were among themost diverse guilds during the Early Triassic but their relative
richness decreased gradually after the Aegean (Figs. 1 and 3). The same trend occurred
in the guild-species diversity in lagoons, mid- and outer ramps; however, in mid-ramps
the relative species richness of shallow to moderately deep infaunal suspension-feeders
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Figure 6 Species richness of the most diverse taxa and the gastropod/bivalve-ratio throughout the
Early andMiddle Triassic. (A) bivalves, (B) gastropods, (C) brachiopods and (D) the gastropod/bivalve-
ratio. Each line represents one lithological unit. Red lines mark lithological units and ratios associated with
carbonate platforms. Abbreviations as in Fig. 1 and Fig. 2. Information about the relative duration of sub-
stages as in Fig. 1. (A) modified after Friesenbichler et al. (2021) and (D) modified after Friesenbichler et al.
(2019). See text for further explanation.

Full-size DOI: 10.7717/peerj.11654/fig-6

was higher in the late Illyrian (late Anisian) to late Fassanian (early Ladinian) interval
than in the late Pelsonian to early Illyrian (Figs. 4A, 4C and 4D). In inner ramp settings,
the relative amount of shallow to moderately deep infaunal suspension-feeders decreased
already during the Spathian. Their main recovery phase started in the Bithynian but the
diversification rate seemed to slow down afterwards (Figs. 5C and 5D).

At the beginning of the Spathian, the relative richness of endobyssate suspension-feeders
(bivalves) started to increase, but after the Aegean, it decreased continuously (Fig. 3).
The same trend occurred in lagoons and outer ramps. In inner and mid-ramp settings,
the relative amount of endobyssate suspension-feeders was more or less constant after
the Spathian (Fig. 4). The species richness of endobyssate suspension-feeders increased
constantly during the Early Triassic, followed by a rapid rise in species richness in the
Bithynian. However, after this increase their species richness remained constant (Figs. 5C
and 5D).

The relative amount of pedunculate suspension-feeders (articulate brachiopods)
fluctuated. They were relatively diverse during the Griesbachian (early Induan) and after
the Bithynian but in between they were rather uncommon. After the early Illyrian they
became gradually less diverse (Fig. 1). In Early Triassic mid-ramp settings, they are only
recorded from the Griesbachian. Their relative importance was high during the Bithynian,
but afterwards they became less common. In outer ramps from the Early Triassic, this guild
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Figure 7 Maximum species richness of bivalves, gastropods and brachiopods throughout the Early
andMiddle Triassic. (A–B) in general and (C–D) in mid-ramps. Number of species illustrated with linear
scale (A and C) and logarithmic scale (B and D). Filled symbols represent faunas that are more or as di-
verse as older ones, whereas empty symbols represent faunas that are less diverse than older ones. Abbrevi-
ations as in Fig. 1 and Fig. 2. Information about the relative duration of substages as in Fig. 1. See text for
further explanation.

Full-size DOI: 10.7717/peerj.11654/fig-7

is only reported from the Griesbachian and Dienerian (late Induan); however, in Middle
Triassic outer ramps pedunculate suspension-feeders were the most diverse guild (Fig.
4D). They experienced a rapid rise in diversification in the Bithynian (Figs. 5C and 5D).

Other guilds were rather uncommon during the Early and Middle Triassic or not
represented in all time slices (Figs. 1 and 3). Deep infaunal suspension-feeders (siphonate
bivalves) are first reported from the Spathian (Fig. 3) and showed a weak increase in species
richness in the Bithynian (Figs. 5E and 5F). The species richness of shallow infaunal deposit-
feeders (i.e., nuculid bivalves and scaphopods) and free-lying epifaunal suspension-feeders
(bivalves) increased in the Bithynian but stayed constant during the remaining of the
Middle Triassic (Figs. 5E and 5F). Cemented epifaunal suspension-feeders (e.g., oysters,
serpulids, microconchids) and erected epifaunal suspension-feeders (i.e., crinoids) also
started to diversify during the Bithynian, but their later diversification pattern is poorly
documented (Figs. 5G and 5H). Epifaunal detrivore-suspension feeders (i.e., ophiuroids)
and epifaunal carnivores (i.e., asteroids and crustaceans) started to diversify in the Aegean
or Bithynian (Figs. 5G and 5H).

A remarkable aspect of the guild analysis is that the explosive Anisian diversity
increase was not associated with the evolution of new benthic guilds, confirming previous
observations by Foster & Twitchett (2014).
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DISCUSSION
Possible biases
Our data indicate an explosive increase in benthic diversity at the beginning of the Middle
Triassic that followed an extended Early Triassic lag phase (Fig. 1). Can this pattern result
from a bias in preservation, rock exposure or research history?

A preservation bias in Early Triassic strata has often been proposed as a possible reason
for the generally low species richness at that time (e.g., Erwin, 1996;Wignall & Benton, 1999;
Peters & Foote, 2002; Nützel & Schulbert, 2005; Hautmann et al., 2011), but well preserved
Early Triassic benthic faunas have been reported worldwide, e.g., from the western USA
(Batten & Stokes, 1986; Hautmann & Nützel, 2005; Nützel & Schulbert, 2005; Pruss, Payne
& Westacott, 2015; Brayard et al., 2017), South China (Kaim et al., 2010; Hautmann et al.,
2011; Hautmann et al., 2015; Foster et al., 2019), Russia (Shigeta et al., 2009) and Pakistan
(Wasmer et al., 2012; Kaim et al., 2013); even silicified faunas are known from the Early
Triassic of Oman (Twitchett et al., 2004; Wheeley & Twitchett, 2005; Oji & Twitchett, 2015)
and Svalbard (Foster, Danise & Twitchett, 2017). However, all these well preserved Early
Triassic benthic communities are much less diverse than communities from comparable
settings in the Middle Triassic, so their low diversity is probably a primary signal.

Except for taxonomic oversplitting and synonyms (see Methods), the history of research
and the size of exposure influence our knowledge on species richness. In our data, the most
extreme potential bias in this respect is between the stratigraphically adjacent data points
from the Bithynian Tubiphytes-Limestone Member (Romania) and the Jena Formation
(Germany), which corresponds to the strongest increase in diversity within the studied
time interval. The described fauna from the Tubiphytes-Limestone Member comes from
only 1.5 m3 of rock material (Gradinaru & Gaetani, 2017; Nützel, Kaim & Grădinaru,
2018; Friesenbichler et al., 2021), and rarefaction analysis indicates that the bivalve fauna
is actually insufficiently sampled (Friesenbichler et al., 2021). In contrast, the Germanic
Triassic looks back on a long history of research and is represented by a large outcrop area,
which should correspond to a significantly higher completeness of sampled biodiversity.
However, correcting the data point from the Tubiphytes-Limestone Member towards a
higher diversity would solely shift the starting point of the main diversity increase from the
middle to the early Bithynian, but not alter the overall shape of the diversity trajectory.

Extrinsic or intrinsic control?
The observation of an Early Triassic lag phase in the recovery from the end-Permian
mass extinction is not new. Schubert & Bottjer (1995) were among the first to demonstrate
this delay in rediversification based on regional data of post-extinction communities
in the western USA. They suggested that the ‘‘long pre-radiation period’’ could be due
(1) to the extraordinarily magnitude of the end-Permian mass extinction and/or (2)
the persistence of environmental stress. The first explanation implies an evolutionary
slow-down of diversification rates that correlates with the extinction magnitude, possibly
because there is a positive feedback between species richness and rates of speciation, which
becomes ineffective if diversity falls below a critical threshold (Solé et al., 2010; Hautmann
et al., 2015). The second (environmental) explanation has found disproportionally more
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attention in the literature, which offers manifold scenarios of poisonous, acidic, oxygen
deficient and lethally hot oceans that prevented life from re-diversifying after the great dying
at the end of the Permian (e.g., Wignall & Twitchett, 1996; Payne et al., 2007; Joachimski
et al., 2012; Sun et al., 2012; Song et al., 2014). Support for the second explanation has
been sought in the demonstration of adverse environmental conditions during the Early
Triassic from geochemical or palaeontological proxies (e.g., Payne et al., 2010; Sanei,
Grasby & Beauchamp, 2012; Schobben et al., 2014; Tian et al., 2014; Rothman et al., 2014;
Wei et al., 2015), but the idea of pervasive hostile conditions in the Early Triassic has
also been criticized for being at variance with a variety of observations. These include:
(1) benthic communities from various environmental settings and palaeogeographically
distant regions show little indications for unusual environmental stress (Twitchett et al.,
2004; Hautmann et al., 2011; Hautmann et al., 2015; Hofmann, Hautmann & Bucher, 2013;
Hofmann et al., 2013; Hofmann et al., 2014); (2) ichnofaunas were diverse and complex
soon after the extinction event in different palaeolatitudes (Beatty, Zonneveld & Henderson,
2008; Hofmann et al., 2011); (3) shell sizes of many Early Triassic gastropods reached large
sizes (Brayard et al., 2010; Brayard et al., 2011a; Brayard et al., 2015); (4) the diversification
of ammonoids was extremely rapid and displayed a cyclic pattern in time (Brayard et al.,
2009; Brayard & Bucher, 2015). (5) biomass productivity of marine benthos was high in
spite of low taxonomic diversity (Brosse et al., 2019) and (6) marine apex predators were
present throughout the Early Triassic (Scheyer et al., 2014). This criticism does not deny
the existence of environmental stress in the Early Triassic, but it suggests that it was locally
and temporarily restricted and had differential impacts on the benthos and nekton.

Another class of explanations assumes that a breakdown of primary production in the
Early Triassic caused a collapse of the food pyramid. According to these models, the low
diversity in the Early Triassic corresponds to a time of reduced primary production (e.g.,
Grasby et al., 2020) and the recovery of marine life required a successive rebuilding of
trophic levels (Chen & Benton, 2012, p. 379). However, Chen & Benton (2012) suggested
that this model predicts a logistic rediversification curve, which would be at variance with
the extended Early Triassic lag phase. Palaeontological data also demonstrate the presence
of apex predators in the Early Triassic (Scheyer et al., 2014), which indicates that trophic
levels between the base and the top of the food pyramid were at least partly intact. We add
here that low primary production per se does not provide an explanation for low diversity.
Theory rather predicts that selection for fitness in resource-poor environments favours
specialized, efficient populations and therefore results in high diversity (Valentine, 1971).
The high diversity of Recent coral reefs and deep-sea communities (Grassle & Maciolek,
1992; Veron et al., 2009) are well-known examples that conform to this prediction.

In contrast to the idea of environmentally driven delay (EDD) models, the biotic
interaction (BI) model does not only provide an explanation for the delayed recovery but
it also makes a prediction for the diversification pattern that followed the initial lag phase.
Mathematically, the BI model can be written as a differential equation that can be solved
numerically. It contains a hyperbolic term that accounts for the positive feedback of species
interactions on rates of diversification, which is usually combined with a damping term that
limits the increase when the effects of niche pre-emption and ecological crowding become
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Figure 8 Diversification curves. (A–B) Logistic with number of species illustrated with linear scale (A)
and logarithmic scale (B). (C–D) Hyperbolic-damped with number of species illustrated with linear scale
(C) and logarithmic scale (D).

Full-size DOI: 10.7717/peerj.11654/fig-8

dominant (Solé et al., 2010, equation 10; Hautmann et al., 2015, equation 1). In contrast to
the more familiar logistic model (Sepkoski, 1978; 1984), the shape of the resulting curve
is decidedly asymmetrical (compare Figs. 8A and 8C). It displays an extended early (left)
branch, which represents the prolonged lag phase when feedback processes were ineffective
due to low species richness, followed by an explosive increase that stops relatively suddenly
when ecospace is filled (Fig. 8C). However, the exact shape of the curve depends upon
two parameters: (1) the starting diversity that can be expressed as percentage of the
carrying capacity or as the percentage of surviving species, and (2) the proportionality
factor, which represents the feedback strength. Depending on these two parameters, which
are insufficiently known, the shape of the hyperbolic damped diversification curve can
appear relatively similar to a logistic shape under certain conditions, but a qualitative
difference between the two models always remains. This difference can be visualized in
semilogarithmic plots, where a hyperbolic curve is reflected by an initial increase in the
slope of the diversification curve, whereas a logistic curve is represented by a decreasing
slope (Figs. 8B and 8D).

The majority of the semilogarithmic plots presented in this study (Figs. 5 and 7) is
conform to the hyperbolic-damped (= BI) model. This applies to the diversification curves
of bivalves, gastropods and brachiopods in general, bivalves frommid-ramp settings, as well
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as shallow infaunal deposit-feeders (i.e., nuculid bivalves and scaphopods) and free-lying
epifaunal suspension feeders (some bivalves), with their sudden increase in species richness
during the Bithynian that is followed by a plateau, which indicates a hyperbolic-damped
increase in species richness. Likewise, the diversification trends of gastropods in mid-
ramp settings, epibyssate suspension-feeders (some bivalves), epifaunal herbivores and/or
detritus-feeders (i.e., gastropods), erected epifaunal suspension-feeders (i.e., crinoids) and
pedunculate suspension-feeders (i.e., articulate brachiopods) show a sudden increase in
species richness in the Bithynian, which is as indicative of a hyperbolic trajectory. The data
from some other guilds do not provide an unequivocal support for either the hyperbolic
or the logistic model. This concerns shallow to moderately deep infaunal, endobyssate
and cemented epifaunal suspension-feeders (e.g., some bivalves, serpulids) as well as
epifaunal detrivore-suspension-feeders (i.e., ophiuroids). The remaining taxa and guilds
(i.e., brachiopods of mid-ramp settings, deep infaunal suspension-feeders and epifaunal
carnivores like asteroids and crustaceans) do not match with any model, possibly because
of their scarcity in our dataset.

A conclusion from these observations is that they suggest a strong effect of biotic
interactions on rates of diversification. This is the prime difference to the standard logistic
model, which makes a neutral assumption with respect to biotic interactions. In the logistic
model, the initially exponential increase is solely an effect of an increasing number of species
that each have constant diversification rates. This assumption is clearly incompatible with
the explosive diversification revealed in our dataset (Fig. 1). Notably, this is not an isolated
observation.Miller & Sepkoski (1988) found ‘‘hyperexponential bursts’’ in the Phanerozoic
diversity curve of bivalves during the Ordovician diversification and following the end-
Permian and end-Cretaceous mass extinctions, which likely represent times of hyperbolic
increase. Markov & Korotayev (2007) even proposed that the Phanerozoic biodiversity
curve from which Sepkoski (1978); Sepkoski, 1984) derived his model is actually better
described by a hyperbolic model.

Implicit in these finds is that we cannot expect an early rediversification if the feedback
mechanism between richness and rates of diversification was ineffective after an extreme
diversity crash, whether or not the environment was favourable. Does this conclusion
refute the EDD model? It partly does, because it means that at least a portion of the lag
phase is always attributed to BI. It is therefore incorrect to ascribe the full length of the lag
phase to EDD. However, it is currently also uncertain whether the full length of the Early
Triassic lag phase can be explained solely by the BI model. The length of the lag phase in
this model depends upon two parameters, the starting diversity and the proportionality
factor, which are not precisely known. It is therefore possible that adverse environmental
conditions delayed or interrupted the early recovery whereas the BI model explains a
subsequent extension of the lag phase. Clarifying the exact parameters in the BI model
equation for different taxa is required for estimating the length of the intrinsic delay and
thus the potential for EDD as an additional explanation for the Early Triassic lag phase.

From an evolutionary viewpoint, the most relevant aspect is the nature of biotic
interactions that cause positive feedbacks between species richness and rates of
diversification. Solé et al. (2010) were vague with respect to possible feedback processes,
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suggesting that increasing numbers of ecological interactions might provide the context for
new opportunities to speciate, but they also noted that this process might operate too slowly
to explain explosive diversification. Alternatively, they proposed that the growing number
of potential interactions might drive the increase in the number of species. Hautmann et
al. (2015) reconsidered the problem and identified interspecific competition as a potential
main driver of hyperbolic-damped diversification curves. Accordingly, promotion of niche
differentiation is the dominant outcome of interspecific competition until a critical level
of ecological saturation has been reached, at which further division of niche space requires
increasingly elaborated adaptations that are more and more unlikely to evolve. Above
such a saturation limit, outcompeting of existing species becomes the prevalent effect
of competition, which damps further diversification. A strength of this model is that it
correctly predicts different diversification trajectories for taxa with supposedly different
intensities of interspecific competition, for which slowly recovering bivalves contrasted
by explosively rediversifying ammonoids have been cited as an example (Hautmann et
al., 2015). The fact that the phase of the hyperbolic diversity increase was not associated
with the origin of new guilds further supports the competition-driven scenario, because
competition is most intense between species with similar lifestyles. However, Hautmann
et al. (2015) also noted that many other aspects in addition to competition affect actual
patterns of diversification. In the following, we discuss some possible additional factors
that were linked to the resurgence of carbonate platforms in the Middle Triassic.

Habitat construction and biotic interactions on resurging large
carbonate platforms
The recovery of large carbonate platforms after the end-Permian mass extinction started
in the Anisian (early Middle Triassic; Gaetani et al., 1981; Senowbari-Daryan et al., 1993;
Berra, Rettori & Bassi, 2005), and coincided with the main diversification of most benthic
marine invertebrate taxa (Figs. 5 and 7). One of the oldest Triassic carbonate platforms is
represented by the Tubiphytes-Limestone Member of the Caerace Formation in Romania.
This Bithynian biostrome is dominated by the micro-encruster Tubiphytes and large
volumes of synsedimentary cements (Popa, Panaiotu & Grǎdinaru, 2014) and provided the
basis for a rich hardground community that is much more diverse than contemporaneaus
level-bottom faunas (Gradinaru & Gaetani, 2017; Forel & Grădinaru, 2018;Nützel, Kaim &
Grădinaru, 2018; Friesenbichler et al., 2021). Its high amount of newly described species is
potentially related to the new habitat type. This applies to the dominant taxa, i.e., epibyssate
bivalves, gastropods and brachiopods (Data S1) that were well adapted to the hardgrounds
provided by the Tubiphytes-microbial buildup (Friesenbichler et al., 2021). Further Middle
Triassic Tubiphytes-dominated buildups are known from the Iranian carbonate mounds
of Nakhlak (late Bithynian; Berra et al., 2012), the Italian Camorelli platform (Bithynian-
Pelsonian; Gaetani & Gorza, 1989) and Dont Formation (Pelsonian-Illyrian; Blendinger,
1983; Fois & Gaetani, 1984), the Hungarian Aggtelek reef (Pelsonian-Ladinian; Velledits
et al., 2011; Velledits, Hips & Pero, 2012) and Chinese reefs (Anisian; Enos, Wei & Yan,
1997; Lehrmann, 1999; Enos et al., 2006; Payne et al., 2006a; Payne et al., 2006b; Lehrmann
et al., 2007). The latter flourished on the Great Bank of Guizhou, an isolated carbonate
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platform in the Nanpanjiang Basin, and represent the oldest Triassic platform margin reefs
(Lehrmann, Wei & Enos, 1998; Payne et al., 2006a; Payne et al., 2006b).

Reefs existed throughout the Triassic, but their composition changed stepwise (see
Martindale, Foster & Velledits, 2019). The oldest Triassic reefs are represented bymicrobial-
metazoan reefs that formed immediately after the end-Permian mass extinction (e.g.,
Lehrmann et al., 2001; Flügel, 2002; Pruss et al., 2006; Wu et al., 2007; Kiessling & Simpson,
2011; Kershaw et al., 2011; Ezaki, Liu & Adachi, 2012; Yang et al., 2015; Friesenbichler et
al., 2018). The first metazoan reefs are reported from the Olenekian (late Early Triassic)
and represent small sponge biostromes and bivalve build-ups (Pruss, Payne & Bottjer,
2007; Brayard et al., 2011b; Marenco et al., 2012). Reefs developed quickly in the middle
Anisian (Flügel, 2002) and in addition to Tubiphytes other organisms such as sphinctozoans
(segmented calcareous sponges), dasycladacean algae, corals, and in some cases also bivalves
became important reef-builders (Flügel, 2002; Fürsich & Hautmann, 2005; Senowbari-
Daryan & Link, 2011). These organisms acted as ecological engineers and created new
niches that provided opportunities for additional species. Well-documented examples are
bivalve-crinoid reef mounds from the Trochitenkalk Formation (middle Illyrian, Germany;
e.g., Hagdorn, 1978; Sellwood & Fürsich, 1981; Hagdorn & Mundlos, 1982; Flügel, 2002;
Hagdorn, 2004; Hagdorn & Nitsch, 2009), where shell beds were incrusted by cementing
bivalves that provided hardgrounds for the colonization by crinoids. These dm-scaled
bioherms provided new habitats for brachiopods, serpulids, other bivalves and boring
worm-like organisms.

The sudden increase in species richness of gastropods is another feature of the Middle
Triassic main stage of marine recovery (Figs. 1, 2, 3 and 4, 5A,5B, 6B and 7) that was at least
partly linked to the resurgence of large carbonate platforms. As shown by Friesenbichler et
al. (2019) fig. 14, the ratio of gastropod versus bivalve species is much higher in carbonate
platforms than in other settings. However, the data of Friesenbichler et al. (2019) might
even underestimate the true signal. Roden et al. (2020) compared the diversity of the
Cassian Formation, an exceptional Triassic lagerstätte, with the diversity of the Wetterstein
Formation, which is environmentally comparable and approximately of the same age. They
found that all mollusks were underrepresented in the Wetterstein Formation by factor 7
in comparison to the Cassian Formation, but gastropods by the astonishing factor 87. The
cause for the affinity of gastropods to carbonate platform facies remains speculative, not
at least because the life habit and feeding mode of gastropods cannot be deduced from the
shell morphology. In spite of this limitation, we put forward the hypothesis that the quick
diversification of gastropods in carbonate platform environments might have been related
to the proliferation of dasycladacean algae, which were dominant carbonate producers in
many settings where gastropods became diverse.

Palaeoecological studies have previously suggested that at least some Triassic gastropods
lived in association with macroalgae (Fürsich & Wendt, 1977; Sellwood & Fürsich, 1981;
Stiller, 2001; Hagdorn, 2004; Nützel & Schulbert, 2005; Diedrich, 2010; Urlichs, 2014). This
conclusion was derived from the ecology of Recent macroalgae (e.g., Davies, 1970; Taylor,
1971; Thomassin, 1971; Brasier, 1975; Poulicek, 1985; Sánchez-Moyano et al., 2000;Chemello
& Milazzo, 2002; Antoniadou & Chintiroglou, 2005; Pitacco et al., 2014; Duarte et al., 2015;
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Chiarore et al., 2017), on which gastropods grazed (e.g., Underwood, 1980; Johnson &
Mann, 1986; Williams, 1993) and thereby enhance the photosynthetic capacity of the host
algae (Amsler et al., 2015). The Triassic fossil record of non-calcifying algae is virtually
non-existent, but the diversification and abundance of dasycladaceans at the beginning
of the Middle Triassic is well established. In our dataset, only 5 out of 37 lithological
units contain information about the number of Dasycladacea species associated with the
investigated faunas (e.g., Salomon, 1895; Ogilvie Gordon, 1927; Schmidt, 1928; Schmidt,
1938; Granier & Grasović, 2000; Russo et al., 2000; Emmerich et al., 2005; Piros & Preto,
2008). Given the small number of datapoints, the positive correlation between the richness
of dasycladaceans and gastropods is statistically not robust (r2= 0.25; p= 0.32), but it is
strengthened by an indirect line of evidence. Middle Triassic gastropod diversity decreased
towards deeper water settings (Figs. 2 and 4), along with declining light. Because light limits
the distribution of algae, it is certain that this trend was matched by decreasing macroalgae
abundance.

CONCLUSIONS
Data on species richness from 37 Early and Middle Triassic lithological units containing
level-bottom communities indicate that most of the analyzed taxa and guilds followed a
hyperbolic-damped diversity trajectory, with an extended Early Triassic lag phase followed
by an explosive increase in diversity at the beginning of the Middle Triassic that levelled
out in the Ladinian. The Early Triassic delay in rediversification of benthic organisms
has conventionally been attributed to ongoing environmental stress at that time, but
the explosive (hyperbolic rather than exponential) diversity increase at the beginning of
the Middle Triassic cannot be explained by relaxation of environmental stress. Our data
therefore support amodel in which the intensity of biotic interactions determines the rate of
diversification. Accordingly, the Early Triassic delay in rediversification represents the time
in which the intensity of biotic interactions was too low for driving a major diversification
because of the dramatic loss of species during the end-Permianmass extinction. Conversely,
the hyperbolic Middle Triassic diversity increase occurred when self-accelerating processes
became effective, and it stopped when niche-crowding prevented further diversification.
This pattern is in agreement with a competition-driven diversificationmodel that predicts a
reversal in the effects of interspecific competition on diversification rates from accelerating
to damping. Apart from interspecific competition, other ecological feedbacks might have
stimulated the hyperbolic increase in diversity during the Anisian. Carbonate platforms,
which reappeared simultaneously with themain stage of benthic rediversification, provided
the ecological context for rich hardground communities. The coincidence of the resurgence
of carbonate platforms and the evolution of reef-builders with the main diversification of
benthic faunas suggests a positive loop effect, which is confirmed by several case studies.
When reefs diversified, other reef-builders became abundant and acted as ecological
engineers and niche constructers, providing new habitats for additional species. The quick
diversification of gastropods in Middle Triassic carbonate platforms might be related to the
proliferation of macroalgae, which provided much improved opportunities for grazing. A
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strength of the biotic interaction model is that it correctly predicts both an extended lag
phase and a hyperbolic increase in diversity thereafter, whereas environmental scenarios
fail to predict the second aspect.
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