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ABSTRACT
Grouping large genomic fragments assembled from shotgun metagenomic sequences
to deconvolute complex microbial communities, or metagenome binning, enables
the study of individual organisms and their interactions. Because of the complex
nature of these communities, existing metagenome binning methods often miss a
large number of microbial species. In addition, most of the tools are not scalable to
large datasets. Here we introduce automated software called MetaBAT that integrates
empirical probabilistic distances of genome abundance and tetranucleotide
frequency for accurate metagenome binning. MetaBAT outperforms alternative
methods in accuracy and computational efficiency on both synthetic and real
metagenome datasets. It automatically forms hundreds of high quality genome bins
on a very large assembly consisting millions of contigs in a matter of hours on a
single node. MetaBAT is open source software and available at https://bitbucket.org/
berkeleylab/metabat.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Metagenome binning, MetaBAT

INTRODUCTION
High throughput metagenome shotgun sequencing is a powerful tool for studying

microbial communities directly taken from their environment, thereby avoiding the

requirement of cultivation or the biases that may arise from it. Assembling short

metagenome shotgun reads into larger genomic fragments (contigs) by short read

assemblers (Pevzner & Tang, 2001; Pevzner, Tang & Waterman, 2001) often fails to produce

full-length genomes. Predicting draft genomes from assembled metagenomic contigs by

metagenome binning provides a substitute for full-length genomes (Mande, Mohammed

& Ghosh, 2012; Mavromatis et al., 2007). Despite their fragmented nature, these draft

genomes are often derived from individual species (or “population genomes” representing

consensus sequences of different strains, (Imelfort et al., 2014), and they approximate full

genomes as they can contain a near full set of genes.

Two metagenome binning approaches have been developed (reviewed in Mande,

Mohammed & Ghosh, 2012). The supervised binning approach uses known genomes as

references and relies on either sequence homology or sequence composition similarity
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for binning (Krause et al., 2008; Wu & Eisen, 2008). This approach does not work well

on environmental samples where many microbes do not have closely related species with

known genomes. In contrast, the unsupervised approach relies on either discriminative

sequence composition (Teeling et al., 2004b; Yang et al., 2010) or species (or genomic

fragments) co-abundance (Cotillard et al., 2013; Le Chatelier et al., 2013; Nielsen et al.,

2014; Qin et al., 2012; Wu & Ye, 2011) or both (Albertsen et al., 2013; Alneberg et al., 2014;

Imelfort et al., 2014; Sharon et al., 2013; Wrighton et al., 2012; Wu et al., 2014) for binning.

Recent studies have shown that species co-abundance feature can be very effective to

deconvolute complex communities if there are many samples available (Albertsen et al.,

2013; Alneberg et al., 2014; Cotillard et al., 2013; Imelfort et al., 2014; Karlsson et al., 2013;

Le Chatelier et al., 2013; Nielsen et al., 2014; Sharon et al., 2013). A few recent methods,

particularly CONCOCT (Alneberg et al., 2014) and GroopM (Imelfort et al., 2014), are also

fully automated binning procedures.

Many of the above tools do not scale well to large metagenomic datasets. In this study,

we developed MetaBAT (Metagenome Binning with Abundance and Tetra-nucleotide

frequencies) as an efficient, fully automated software tool that is capable of binning

millions of contigs from thousands of samples. By using a novel statistical framework

to combine tetra-nucleotide frequency (TNF) and contig abundance probabilities, we

demonstrated that MetaBAT produces high quality genome bins.

MATERIALS AND METHODS
An overview of MetaBAT software and its probabilistic models
As a pre-requisite for binning, the user must create BAM files by aligning the reads of each

sample separately to the assembled metagenome (Fig. 1 steps from 1 to 3). MetaBAT takes

an assembly file (fasta format, required) and sorted bam files (one per sample, optional)

as inputs. For each pair of contigs in a metagenome assembly, MetaBAT calculates

their probabilistic distances based on tetranucleotide frequency (TNF) and abundance

(i.e., mean base coverage), then the two distances are integrated into one composite

distance. All the pairwise distances form a matrix, which then is supplied to a modified

k-medoid clustering algorithm to bin contigs iteratively and exhaustively into genome bins

(Fig. 1).

We use tetranucleotide frequency as sequence composition signatures as it has been

previously shown that different microbial genomes have distinct TNF biases (Mrazek,

2009; Pride et al., 2003; Saeed, Tang & Halgamuge, 2012; Teeling et al., 2004a). To

empirically derive a distance to discriminate TNFs of different genomes, we calculated

the likelihood of inter- and intra-species Euclidean distance (Deza, 2012) by using 1,414

unique, complete genome references from NCBI (Fig. 2A). This empirically derived

distance is termed Tetranucleotide frequency Distance Probability (TDP).

To evaluate the effect of contig sizes on inter-species distance, we obtained posterior

probability distributions of inter-species distance with several fixed sizes and observed

better inter-species separation as contig size increases (Fig. 2B). As contigs in real

metagenome assemblies have various sizes, we then modeled TDP between contigs of
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Figure 1 Overview of the MetaBAT pipeline. There are three preprocessing steps before MetaBAT
is applied: (1) A typical metagenome experiment may contain many spatial or time-series samples,
each consisting of many different genomes (different color circles). (2) Each sample is sequenced by
next-generation sequencing technology to form a sequencing library with many short reads. (3) The
libraries may be combined before de novo assembly. After assembly, the reads from each sample must
be aligned in separate BAM files. MetaBAT then automatically performs the remaining steps: (4) For
each contig pair, a tetranucleotide frequency distance probability (TDP) is calculated from a distribution
modelled from 1,414 reference genomes. (5) For each contig pair, an abundance distance probability
(ADP) across all the samples is calculated. (6) The TDP and ADP of each contig pair are then combined,
and the resulting distance for all pairs form a distance matrix. (7) Each bin will be formed iteratively and
exhaustively from the distance matrix.

different sizes by fitting a logistic function to reflect the dynamic nature of the non-linear

relationship between Euclidean TNF distance and TDP across different contig sizes. The

results (Figs. 2C and 2D) suggest that the values of two parameters of the model, b and c

are unstable if the size of either contig is very small (<2 kb) and one should be cautious to

allow smaller contigs to be binned.

Although contigs originating from the same genome are expected to have similar

sequence coverage, i.e., genome abundance, the coverage of contigs can vary significantly

within a library due to biases originated from the current sequencing technology

(Benjamini & Speed, 2012; Harismendy et al., 2009; Nakamura et al., 2011; Ross et al.,

2013). As illustrated in Fig. 2E, the observed coverage variance derived from data consisting

of isolate genome sequencing projects (total 99 from IMG Database (Markowitz et al.,

2012), henceforth referred as the IMG dataset) significantly deviate from the theoretical

Poisson distribution, consistent with the notion that both the variance and the mean

should be modelled (Clark et al., 2013). For computational convenience, we chose

the normal distribution as an approximation since it fits the observation much better
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Figure 2 Probabilistic modeling of TNF and Abundance distances. (A–D) TNF distance modeling. (A) Empirical probabilities of intra- (solid gray
line) or inter- (dotted gray line) species Euclidean TNF distance are estimated from sequenced genomes. The posterior probability of two contigs
originated from different genomes given a TNF distance is shown as a red solid line. All probabilities are calculated using a fixed contig size of 10 kb.
(B) Different posterior inter-species probabilities for two equal-size contigs under various contig sizes. (C, D) The estimation of parameters for a
logistic curve with two contigs of different sizes. x and y axis represent the lengths of short and long contig, respectively, and z axis represents the
estimates of each parameter b or c in a logistic curve, TDP = 1/(1 + exp(−(b + c ∗ TNF))), where TNF and TDP represents the Euclidean TNF
distance and probabilistic TNF distance, respectively. (E–F) Abundance distance modeling. (E) The relationship between mean and variance of base
depths (coverage) which were shown in x and y axis, respectively. Each dot represents this relationship in each genome, which calculated by median
of mean and variance of the coverage. Theoretical Poisson model was shown as blue line and normal model was shown as red line. (F) Probabilistic
abundance distance between two contigs. The shaded area represents the abundance distance between two contigs in a given library.

(Fig. 2E). To compute the abundance distance of two contigs in one sample, we use the area

not shared by their inferred normal distributions with given coverage mean and variance

(Fig. 2F). A geometric mean of the distances for all samples is used for the final abundance

distance probability (ADP) of two contigs. In addition, we applied a progressive weighting

mechanism to adjust the relative strength of the information from abundance distance,

meaning that we put more weight on abundance distance when it was calculated from

many samples (see below).

We then integrate TDP and ADP of each contig pair as the following:

P(µ1,σ
2
1 ,µ2,σ

2
2 ) =


max(TDP,ADP), if TDP > 0.05

ADP · w + TDP · (1 − w), otherwise
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where w = min[log(n + 1)/log(m + 1),α] · n,m, and α represent the number of samples,

a large number (100 as the default), and the maximum weight of ADP (0.9 as the default),

respectively. For instance, in the default setting, the weight would be about 0.5 when the

number of samples is 10 and TDP is less than 0.05. The resulting distance matrix is used for

binning (see below).

Tetranucleotide frequency probability distance (TDP)
To establish empirical probabilities of intra- and inter-species for tetranucleotide

frequency distance, we downloaded 1,414 unique, completed bacterial genomes from

the NCBI database and shredded them into fragments ranging from 2.5 kb to 500 kb. Next,

we obtained 1 billion random contig pairs from within or between genomes. The empirical

posterior probability that two contigs are from different genomes is given as the following:

P(T|D) =
P(T)P(D|T)

P(T)P(D|T) + P(R)P(D|R)

where T or R represent cases where two contigs are from different (inter) or the same

(intra) species, respectively. D is the Euclidean TNF distance between two contigs. The

same uninformative priors of T and R were chosen. In reality, P(T) is expected to be much

bigger than P(R), thus we set P(T) = 10 ∗ P(R) as the default implementation to adjust for

the possible under-sampling issue in inter species distance.

The TDP of contig pairs with different sizes is approximated using logistic regression:

P(Dij;bij,cij) =
1

1 + e−(bij+cij∗Dij)

where Dij represents a Euclidean TNF distance between contig i and j · b and c, the two

parameters for the logistic regression, are estimated from the empirical data.

Abundance distance probability (ADP)
The probabilistic abundance distance was calculated as follows: Suppose two contigs have

the mean coverage of µ1 and µ2 and the variances of σ 2
1 and σ 2

2 , then we defined the

abundance distance as the non-shared area of two normal distributions of N(µ1, σ 2
1 ) and

N(µ2, σ 2
2 ):

P(µ1,σ
2
1 ,µ2,σ

2
2 ) =

1

2


|φµ1,σ

2
1
− φµ2,σ

2
2
|

where φ represents a normal distribution having two parameters µ and σ 2. Numerically

this can be simplified using cumulative distribution functions as follows assuming σ 2
2 is

greater than or equal to σ 2
1 :

P(µ1,σ
2
1 ,µ2,σ

2
2 ) =


Φµ1,σ

2
1
(k0) − Φµ2,σ

2
2
(k0), if σ 2

1 = σ 2
2

Φµ1,σ
2
1
(k2) − Φµ1,σ

2
1
(k1) + Φµ2,σ

2
2
(k1) − Φµ2,σ

2
2
(k2), otherwise
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where Φ represents a cumulative normal distribution, and

k0 =
µ1 + µ2

2

k∗
1 =


σ 2

1 · σ 2
2 · ((µ1 − µ2)2 − 2 · (σ 2

1 − σ 2
2 ) · log(σ2/σ1)) − µ1 · σ 2

2 + µ2 · σ 2
1

σ 2
1 − σ 2

2

k∗
2 =


σ 2

1 · σ 2
2 · ((µ1 − µ2)2 − 2 · (σ 2

1 − σ 2
2 ) · log(σ2/σ1)) + µ1 · σ 2

2 − µ2 · σ 2
1

σ 2
1 − σ 2

2

k1 = min(k∗
1,k∗

2) and k2 = max(k∗
1,k∗

2).

To combine multiple abundance probabilities across different samples, we calculated the

geometric mean of probabilities:

Pij =


n

1{µin > c OR µjn > c}


n

Pijn(µin,σ
2
in,µjn,σ

2
jn) ∗1{µin > c OR µjn > c}

where Pijn represents the probability calculated from two abundances µin and µjn, and c

represents a cut-off for reasonable minimum abundance for a contig.

As metagenome assemblies contain many small contigs, whether or not to include

them is a dilemma; including small contigs will likely improve the genome completeness,

at a cost of genome quality because their larger abundance variations make it harder to

bin them correctly. We tried to empirically determine a reasonable contig size cut-off by

plotting the ratio of mean and variance from the IMG single genome dataset. Although

most genome variances are much larger than their means, their ratio becomes stabilized

after contig size increases to 2.5 kb (Fig. S1). Therefore, we used 2.5 kb or larger contigs

for the initial binning. Smaller contigs can be recruited after the binning, based on their

correlation to the bins (Imelfort et al., 2014).

Iterative binning
We modified the k-medoid clustering algorithm (Kaufman & Rousseeuw, 1987) to

eliminate the need to input a value for k and to reduce search space for efficient binning.

Specifically, the binning algorithm works as follows:

1. Find a seed contig (e.g., having the greatest coverage), and set it as the initial medoid.

2. Recruit all other contigs within a cutoff distance (i.e., parameters p1 and p2) to the seed.

3. Find a new medoid out of all member contigs.

4. Repeat 2–3 until there are no further updates to the medoid. These contigs form a bin.

5. For the rest of the contigs, repeat 1–4 to form more bins until no contigs are left.

6. Keep large bins (e.g., >200 kb), and dissolve all other bins into free contigs.

7. (optional) For dataset with at least 10 samples, recruit additional free contigs to each bin

based on their abundance correlation.
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Figure 3 Binning performance on synthetic metagenomic assemblies. (A) The number of genomes
(X-axis) identified by each binning method (Y-axis) in different recall (completeness) threshold and
>90% precision, which calculates the lack of contamination. (B) Venn diagram of identified genomes by
top 4 binning methods.

RESULTS
Binning performance on “error-free” metagenomic assemblies
A metagenomic dataset (Accession #: ERP000108) from the MetaHIT consortium (hence-

forth referred to as the MetaHIT dataset) (Qin et al., 2010) was chosen to benchmark

MetaBAT because it contains a large number of samples and the community contains

many species with reference genomes. To derive a reference genome set, we selected

290 known genomes from NCBI that are present in MetaHIT at >5× mean coverage

(Table S1). These reference genomes were then shredded into contigs of random sizes

(>2.5 kb) following an exponential distribution modeled to mimic real metagenome

assemblies. The abundance of each contig in every sample was also obtained using real

data. These “error-free” metagenome contigs, their abundance information, along with

their parental reference genomes (as “true answers”), were used in the following analysis

to benchmark binning performance. For a full description of the experiment, refer to the

MetaBAT wiki page: https://bitbucket.org/berkeleylab/metabat/wiki/Home.

For comparison, we ran several alternative binning tools on the same dataset described

above. These software include Canopy (Nielsen et al., 2014), CONCOCT v.0.4.0 (Alneberg

et al., 2014), GroopM v.0.3.0 (Imelfort et al., 2014), and MaxBin v.1.4.1 (Wu et al., 2014).

Among them, CONCOCT, GroopM, and MaxBin are also fully automated binning tools.

An optional manual step in GroopM for improving the quality of bins was excluded. Since

MaxBin does not consider multiple samples, we combined multiple samples into one.

We used >90% precision (lack of contamination) and >30% recall (completeness)

as the minimum criteria for a bin to be considered “good” which basically means the

bin should be composed of one or more strains of a single species (for results of other

thresholds, refer to Figs. S3 and S4). Formulas for this calculation are described in the

Supplemental Information 1. Among all binning tools, MetaBAT binned the greatest

number of genomes at almost every recall threshold (Fig. 3A). CONCOCT is the only

tool that produces more genome bins with over 80% or 90% completeness than MetaBAT,
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Table 1 Binning performance on synthetic metagenomic assemblies.

MetaBAT Canopy CONCOCT MaxBin GroopMb

Number of bins identified (>200 kb) 340 230 235 260 445

Number of genomes detected (Precision > .9 &
Recall > .3)

111 90 56 39 6

Wall time (16 cores; 32 hyper-threads) 00:13:55 00:21:01a 104:58:01 20:51:19 45:29:39

Peak memory usage (for binning step) 3.9G 1.82Ga 9.55G 7.7G 38G

Notes.
a Canopy only use abundance table as input, so it should have taken more time and memory to read and write sequence data like the others.
b Manual steps were not used.

but MetaBAT produces many more bins at 70% completeness threshold. Interestingly,

we found these tools complement each other in forming genome bins (Fig. 3B, GroopM

was omitted since it detects only a few genomes). Among the unique 133 genome bins

collectively formed by all tools, MetaBAT binned the most number of genomes (111,

83.5%), with 23 bins (17.2%) that were not found by any other tool.

MetaBAT runs very efficiently in computation; the entire binning process only took

14 min and 4 GB of RAM (Table 1). Multiple simulations produced almost identical

performance results and thus were not shown.

Binning performance on real metagenomic assemblies
We next tested the performance of MetaBAT on real metagenomic assemblies. Using the

same raw sequence data from the above MetaHIT dataset, we pooled the sequences from all

samples and then assembled them using Ray Meta assembler (Boisvert et al., 2012). Because

real metagenomic assemblies often contain many small contigs, we lowered the minimum

contig size requirement from 2.5 kb to 1.5 kb to include more contigs into our binning

experiment. As a result, 118,025 contigs were used for binning. We then ran the above 5

binning tools with their default settings on this dataset. In contrast to the previous simula-

tion experiment, in this experiment we do not have a reference genome for every genome

bin; we instead used CheckM (Parks et al., 2015) to calculate the approximate recall (per-

cent of expected single-copy-genes that are binned) and precision (the absence of genes

from different genomes) rates. A full description of this experiment is available of MetaBAT

wiki page: https://bitbucket.org/berkeleylab/metabat/wiki/Benchmark MetaHIT.

Similar to the previous “error-free” experiment, MetaBAT again identified the greatest

number of unique genome bins having >90% precision (Fig. 4A). In this experiment

with real metagenomic contigs, the superior completeness we saw in CONCOCT during

the “error-free” experiment was lost. Moreover, the number of genome bins formed

by MetaBAT was consistently greater than the others at every completeness threshold.

Similarly, different tools produced complementary binning results as before (Fig. 4B).

MetaBAT’s contribution appears to be more pronounced this time. It missed 17 bins

formed by all other tools combined, but recovered 31 bins that no other tools produced.

MetaBAT alone recovered 90.2% (133/144) of genome bins from all tools. These results

suggest MetaBAT is very robust when run against a real metagenome assembly. Consistent
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Figure 4 Binning performance on real metagenomic assemblies. (A) The number of genomes (X-axis)
identified by each binning method (Y-axis) in different recall (completeness) threshold and >90%
precision, which calculates the lack of contamination. (B) Venn diagram of identified genomes by top
4 binning methods.

Table 2 A summary of the binning performance on real metagenomic assembly.

MetaBAT Canopy CONCOCT MaxBin GroopMb

Number of bins identified (>200 kb) 234 223 260 168 335

Number of genomes detected (Precision > 9 & Recall > .3) 130 96 64 39 28

Wall time (16 cores; 32 hyper-threads) 00:03:36 00:02:31a 82:19:53 06:49:39 12:19:12

Peak memory usage (for binning step) 3.0G 1.6Ga 7G 5.8G 6.3G

Notes.
a Canopy only use abundance table as input, so it should have taken more time and memory to read and write sequence data like the others.
b Manual steps were not used.

with the simulation experiment, MetaBAT is computationally very efficient and requires

only 4 min to complete this experiment (Table 2).

To test the performance of MetaBAT on large-scale metagenomic data sets, we used

a dataset containing 1,704 (with replicates) human gut microbiome samples (Accession

#: ERP002061 (Nielsen et al., 2014). The entire dataset was assembled using Ray Meta

assembler (Boisvert et al., 2012) and Megahit (Li et al., 2015) resulting in 1,058,952 contigs

(>1 kb) that were then used for binning. MetaBAT took less than 2 h to generate 1,634

genome bins (>200 kb) using a single node with 16 CPU cores (32 hyper-threads), and

the peak memory consumption was at 17G. In comparison, Canopy took 18 h using

36G memory in the same setting. The other binning tools—CONCOCT, GroopM, and

MaxBin—all failed to generate any genome bins for this data set likely due to their inability

to scale. For accuracy evaluation, we used CheckM (Parks et al., 2015) and identified 610

high quality bins (>90% precision and >50% completeness) among the bins predicted

by MetaBAT, which is 35% more than the published CAG bins (Nielsen et al., 2014) and

11% more than Canopy bins using our assembly. For details on the use of MetaBAT on this

large dataset please refer to: https://bitbucket.org/berkeleylab/metabat/wiki/Example

Large Data.
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Figure 5 Comparison between MetaBAT bins after post-processing and MGS draft genomes from
Nielsen et al. (A) Venn diagram of identified genome bins by MetaBAT having >90% precision and
>30% completeness calculated by CheckM and one-to-one corresponding genomes in MGS draft
genomes. (B) Scatterplot of completeness and precision for MetaBAT genome bins when considered
MGS draft genomes as the gold standard. X-axis represents shared proportion of bases in terms of
MetaBAT bins (i.e., precision), and y-axis represents shared proportion of bases in terms of MGS genomes
(i.e., completeness). Each circle represents a unique MetaBAT bins having uniquely corresponding MGS
genomes (342 bins in total), and the size of it corresponds to bin size.

Post-binning processing to further improve quality
Assembly from pooled samples in the above experiment raises the possibility that similar

genomes (e.g., different strains) present in different samples are assembled into chimeric

contigs. This level of contamination may not be tolerated in some applications. Based

on the assumption that a single sample will contain fewer strains of the same species

than all pooled samples, we implemented an optional post-binning process to reduce the

strain-level contamination. Briefly, we first selected a single sample with the most reads

mapped to a specific bin, and then assembled these reads into a new set of contigs. If the

new contigs produces better CheckM results, we subsequently replaced the old contigs in

this bin with the new ones.

This post-processing step significantly improved both completeness and precision (lack

of contamination) for 61% (992 out of 1,634) of the genome bins. Overall, there were

571 bins with >95% precision and >50% completeness, compared with 375 without

post-processing. This improvement was more obvious when we increased the precision

threshold to >99%, as the number high quality bins increases from 46 to 186.

By incorporating additional sequencing data and other post-binning optimizations,

Nielsen et al. (2014) generated 373 high quality draft genomes (“MGS genomes”). We

therefore used these MGS draft genomes as reference for additional quality assessment

of the MetaBAT genome bins after post-processing. As shown in Fig. 5A, 31 MGS

draft genomes were not well represented by MetaBAT bins, but MetaBAT recovered
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55 additional genome bins not reported by MGS draft genomes. For those overlapping

bins, most MetaBAT bins closely approximate the MGS draft genomes in accuracy—94%

precision and 82% completeness (Fig. 5B).

DISCUSSION
In conclusion, we developed an efficient and fully automated metagenome binning tool,

MetaBAT, and evaluated its capability to reconstruct genomes using both synthetic and

real world metagenome datasets. Applying MetaBAT to a large-scale complex human

microbiome data recovers hundreds of high quality genome bins including many missed

by alternative tools. An optional post-processing step improves the overall binning quality.

One limitation of this study is the choice of optimal parameters for binning. MetaBAT

does not choose binning parameters automatically based on the underlying data. Instead,

MetBAT provides five pre-set conditions that allows the user to select different levels of

sensitivity and specificity (see online Software Manual for details). Users are strongly

advised to explore the different presets to achieve the best result. Another limitation of this

study is the choice of datasets. As the primary goal was to introduce a novel algorithm for

metagenome binning, we only chose a synthetic dataset, a small real-world dataset and a

large real-world dataset to test the performance of MetaBAT and compare it to alternatives.

However, microbial communities can vary greatly in composition and structure. Similar

comparisons applied to a different dataset might give different results. It is also advised

for users to systematically evaluate different binners on a specific dataset for performance

comparison, or to combine results from different tools for comprehensive binning.

Although binning methods evaluated in this study are all based on TNF, co-abundance,

or both, the underlying algorithms are very different from one another. The algorithm

implemented in MetaBAT is different from existing methods in several ways. First,

MetaBAT uses different contig sizes to calculate posterior TNF probabilities. Second,

MetaBAT dynamically weighs the TDP and ADP based on the number of samples. None of

the existing tools adopt these two techniques. Finally, MetaBAT uses a scalable heuristics to

iteratively cluster the contigs. To compute the pairwise contig distance matrix required for

clustering, MetaBAT does not require a large number of samples as it uses the integration

of TDP and ADP (when sample size is small, more weight is placed on TDP, see Methods).

In contrast, the clustering algorithm employed in Canopy (Nielsen et al., 2014) does require

a large number of samples as it is based on Pearson correlation coefficients.

One of the noticeable improvements in MetaBAT over other automated tools is its

computational efficiency. In addition to the low memory requirement and fast computing

speed, if one runs several rounds of binning to fine-tune parameters on a large dataset (by

default MetaBAT does little parameter optimization), MetaBAT can be even faster as it

saves intermediate calculations. For example, binning with ∼1M contigs and ∼1K samples

for a second time only takes a few minutes.

There are a couple of considerations to keep in mind before applying MetaBAT. One

important consideration is the minimum number of samples required for a reasonable

binning performance. Although MetaBAT can run with only one sample or even in
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TNF-only mode for binning, as shown in Fig. S6, our general advice is that more and

diverse samples achieve better binning results. The greater the abundance variation among

samples of a target species, the more likely MetaBAT will produce a good genome bin for

this species. A second consideration is the quality of the metagenome assembly. We do not

expect binning to work well with poor metagenome assemblies, e.g., assemblies including

many small contigs less than 1kb, since the distance metrics computed for small contigs

will not be very reliable.
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