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ABSTRACT
Parameter estimates from commonly used multivariable parametric survival
regression models do not directly quantify differences in years of life expectancy.
Gaussian linear regression models give results in terms of absolute mean differences,
but are not appropriate in modeling life expectancy, because in many situations
time to death has a negative skewed distribution. A regression approach using a
skew-normal distribution would be an alternative to parametric survival models in
the modeling of life expectancy, because parameter estimates can be interpreted in
terms of survival time differences while allowing for skewness of the distribution.
In this paper we show how to use the skew-normal regression so that censored and
left-truncated observations are accounted for. With this we model differences in life
expectancy using data from the Swiss National Cohort Study and from official life
expectancy estimates and compare the results with those derived from commonly
used survival regression models. We conclude that a censored skew-normal survival
regression approach for left-truncated observations can be used to model differences
in life expectancy across covariates of interest.

Subjects Mathematical Biology, Epidemiology, Statistics
Keywords Life expectancy, Skew-normal regression, Left-truncation, Survival regression,
Censoring

INTRODUCTION
Absolute differences in life expectancy are of importance in many scientific fields,

i.e., biology, demography and epidemiology (Aldenhoven, 1986; Liu et al., 2012; Olshansky

et al., 2012; Sarkar et al., 2010; Spoerri et al., 2006). Often, differences in life expectancy

are calculated by traditional life table methods (Chiang, 1984) using sex and age specific

mortality rates. Additional covariate information (e.g., education or marital status) and

corresponding death rates are usually not available, but absolute differences across levels

of such covariates are of interest. Nationwide census based cohort studies (Bopp et al.,

2009; Frisch & Simonsen, 2013; Spoerri et al., 2010; Ueda et al., 2013) allow the investigation

of mortality trends and the calculation of life expectancy conditional on covariates on

individual, household and area level. In such large cohort studies, demographers and
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public health researchers are interested in exploring joint associations of several covariates

on individuals’ lifespan, and to quantify absolute differences in life expectancy. Parametric

survival regression is a common method to model covariate effects on survival time by

either using proportional hazard models or accelerated failure time models (Harrell, 2001).

The first type of survival model reports covariate effects in terms of hazard ratios, the latter

in terms of time ratios. However, both effect measures cannot be directly interpreted in

terms of differences of life expectancy, since they are on a transformed scale. For example,

an estimated hazard ratio of two for men compared to women from a proportional hazard

model yields no direct interpretation in terms of life expectancy differences, say, that men

live on average five year less long than women. A method for converting hazard ratios

from a Cox proportional hazard model to life expectancy has been developed, but is rather

cumbersome and complex in its implementation (Fontaine et al., 2003; Robertson, De Los

Campos & Allison, 2013).

Gaussian linear regression models are commonly used for data analysis in many

scientific disciplines (e.g., in biology, medicine, psychology, agriculture) with the

advantage that estimated regression parameters are easily interpreted in terms of mean

differences in the outcome per one unit change of the predictor variable. Nevertheless

it is well known that departures from the underlying model assumptions (i.e., residuals

have to follow a Gaussian distribution with constant variance) lead to biased results and

inappropriate interpretations (Harrell, 2001). If residuals from a Gaussian regression

are negative skewed, data transformations are required to fulfil the desired underlying

model assumptions with the drawbacks that such transformation functions are often

not available, or, if they exist, the regression results are also on the transformed scale

and are more difficult to interpret. Skew-normal distribution functions extend the class

of Gaussian distribution functions by an additional shape parameter which allows for

skewness in the distribution. The class of skew-normal distribution functions has been

comprehensively investigated by Azzalini in the 1980s and subsequently extended (Azzalini

& Capitanio, 1999; Azzalini & Capitanio, 2003; Azzalini & Dalla Valle, 1996); for a broad

overview see the books of Genton (2004) or Azzalini & Capitanio (2014).

Gaussian-related distribution functions have been shown to be a possible alternative to

commonly used generalized extreme value distributions (e.g., Gompertz distribution) in

the modeling of life expectancy (Clark et al., 2013; Robertson & Allison, 2012; Robertson, De

Los Campos & Allison, 2013). Clark and colleagues (2013) found that a skew-t distribution

outperformed a Gompertz-like distribution function in modeling mortality data in terms

of model fit. Robertson & Allison (2012) evaluated a compressed Gaussian distribution in

the modeling of human longevity. The authors confirmed the findings of Kannisto (2001)

that the distribution of longevity conditioned on survival to the modal age was similar

to a Gaussian distribution. Robertson and colleagues (2013) used a censored regression

approach for left-truncated data with an underlying compressed Gaussian distribution

function in modeling life expectancy. The authors found that median differences of life

expectancy were similar from Gaussian-type regression models and others.
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To our knowledge, no implementation is currently available to use a skew-normal

modeling approach in survival analysis situations in which a fraction of the observations

have censored survival times and in which delayed entry is present. Delayed entry occurs

e.g., in situations in which subjects are observed from a study entry date until end of the

study, and not over the total risk time from a certain given age. In this article we describe

how we implemented censored skew-normal regression models for survival data, give

results when analyzing life expectancy for the Swiss population using data from the Swiss

National Cohort Study and official estimates of life expectancy in Switzerland.

METHODS
Data
The Swiss National Cohort (SNC) is a longitudinal study of the entire resident population

of Switzerland, based on the 1990 and 2000 national censuses (Bopp et al., 2009). Deter-

ministic and probabilistic record linkage (Fellegi & Sunter, 1969) were performed using the

Generalized Record Linkage System (Fair, 2004) to link census records to a death record

or an emigration record, based on a set of key variables that are available in both data sets

(sex, date of birth, place of residence, marital status, religion, nationality, profession, date

of birth of partner and date of birth of children). Mortality patterns and life expectancy

patterns are of major interest in the SNC (Moser et al., 2014; Spoerri et al., 2014; Spoerri et

al., 2006). Initial SNC mortality linkage was successful for 94% of the deaths (Bopp et al.,

2009). The 6% not linked deaths bias the calculation of absolute age-specific mortality rates

which in turn would bias estimates of life expectancy (Schmidlin et al., 2013). This bias was

removed when including the 6% deaths using pragmatic linkages matching for age and

sex only. For analyses presented here, we used the SNC data from the 2000 census onwards

with mortality follow-up up to end of 2008 including the pragmatically linked deaths. We

investigated 4,098,675 individuals aged ≥35 years or older from the 2000 census. Of those,

481,157 individuals died between 5th December 2000 (date of census) and 31th December

2008. We investigated associations of gender, civil status and education on individual’s

life span, using parametric survival regression and censored skew-normal and censored

Gaussian regression approaches.

For a second analysis and the simulation study we used data from the Human Mortality

Database (HMD) which contains death rates and life tables from various populations

including Switzerland (Human Mortality Database, 2014). Data are provided from national

statistical offices or other sources. We used death rates for one year age intervals from age

35 to 105. For a hypothetical population of N = 100,000 men and women we estimated

the number of deaths for each one year age interval from age 35 to age 105, I[x,x+1] := Ix,

x ∈ 35,...,105, as follows. The death rate for an age interval Ix, x ∈ 35,...,105, is denoted

as mx. The number of persons alive at the start of the age interval Ix is denoted as lx,

x ∈ 36,...,105. lx is equal to 100,000 minus all the deaths in all age intervals before

Ix. The number of deaths nx for each one year age interval Ix was then calculated as

nx = mx · lx, x ∈ 35,...,105. Data were downloaded and analyzed using the R-package

demography (Hyndman, 2012).
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Parametric survival models
Parametric survival regression assumes that, for each individual, the time T elapsed from

a starting time point (e.g., at age 35) to an event (e.g., death) has a cumulative distribution

function (cdf) F(t) and a probability density function (pdf) f (t) from certain classes of

distribution functions. Often one assumes a distribution function from an extreme value

type, e.g., Weibull, or from a lifetime type, e.g., Gompertz. The survival function is defined

as S(t)= 1 − F(t)= P(T > t).

One basic concept of survival regression is the hazard function, defined as

λ(t)= lim
u→0

P(t ≤ T < t + u|T ≥ t)

u
=

f (t)

1 − F(t)
=

f (t)

S(t)
. (1)

The survival function can then be expressed in terms of the hazard function as

S(t)= exp


−

 t

0
λ(y)dy


.

If one assumes that the observed survival time of each individual is a realization from

the same distribution of T (without covariates representing differences between the groups

of individuals) and T comes from a Weibull distribution function, then

λ(t)=
γ

α


t

α

γ−1

, S(t)= exp


−


t

α

γ
, t > 0,

where α > 0 is a scale parameter and γ ≥ 0 a shape parameter of the Weibull distribution,

or when T is Gompertz distributed with scale parameter α > 0 and shape parameter γ > 0,

then

λ(t)= αexp(γ t), S(t)= exp


−
α

γ
[exp(γ t)− 1]


, t > 0.

For the survival regression problem one often assumes that for a set of covariates

X = (X1,...,Xk)
⊤ the following equation holds

λ(t|X)= λ(t)exp


X⊤β

,

where β = (β1,...,βk)
⊤ is a vector of regression coefficients. This model specification

is known as proportional hazard (PH) model and λ(t) is then often called an underlying

baseline hazard function. In case that T is assumed to be Weibull distributed one gets

λ(t|X)=
γ

α


t

α

γ−1

exp


X⊤β

,

or with the assumption of a Gompertz distribution

λ(t|X)= αexp(γ t)exp


X⊤β

.

Note that in such a model representation the relationship between the covariates and

the hazard function are linear on the log hazard scale. Thus, the effect of increasing a
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continuous covariate, say X1, by d, holding all other variables constant, is to increase

the hazard of the event by a factor of exp(β1d) at all time point in time, assuming X1 is

linearly related to logλ(t) (Harrell, 2001). Often the above described effect is reported

in terms of hazard ratios, i.e., one compares the ratio of hazard rates of an individual

with predictor value d compared to one with a value of 0. The hazard ratio is then

λ(t)exp(β1d)/λ(t) = exp(β1d). Unlike the interpretation of a multivariable linear

Gaussian regression model, where the regression coefficients β are reflecting an increment

in the expected value of a response variable by a one unit change in the predictor variable,

the interpretation of regression coefficients from survival regression models is not easily

translated to differences in mean survival time.

Another often used type of survival model is the accelerated failure time (AFT) model

(see e.g., Harrell (2001)), where one assumes that

log(T)= X⊤β+ σϵ, (2)

with σ , a scale parameter, and ϵ is assumed to come from a survival distribution

function ϑ .

Common choices of ϑ(u) are the logistic distribution ϑ(u) = [1 + exp(u)]−1

(log-logistic model) or the Gaussian distribution ϑ(u) = 1 −Φ(u) (log-normal model).

Both distributions fail to fit lifetime data adequately, because of their positive skewed

distribution. To address a negative skewed distribution, an underlying Weibull distribution

is possible. Note from (2) that in the AFT model specification the interpretation of the

estimated parameters are in terms of T = exp(X⊤β+ σϵ). The effect of increasing a

continuous covariate, say X1, by d, holding all other variables constant, is to increase the

survival time T by a factor of exp(β1d), assuming Eq. (2). Similarly to reporting hazard

ratios in PH models, one reports time ratios in AFT models, i.e., the ratio of survival

times of an individual with predictor value d compared to one with a value of 0. The time

ratio is then exp(β1d + σϵ)/exp(σϵ) = exp(β1d). Also in this type of survival modeling,

interpretation of regression coefficients is not straightforward in terms of mean survival

time. Note that the Weibull PH model and the Weibull AFT are equivalent (Harrell, 2001).

Life expectancy from survival models
It is well known that life expectancy (or expected survival time) conditional on covariates

E(T|X) is related to the conditional survival function S(t|X) through

E(T|X)=


∞

0
S(t|X)dt =


∞

0
{S(t)}exp(X⊤β)dt,

where S(t) is the underlying survival distribution, see e.g., Harrell (2001). Hence, the

expected survival time for a reference individual is E(T|X) =


∞

0 S(t)dt. For Weibull,

Gompertz and log-normal distribution functions closed-form expressions exist, i.e., for

the Weibull distribution

E(T|X)= αΓ(1 + 1/γ ),
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for the Gompertz distribution

E(T|X)=
1

γ
exp

α

γ


∞

α/γ

x−1exp(−x)dx,

and for the log-normal distribution

E(T|X)= exp(µ+α2/2),

where µ, α, γ are location, scale and shape parameters from the corresponding

distribution functions, see e.g., Johnson, Kotz & Balakrishnan (1994) and Missov & Lenart

(2011). 95% confidence intervals (CI) were approximated by sampling procedures from

multivariate Gaussian vectors using the covariance matrices of the parameter estimates.

Censored skew-normal regression
The skew-normal distribution function generalizes the Gaussian distribution function

allowing for skewness in its shape. We start with a recapitulation of the definition of

a Gaussian distributed random variable. A random variable X is Gaussian (normal)

distributed with location parameterµ ∈ R and scale parameter σ > 0 if it has the pdf

f (x;µ,σ)=
1

σ
√

2π
exp

−
1
2


x−µ
σ

2

.

One writes X ∼ N(µ,σ 2) if X is Gaussian distributed with mean µ and variance σ 2. The

pdf of standard Gaussian distributed random variable Z ∼ N(0,1) is in the following

written as ϕ(·).

The definition of a skew-normal distributed random variable is as follows, see

e.g., Genton (2004).

Definition 1 A random variable Y is skew-normal distributed with location parameter

ξ ∈ R, scale parameter σ > 0 and shape parameterψ ∈ R, if it has the pdf

g(y;ξ,σ 2,ψ)=
2

σ
ϕ


y − ξ

σ


Φ


ψ

y − ξ

σ


, −∞< y <∞, (3)

whereΦ(·) is the cdf of a N(0,1)-distributed random variable. If Y is skew-normal distribu-

tion we write Y ∼ SN(ξ,σ 2,ψ).

The expectation and variance of a skew-normal distributed random variable Y ∼

SN(ξ,σ 2,ψ) is

E(Y)= ξ + σ


2

π

ψ
1 +ψ2

and V(Y)= σ 2


1 −
2

π

ψ2

1 +ψ2


. (4)

Note that if X ∼ N(0,1) and Y ∼ SN(0,1,0), then X and Y are equally distributed.

Since the parameters (ξ,σ,ψ) are directly involved in the pdf representation (3), one

speaks of a direct parametrization (DP). Another representation is the so-called centered

parametrization (CP) (Azzalini, 1985), where one uses a reparametrization of (3). In brief,
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one uses centered parameters (µ,α,γ ) in the parametrization of the problem, where γ is a

measure of skewness defined as

γ =
1

2
(4 −π)sign(ψ)


ψ2

π
2 +


π
2 − 1


ψ2

3/2

, (5)

andψ is the same as in (3) (Genton, 2004). One has the following relation

E(Y)=

ξ + σ


2

π

ψ
1 +ψ2

(DP)

µ (CP),

such that the location estimate from a CP corresponds to the expectation of skew-normal

distributed random variable in a DP. In Supplemental Information 1 we explain the

principles and the conversion of CP to DP, and vice versa.

The skew-normal regression problem is similar to Gaussian linear regression. One as-

sumes for a set of covariates X = (X1,...,Xk)
⊤ and regression coefficients β= (β1,...,βk)

⊤

that

Y = X⊤β+ ϵ,

where ϵ ∼ SN(0,σ 2,ψ) and is assumed to be independent across individuals. The effect

of increasing a continuous covariate, say X1, by d, holding all other variables constant, is

to increase the survival time T by a shift of β1d. For the conversion of DP to CP (or vice

versa) in the regression problem only the distributional parameters need to be transformed

accordingly (Azzalini & Capitanio, 1999).

Parameter estimation
Parameters for a censored skew-normal regression can be estimated by maximum

likelihood estimation. Let the underlying measurement scale be individual’s age at end

of study Yi or censoring Ci, i.e., min{Yi,Ci}. Censoring is assumed to be non-informative

(i.e., censoring is independent of the underlying time scale), or from type I censoring

(i.e., follow-up time ends at predetermined time). We write δi = I(Yi ≤ Ci) for the indicator

variable for an observed death, where I is the indicator function. Under censoring the

likelihood is

L(ξ,σ 2,ψ)=


i≤n: δi=1

g(yi;ξ,σ
2,ψ)


i≤n: δi=0

S(ci;ξ,σ
2,ψ)

=


i≤n: δi=1

2

σ
ϕ


yi − ξ

σ


Φ


ψ

yi − ξ

σ

 
i≤n: δi=0

S(ci;ξ,σ
2,ψ)

=


i≤n


2

σ
ϕ


yi − ξ

σ


Φ


ψ

yi − ξ

σ

δi
S(ci;ξ,σ

2,ψ)
1−δi

, (6)

where g(·;ξ,σ 2,ψ) is the pdf given in (3) and S(·;ξ,σ 2,ψ) is the survival function

assuming F(·) = SN(·;ξ,σ 2,ψ). Choosing the relevant time scale is a crucial decision in
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modeling survival times. Often not the total risk time starting from time origin (e.g., date

of birth) is observed, but only the risk time from study entry (the date at which a person

entered the study and came under observation) until the end of the study. This concept

is called delayed entry or left-truncation. In this case one has to consider the conditional

distribution of Yi given that Yi ≥ Di, where Di is a given time point or individual’s age at

study entry. Note that the likelihood of an uncensored individual i ≤ n : δi = 1 is then

g∗(yi;ξ,σ,ψ |Yi ≥ Di)=
g(yi;ξ,σ

2,ψ)

S(Di;ξ,σ 2,ψ |Yi ≥ Di)
, − ∞< yi <∞, i = 1 ≤ n,

and for a censored individual i ≤ n : δi = 0,

S∗(ci;ξ,σ,ψ |Yi ≥ Di)=
S(ci;ξ,σ

2,ψ)

S(Di;ξ,σ 2,ψ |Yi ≥ Di)
, − ∞< ci <∞, i = 1 ≤ n.

To obtain the likelihood of all individuals one replaces in (6) g(yi;ξ,σ
2,ψ) by

g∗(yi;ξ,σ,ψ |Yi ≥ Di), and S(ci;ξ,σ,ψ) by S∗(ci;ξ,σ,ψ |Yi ≥ Di), respectively. It has been

mentioned in e.g., (Azzalini, 1985) that maximizing the negative log likelihood of (6) has

singularity problems if ψ = 0, and yield convergence problems in the MLE. To overcome

this problem it has been suggested to use the CP approach, which removes the singularity

atψ = 0, and has further advantages in faster convergence and improved likelihood shape

over the DP (see e.g., Azzalini (1985) and Azzalini & Capitanio (1999)). We used the CP for

the numerical derivation of the estimates by MLE using R Version 3.1.1 and Stata Version

13.1. Program code and used functions are provided as Supplemental Information 1.

Model assessment
For all types of survival models, the model should adequately fit the data in order to

obtain correctly interpretable estimates and correct coverage of confidence intervals. For

PH models the relationship between the covariates and the log hazard should be linear.

Further, the covariates affect the underlying distribution of the time variable by adding

X⊤β to the log hazard function. The effect of the covariates is assumed to be the same at all

time points. For AFT models each covariate affects log(T) linearly. Further, the underlying

variance σ in Eq. (2) is a constant, independent of the covariates (Harrell, 2001). Assessing

the model fit of parametric survival models is often restricted to e.g., graphical assessment

by stratified predictor levels or stratified Kaplan–Meier estimates of the distribution of

residuals. For the skew-normal regression problem Y = X⊤β+ ϵ, where ϵ ∼ SN(0,σ 2,ψ),

certain assumptions must be validated (Harrell, 2001): residuals should have no systematic

trend in central tendency against any predictor, they should have the same dispersion and

they should have a skew-normal distribution in the predictor-space. These assumptions

can be checked by median and lower and upper quartiles of the residuals, stratified by

intervals of the predicted outcome. Distributional model assumptions of a skew-normal

regression can be visually checked by a comparison of quantiles of estimated residuals and

quantiles from a theoretical skew-normal distribution in a quantile–quantile plot.

We graphically compared the model fit from a Gompertz model with a skew-normal

model by a log-hazard plot. In general from Eq. (1) one obtains that logλ(t) =
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logf (t)− logS(t). Note that for a Gompertz distribution the log-hazard is linear in the

time scale t, i.e., logλ(t)= logα+ γ t, t ≥ 0. Thus, any non-linearity in the log-hazard from

a skew-normal model would indicate a deviation from the Gompertz model fit.

Goodness-of-fit using official life expectancy estimates was assessed by Pearson’s

chi-squared test statistic X2
=


i(Oi − Ei)
2/Ei (Agresti, 2013), where Oi denotes the

observed number of deaths from offical estimates in one year age intervals. We calculated

expected number of deaths Ei for one year age intervals from the underlying regression

models. A larger value of X2 indicates a greater difference of Oi − Ei (Agresti, 2013).

Model setting
SNC data were analyzed by survival regression models with remaining age at 35 years as

the underlying time scale and delayed entry date as the 5th of December 2000. Assumed

underlying survival distribution function was either Weibull or Gompertz for a PH model,

or Weibull and log-normal for an AFT model. Individuals were censored if they were

alive after 31th December 2008. For a direct comparison using the censored skew-normal

regression approach we investigated age at 31th December 2008 (censoring information)

or age at death as the dependent variable with a delayed entry date of 5th December 2000.

To compare with a Gaussian linear regression approach we used an author programmed

MLE function for censored Gaussian regression with left-truncated observations, not

further described here. HMD data were analyzed using the same regression models but

without delayed entry or censoring.

Simulation study for model distribution misspecification
Parametric modeling assumes that a given underlying distribution function is the true

distribution of the outcome variable. We performed a simulation study to assess whether

life expectancy estimates of a skew-normal regression and a Gompertz survival regression

are biased in case of model distribution misspecification. For that purpose we first fitted

Gompertz and skew-normal models to Swiss data of the Human Mortality Database to get

location, scale and shape parameters for each distribution, as close to real data as possible.

Second, using these parameter estimates, we built random samples with different samples

sizes (i.e., 100, 1,000, and 10,000) from Gompertz and skew-normal distribution func-

tions. Third, for each sample we fitted a Gompertz or a skew-normal model and reported

estimated life expectancy µ̂ and corresponding confidence intervals. As a third distribution

function we combined the Gompertz and skew-normal distribution functions to get a

mixture distribution functions with mixing proportions δ = {0.1,0.25,0.5,0.75,0.9},

where the mixing pdf is defined as m(x)= δfG(x)+ (1 − δ)g(x)with fG, the Gompertz pdf,

and g(x) the skew-normal pdf, defined as in Eq. (3). Thus, with the mixture distribution

we mimic a situation where the study sample consists of samples from different underlying

distribution functions, with different mixing proportions. For each sample we reported

coverage of the true mean life expectancyµ0 and the bias µ̂−µ0. We did 1,000 simulation

repetitions.

Moser et al. (2015), PeerJ, DOI 10.7717/peerj.1162 9/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1162


RESULTS
Results from parametric survival regression outputs using SNC data are summarized

in the first part of Table 1. From a PH Weibull model, married women with a tertiary

education (reference women) have a lower hazard of dying HR = 0.54, 95% CI [0.53–0.54],

compared to married men with a tertiary education (reference men). Similar hazard ratios

were obtained in a Gompertz survival model. The shape parameter from a Weibull regres-

sion model was estimated as 4.36, 95% CI [4.35–4.37], and from a Gompertz regression

model as 0.104, 95% CI [0.104–0.105], thus both indicating evidence for a negative skewed

distribution function. Results from AFT models lead to similar conclusions, but now

expressed in time ratios, e.g., women have a 1.153, 95% CI [1.152–1.155], longer survival

time compared to men in an AFT model with Weibull distribution, and a time ratio of

1.237, 95% CI [1.234–1.240] for a log-normal AFT model. Again we have evidence for

a skewed distribution form. As mentioned above, parameter estimates from PH and

AFT models are on a transformed scale and regression outputs are not in the metric

of life expectancy. Results from Gaussian-type regression models are directly in terms

of differences of mean life expectancy: Women tend to live on average 6.01, 95% CI

[5.95–6.07], years longer than men using a censored skew-normal regression, compared

to a difference of 6.66, 95% CI [6.59–6.74] years estimated in a Gaussian regression. The

estimated shape parameter γ = −0.782, 95% CI [−0.785–−0.779], from a skew-normal

distribution indicated evidence for a negative skewed distribution.

The upper part of Table 2 provides estimates of remaining life expectancy at age 35 years

derived from parametric PH and AFT survival models using SNC data. Life expectancy at

age 35 years for men ranged from 48.00 years (PH Gompertz model) to 56.39 years (AFT

log-normal model), and ranged from 53.92 years (PH Gompertz model) to 69.77 years

(AFT log-normal model) for women. Estimates from a censored skew-normal model were

47.96 years, and for a Gaussian model 48.85 years.

Remaining life expectancy at age 35 years from HMD data are summarized in Table 3.

Results from regression models are in the range 49.07 years (skew-normal model) to 50.60

(AFT log-normal model) years for women, and 45.01 years (skew-normal model) to 46.16

(AFT log-normal model) years for men. Note that the results for the Weibull distribution

are identical in the PH and the AFT situation, as the models are mathematically equivalent.

Remaining life expectancy at age 35 years from official estimates was 49.91 years for women

and 45.69 years for men in 2008 (Human Mortality Database, 2014). Goodness-of-fit

measured by X2 was lowest for a Gompertz survival model and the skew-normal

regression model. Thus, both showed best model fit. Highest X2 were obtained for the

AFT log-normal model and the Gaussian regression model, indicating worst model fit

among all investigated models.

Coverage proportions and biases from the simulation study are reported in Table 4. We

found that the coverage proportions of the Gompertz model and the skew-normal model

were similar for small and moderate sample sizes, also when the underlying distribution

function was misspecified. Coverage proportions were approximately 0.95. However, the

Gompertz model showed a slightly smaller bias compared to the skew-normal model. For
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Table 1 Regression output from different regression models using Swiss National Cohort data.

PH Weibulla [95% CI] Gompertza [95% CI]

Reference: Male 1.00 1.00

Female 0.54 [0.53, 0.54] 0.53 [0.53, 0.54]

Reference: Married 1.00 1.00

Single 1.82 [1.80, 1.83] 1.62 [1.61, 1.64]

Widowed 1.73 [1.72, 1.75] 1.44 [1.43, 1.45]

Divorced 1.52 [1.51, 1.54] 1.52 [1.50, 1.53]

Reference: Tertiary 1.00 1.00

Compulsory 1.46 [1.45, 1.48] 1.41 [1.40, 1.42]

Secondary 1.27 [1.25, 1.28] 1.26 [1.24, 1.27]

Not known 1.34 [1.31, 1.37] 1.17 [1.15, 1.20]

Location – –

Scale α 53.83 [53.72, 53.94] 4.00e −4 [3.94e−4, 4.04e−4]

Shape γ 4.36 [4.35, 4.37] 0.104 [0.104, 0.105]

AFT Weibullb [95% CI] Log-normalb [95% CI]

Reference: Male 1.000 1.000

Female 1.153 [1.152, 1.155] 1.237 [1.234, 1.240]

Reference: Married 1.000 1.000

Single 0.872 [0.870, 0.874] 0.762 [0.759, 0.764]

Widowed 0.882 [0.880, 0.883] 0.677 [0.674, 0.680]

Divorced 0.908 [0.906, 0.910] 0.877 [0.874, 0.880]

Reference: Tertiary 1.000 1.000

Compulsory 0.916 [0.914, 0.919] 0.846 [0.843, 0.849]

Secondary 0.947 [0.945, 0.950] 0.916 [0.913, 0.919]

Not known 0.936 [0.931, 0.940] 0.785 [0.778, 0.792]

Location – 51.54 [51.40, 51.69]

Scale α 53.83 [53.72, 53.94] 0.424 [0.423, 0.425]

Shape γ 4.36 [4.35, 4.37] –

GT Skew-normal (CP)c [95% CI] Gaussianc [95% CI]

Reference: Male 0.00 0.00

Female 6.01 [5.95, 6.07] 6.66 [6.59, 6.74]

Reference: Married 0.00 0.00

Single −4.95 [−5.04, −4.86] −6.89 [−6.99, −6.78]

Widowed −3.84 [−3.92, −3.76] −5.85 [−5.96, −5.73]

Divorced −3.99 [−4.10, −3.88] −4.58 [−4.69, −4.47]

Reference: Tertiary 0.00 0.00

Compulsory −3.42 [−3.52, −3.32] −3.74 [−3.85, −3.64]

Secondary −2.25 [−2.34, −2.16] −2.37 [−2.47, −2.28]

Not known −1.96 [−2.17, −1.76] −4.30 [−4.56, −4.03]

Location 47.96 [47.88, 48.05] 48.85 [48.76, 48.93]

Scale α 11.93 [11.90, 11.95] 12.87 [12.84, 12.90]

Shape γ −0.782 [−0.785, −0.779] – –

Notes.
a Hazard ratios reported.
b Time ratios reported.
c Differences in life expectancy reported.

PH, Proportional hazard model; AFT, Accelerated failure time model; GT, Gaussian-type; CP, Centered parametrization
with reported skewness index γ ; CI, Confidence interval.
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Table 2 Remaining life expectancy at age 35 years when analyzing Swiss National Cohort data.

PH Weibull [95% CI] Gompertz [95% CI]

Reference: Male

Female 56.56 [56.42, 56.70] 53.92 [53.82, 54.02]

Reference: Married

Single 42.76 [42.64, 42.87] 43.46 [43.35, 43.57]

Widowed 43.23 [43.12, 43.33] 44.61 [44.51, 44.71]

Divorced 44.52 [44.39, 44.66] 44.10 [43.98, 44.23]

Reference: Tertiary

Compulsory 44.94 [44.87, 45.01] 44.78 [44.72, 44.84]

Secondary 46.46 [46.40, 46.52] 45.86 [45.81, 45.91]

Not known 45.88 [45.67, 46.09] 46.50 [46.31, 46.69]

Remaining life expectancy 49.04 [48.94, 49.13] 48.00 [47.92, 48.08]

AFT Weibull [95% CI] Log-normal [95% CI]

Reference: Male

Female 56.56 [56.42, 56.70] 69.77 [69.51, 70.02]

Reference: Married

Single 42.76 [42.64, 42.87] 42.95 [42.78, 43.13]

Widowed 43.23 [43.12, 43.33] 38.19 [38.02, 38.36]

Divorced 44.52 [44.39, 44.66] 49.46 [49.25, 49.68]

Reference: Tertiary

Compulsory 44.94 [44.87, 45.01] 47.69 [47.57, 47.82]

Secondary 46.46 [46.40, 46.52] 51.64 [51.52, 51.75]

Not known 45.88 [45.67, 46.09] 44.24 [43.85, 44.62]

Remaining life expectancy 49.04 [48.94, 49.13] 56.39 [56.22, 56.56]

GT Skew-normal [95% CI] Gaussian [95% CI]

Reference: Male

Female 53.97 [53.91, 54.03] 55.51 [55.44, 55.59]

Reference: Married

Single 43.01 [42.92, 43.10] 41.96 [41.86, 42.07]

Widowed 44.12 [44.04, 44.20] 43.00 [43.89, 44.12]

Divorced 43.97 [43.86, 44.08] 44.27 [44.16, 44.38]

Reference: Tertiary

Compulsory 44.54 [44.44, 44.64] 45.11 [45.00, 45.21]

Secondary 45.71 [45.62, 45.80] 46.48 [46.38, 46.57]

Not known 46.00 [45.79, 46.20] 44.55 [44.29, 44.82]

Remaining life expectancy 47.96 [47.88, 48.05] 48.85 [48.76, 48.93]

Notes.
PH, PH Proportional hazard model; AFT, Accelerated failure time model; GT, Gaussian-type; CI, Confidence interval.
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Table 3 Remaining life expectancy at age 35 years estimated from official death rates 2008 (simulated
100,000 individuals), by gender.

RLE [95% CI] X2 (DF = 70)

Women

PH Weibull 49.18 [49.11, 49.26] 6,020

PH Gompertz 49.56 [49.49, 49.64] 1,087

AFT Weibull 49.18 [49.11, 49.26] 6,020

AFT log-normal 50.60 [50.47, 50.73] 20,333

Skew-normal 49.07 [49.00, 49.13] 2,131

Gaussian 49.42 [49.35, 49.49] 9,441

HMD estimate 49.91

Men

PH Weibull 44.75 [44.67, 44.84] 6,339

PH Gompertz 45.31 [45.23, 45.40] 547

AFT Weibull 44.75 [44.67, 44.84] 6,339

AFT log-normal 46.16 [46.02, 46.30] 20,102

Skew-normal 45.01 [44.94, 45.08] 822

Gaussian 45.20 [45.12, 45.27] 7,810

HMD estimate 45.69

Notes.
CI, Confidence interval; DF, Degrees of freedom; PH, Proportional hazards model; AFT, Accelerated failure time model;
HMD, Human Mortality Database; RLE, Remaining life expectancy.

a larger sample size of 10,000 the skew-normal model showed worse coverage proportions

compared to the Gompertz model (i.e., 0.72 if the true underlying distribution function

was Gompertz). In case of a mixture distribution we found that the skew-normal model

overestimates the true mean life expectancy with increasing mixture weights for Gompertz

(δ = 0.1: −0.0166 ± 0.1080, δ = 0.5: −0.0433 ± 0.1114, δ = 0.9: −0.0747 ± 0.1189),

leading to decreasing coverage proportions of (δ = 0.1: 0.946, δ = 0.5: 0.926, δ = 0.9:

0.868).

Figure 1 compares the log-hazards from a Gompertz model (dark-blue line), a

skew-normal model (red line) and from SNC data (light-blue line), by gender. Both a

Gompertz and a skew-normal model underestimates the log-hazard at ages from 35 to 55.

Nevertheless, the Gompertz model shows a slightly better model fit at these ages, compared

to a skew-normal model. From age 50 onwards, a Gompertz model and a skew-normal

model show almost identical model fits. Figure 2 shows a histogram of number of deaths

per one year age intervals from the hypothetical population per gender. Density lines for

each model were overlaid. Goodness-of-fit measured by X2 was lowest for a Gompertz

survival model and the skew-normal regression model. Thus, both showed best model

fit. Highest X2 were obtained for the AFT log-normal model and the Gaussian regression

model, indicating worst model fit among all investigated models.

DISCUSSION
For modeling absolute differences in life expectancy, we compared results from commonly

used parametric survival regression models to those obtained from a skew-normal
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Table 4 Simulation study: coverage proportion and bias.

Model distribution

Coverage proportion Biasa ± SD

Gompertz Skew-normal Gompertz Skew-normal

True underlying distributionb

Sample size 100

Skew-normal 0.946 0.940 0.0490 ± 1.1100 0.0620 ± 1.1040

Gompertz 0.959 0.938 0.0090 ± 1.0580 −0.1140 ± 1.1030

Mixturec

δ = 0.1 0.952 0.945 0.0030 ± 1.1200 0.0070 ± 1.0900

δ = 0.25 0.951 0.946 −0.0110 ± 1.1180 −0.0200 ± 1.1020

δ = 0.5 0.950 0.944 −0.0190 ± 1.1170 −0.0460 ± 1.1130

δ = 0.75 0.952 0.943 −0.0150 ± 1.1090 −0.0550 ± 1.1140

δ = 0.9 0.951 0.940 −0.0040 ± 1.1130 −0.0590 ± 1.1240

Sample size 1,000

Skew-normal 0.937 0.942 −0.0038 ± 0.3605 −0.0136 ± 0.3488

Gompertz 0.964 0.937 0.0282 ± 0.3312 −0.1160 ± 0.3505

Mixturec

δ = 0.1 0.936 0.945 0.0120 ± 0.3620 −0.0010 ± 0.3500

δ = 0.25 0.945 0.949 0.0090 ± 0.3563 −0.0174 ± 0.3507

δ = 0.5 0.947 0.944 0.0004 ± 0.3558 −0.0428 ± 0.3545

δ = 0.75 0.943 0.937 −0.0002 ± 0.3573 −0.0599 ± 0.3594

δ = 0.9 0.943 0.932 0.0023 ± 0.3560 −0.0717 ± 0.3624

Sample size 10,000

Skew-normal 0.959 0.955 0.0067 ± 0.1094 0.0019 ± 0.1065

Gompertz 0.963 0.715 −0.0020 ± 0.1038 −0.1470 ± 0.1108

Mixturec

δ = 0.1 0.951 0.946 0.0037 ± 0.1104 −0.0166 ± 0.1080

δ = 0.25 0.954 0.935 0.0012 ± 0.1111 −0.0290 ± 0.1111

δ = 0.5 0.955 0.926 0.0022 ± 0.1089 −0.0433 ± 0.1114

δ = 0.75 0.953 0.898 0.0014 ± 0.1097 −0.0607 ± 0.1160

δ = 0.9 0.951 0.868 0.0013 ± 0.1099 −0.0747 ± 0.1189

Notes.
a Bias defined as the true underlying mean minus the estimated mean from Gompertz model or Skew-normal model.
b Used distribution parameters for Gompertz distribution: Shape parameter γ = 0.116, scale parameter α = exp−12.25;

For skew-normal distribution: Location parameter µ= 82.1, scale parameter α = 11.1, shape parameter γ = −0.836.
c Mixture distribution: δ× Gompertz + (1 − δ)× Skew-normal.

SD, Standard deviation.

regression model. We implemented a censored skew-normal regression approach which

allowed to account for left-truncated observations having censored survival times. Our

findings suggest that a censored skew-normal regression model is an adequate approach in

the analysis of absolute differences in life expectancy. Surprisingly, statistical software like

Stata (Stata Corporation, College Station, TX, USA) or R (R Project, University of Vienna,

Austria) do not support skew-normal regression approaches in their core. A Stata suite for

skew-normal and skew-t models has been introduced (Marchenko & Genton, 2010), and
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Figure 1 Log-hazard plots of SNC death rates, Gompertz proportional hazard model, and skew-
normal model, by gender.

an R package for fitting univariate and multivariate skew-normal and skew-t models is

available in the package sn (Azzalini, 2011). However, both available additions do not allow

for regressions with left-truncated and censored observations.

Parametric survival models are often used to investigate the association of covariates

on survival time. Effect measures are reported either as hazard ratios or time ratios,

which yield no direct interpretation in terms of differences in survival time or life

expectancy. Differences in life expectancy and corresponding confidence intervals from

parametric survival models have to be calculated from estimated distributional and further

model parameters from the underlying survival distribution function, using non-trivial

transformations. Our presented skew-normal regression approach has the advantage

that parameter estimates are directly interpretable in terms of absolute differences in life

expectancy, similar to results from a linear Gaussian regression. In contrast to a Gaussian

regression model, the negative skewness of lifetime data seemed reasonably captured when

assuming a skew-normal distribution. Analyzing mortality data from the Swiss National

Cohort or hypothetical data derived from official death rates in Switzerland showed that

results, in terms of differences in life expectancy and goodness-of-fit, were comparable to

those of commonly used parametric survival regression models, especially the Gompertz

model commonly used for the analysis of life expectancy (Robertson, De Los Campos &

Allison, 2013). Our results confirm the results from Robertson and colleagues (2012) that

differences in life expectancy are similar across Gaussian-type regression models and

parametric survival models, which can be explained by the central limit theorem. Our

simulation study showed that the Gompertz model had better true mean life expectancy

coverage in case of model misspecification compared to the skew-normal model. Thus,

parameter estimates and standard errors from the skew-normal model could be more

biased than those from a Gompertz model.
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Figure 2 Histogram of estimated number of deaths per one-year age intervals. Probability density
functions from estimated parameters from proportional hazard (PH) Weibull and Gompertz models,
accelerated failure time (AFT) log-normal model, and skew-normal and Gaussian regression models.
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Our presented approach has limitations. First, the skew-normal distribution has

a support on the real line R, such that life expectancy could be estimated within an

implausible range. Such situations could occur in a population with a high proportion

of dead individuals compared to surviving individuals, and the individuals died very

young. Then, most of the survival information lies in the upper end of the left-tail, and

estimates from a skew-normal distribution could be implausible. Second, it is well-known

that the distribution of time from birth to death has a bimodal shape, i.e., peaks occur at

early infancy and older ages (Robertson & Allison, 2012). Our current approach does not

include the modeling of bimodal distributed data, i.e., through mixtures of skew-normal

distribution functions (Lin, Lee & Yen, 2007) or semiparametric approaches (Ma & Hart,

2007). Third, possible bias in the estimation of life expectancy is introduced by censoring.

From the 4.1 mio investigated individuals in the SNC roughly 480,000 persons died over

eight years of follow-up. Thus, 88.3% of the study population is censored and only 11.7%

have exact time to death information. By study design this is a type-I censoring situation,

and most of the likelihood information is driven by a pre-determined time point ci in the

likelihood function defined in the survival function S(ci;ξ,σ
2,ψ) in Eq. (6).

Besides the mentioned analysis methods described so far, other approaches of analysing

mean survival time have been proposed. For example, Andersen and colleagues (2004)

used so called pseudo-observations for the estimation of (restricted) mean survival time.

Pseudo-observations are defined as “leave-one-out” estimators, i.e., parameters are esti-

mated on subsamples where one observations is omitted, and is thus related to jackknife

procedures. The advantage of this approach is that for the calculation of restricted mean

survival time nonparametric estimators (i.e., Kaplan–Meier estimator), but also paramet-

ric survival models (i.e., using standard survival distribution functions) in the regression

setting, can be used to calculate the pseudo-observations. Another approach is the use of

flexible survival regression techniques (Royston & Lambert, 2011). Flexible survival regres-

sion models model the baseline cumulative hazard function using restricted cubic splines,

and allow the calculations of restricted mean survival time (Royston & Parmar, 2013).

We conclude that a censored skew-normal regression approach is a possible alternative

to parametric survival models for modeling differences in life expectancy. The advantage

of this approach over parametric survival regression techniques is that parameter estimates

are directly in terms of mean life expectancy. Other underlying Gaussian-type distribution

functions (i.e., the skew-t distribution or the compressed Gaussian distribution) have been

investigated (Clark et al., 2013; Robertson & Allison, 2012), with promising results in terms

of model fit. In our analysis and simulation study the skew-normal distribution did not

outperform the Gompertz distribution function. However, we found the skew-normal

distribution a good compromise compared to other distribution functions in terms of

model fit and modeling complexity. For example, fitting a skew-t distribution to larger data

sets is computationally more intense due to the additional distributional complexity.

Obviously a weighing of the gain in the use of more complex distribution function

is needed, especially when differences in mean life expectancy are of main interest. A

censored skew-normal regression approach is an alternative to existing Gaussian-type
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regression approaches in the modeling of life expectancy with the advantage of parameter

estimates directly expressed in differences of life expectancy.
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