

New genus and new species of Metapseudidae (Crustacea, Tanaidacea) from southeastern Australian coast (#45854)

1

First submission

Guidance from your Editor

Please submit by **9 Mar 2020** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

5 Figure file(s)

1 Table file(s)

Custom checks

New species checks

 Have you checked our [new species policies](#)?

 Do you agree that it is a new species?

 Is it correctly described e.g. meets ICZN standard?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

New genus and new species of Metapseudidae (Crustacea, Tanaidacea) from southeastern Australian coast

Piotr Józwiak^{Corresp., 1}, Magdalena Błażewicz¹

¹ Laboratory of Polar Biology and Oceanobiology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland

Corresponding Author: Piotr Józwiak
Email address: piotr.jozwiak@biol.uni.lodz.pl

Based on materials collected on the shelf of SE Australia (off Portland) a new genus and new species - *Muvi schmallenbergi* gen. nov., sp. nov., of tanaidacean family Metapseudidae is described. *Muvi* is distinguishable from other genera within subfamily Chondropodinae by having equally long flagella of antennule. Moreover it differs from the other chondropodins in combination of numerous characters as: eyelobes with visual elements, rostrum with smooth lateral edges, pereonites with lateral processes and pleotelson lacking lateral process, antennule article-1 with single apophysis, maxillule inner lobe well-developed, labial palp bearing three distal setae, cheliped exopod well developed and setose, pereopod-1 coxa with distinct apophysis, pleopods in five pairs and uropod basis without apophysis. The identification key for genera within Chondropodinae is given and distribution of chondropodins is discussed.

1 **New genus and new species of Metapseudidae (Crustacea, Tanaidacea) from southeastern**

2 **Australian coast**

3

4 Piotr Józwiak, Magdalena Błażewicz

5 Laboratory of Polar Biology and Oceanobiology, Faculty of Biology and Environmental

6 Protection, University of Łódź, Banacha 12/16, Łódź 90-237, Poland

7 Corresponding author: Piotr Józwiak, email: piotr.jozwiak@biol.uni.lodz.pl

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **Abstract**

27 Based on materials collected on the shelf of SE Australia (off Portland) a new genus and new
28 species – *Muvi schmollenbergi* gen. nov., sp. nov., of tanaidacean family Metapseudidae is
29 described. *Muvi* is distinguishable from other genera within subfamily Chondropodinae by
30 having equally long flagella of antennule. Moreover it differs from the other chondropodins in
31 combination of numerous characters as: eyelobes with visual elements, rostrum with smooth
32 lateral edges, pereonites with lateral processes and pleotelson lacking lateral process, antennule
33 article-1 with single apophysis, maxillule inner lobe well-developed, labial palp bearing three
34 distal setae, cheliped exopod well developed and setose, pereopod-1 coxa with distinct
35 apophysis, pleopods in five pairs and uropod basis without apophysis.

36 The identification key for genera within Chondropodinae is given and distribution of
37 chondropodins is discussed.

38

39 **Introduction**

40 Tanaidacea, the small benthic peracarid crustaceans, is poorly recognized element of marine
41 ecosystem, till the late 1990's for the Australian waters being known only from few taxonomical
42 papers (e.g. *Boesch, 1973; Băcescu, 1981; Sieg, 1993; Edgar, 1997*). The turning point comes
43 with the beginning of this millennium when a series of surveys were dedicated to tanaidacean
44 fauna (*Larsen, 2000; Larsen, 2001; Larsen & Heard, 2001; Larsen & Hansknecht, 2002; Guțu &*
45 *Heard, 2002; Guțu, 2006; Błażewicz-Paszkowycz & Bamber, 2007a; Błażewicz-Paszkowycz &*
46 *Bamber, 2007b; Edgar, 2008; Błażewicz-Paszkowycz & Bamber, 2009; Błażewicz-Paszkowycz &*

47 *Bamber, 2012; Bamber & Błażewicz-Paszkowycz, 2013*). As the outcome *Gułu* (2006) described
48 13 new species from tropical Australian region, *Edgar* (2008) found 12 new species off
49 Tasmania and finally *Błażewicz-Paszkowycz & Bamber* (2012) added 44 new species to the list
50 from Bass Strait. The results from those few papers demonstrate that coast of Australia is
51 characterised by inordinate diversity (*Bamber & Błażewicz-Paszkowycz, 2013*), but also high
52 level of endemism (*Błażewicz-Paszkowycz & Bamber, 2012; Błażewicz-Paszkowycz, Bamber &*
53 *Anderson, 2012*). A total number of Tanaidacea living in the Australian coast is still far from
54 complete (*Stępień, Pabis & Błażewicz, 2018*). *Poore et al.* (2015) has summarized the total
55 number of known tanaidaceans from Australian waters is close to 200. However this number is
56 probably only a fraction of tanaidacean fauna. The studies on the lower shelf and upper bathyal
57 depths of the western and southwestern Australia demonstrated that Tanaidacea is the most
58 abundant taxon in terms of individuals and species (*Poore et al., 2015*).

59 Chondropodinae is currently represented by 29 species classified to 9 genera (*WoRMS*,
60 2019) distributed in tropical to temperate waters. So far the Chondropodinae were recorded from
61 e.g. *Adriatic* Sea, Brazilian coast, Gulf of Guinea, Mauritania, Gulf of Mexico, *Caribbean* Sea or
62 Coast of Malaysia (*Gułu, 1984; Gułu, 1996; Gułu, 2002; Bamber & Shearer, 2005; Gułu, 2006a*;
63 *Gułu, 2014; Jakiel et al., 2015*). In Australian waters the subfamily is known so far from two
64 species – *Julmarichardia gutui* Ritger & Heard, 2007 found in NW Australian coast (Ritger &
65 Heard, 2007), and *Bamberus jinigudirus* Stępień & Błażewicz-Paszkowycz, 2013 collected from
66 Ningaloo coral reefs (Stępień & Błażewicz-Paszkowycz, 2013). Described herein *Muvi*
67 *schmallenbergi* sp. nov. is the third Chondropodinae species recorded from Australia.

68

69 Materials and methods

70 The analysed sample was taken during the SLOPE campaign off Portland, Victoria, Australia at
71 the depth of 49.5 m using Smith-McIntyre grab. The sample was preserved in formaldehyde, and
72 after identification was fixed in 70% ethanol. Images of body habitus were taken with Leica
73 M125 stereomicroscope combined with DFC295 camera and LAS V4.5 software. Appendages
74 were dissected in a glycerine solution using chemically-sharpened tungsten needles, mounted in
75 glycerine on slides, and sealed with nail varnish. Drawings were made using a Nikon Eclipse 50i
76 microscope combined with a camera lucida; redrawn with china ink and finally combined and
77 cleared with Corel PHOTO-PAINT X7. The body length to width ratio was calculated using
78 measurements from the tip of the carapace to the end of the pleotelson, and of the widest part of
79 carapace, while the length and width of articles were measured along their central axes. The
80 general morphological terminology follows that proposed by *Blazewicz-Paszkowycz, Bamber &*
81 *Jóźwiak (2013)*. To simplify species descriptions, the expression ‘Nx’ replaces ‘N times as long
82 as’ and ‘NL:W’ replaces ‘N times longer than wide’. The type material is deposited in
83 Melbourne Museum (NMV, Australia).

84 The electronic version of this article in Portable Document Format (PDF) will represent a
85 published work according to the International Commission on Zoological Nomenclature (ICZN),
86 and hence the new names contained in the electronic version are effectively published under that
87 Code from the electronic edition alone. This published work and the nomenclatural acts it
88 contains have been registered in ZooBank, the online registration system for the ICZN. The
89 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
90 through any standard web browser by appending the LSID to the prefix <http://zoobank.org/>. The
91 LSID for this publication is: urn:lsid:zoobank.org:pub:E516068D-B9FC-4267-BC3C-

92 6C97CF6728C1. The online version of this work is archived and available from the following
93 digital repositories: PeerJ, PubMed Central and CLOCKSS.

94

95 **Results**

96 **Systematics**

97 Order Tanaidacea Dana, 1849

98 Suborder Apseudomorpha Sieg, 1980

99 Superfamily Apseudoidea Leach, 1814

100 Family Metapseudidae Lang, 1970

101 Subfamily Chondropodinae Guçu, 2008

102

103 Genus *Muvi* gen. nov.

104 urn:lsid:zoobank.org:act:60F20E13-CC0C-4779-828F-50A561E1BB85

105 **Diagnosis.** Rostrum triangular pointed, lateral margin smooth. Eyelobes with visual elements.

106 Pereonites wider than long. Antennule peduncle of four articles, article-1 with only single

107 apophysis on outerodistal corner; flagella equal in length, each with twelve segments. Maxillule

108 inner lobe well developed. Labial palp with three distal setae. Exopod on cheliped and pereopod-

109 1 well developed, with nine and eleven plumose setae, respectively. Pereopod-1 coxa with

110 distinct apophysis. Pereopods bases without apophyses. Pereopod-1 propodus 1.5 times as long

111 as wide. Pleopods in five pairs. Uropod basal article without hyposphaenium; endopod of seven

112 segments, exopod of three segments.

113

114 **Etymology.** The name is an acronym for Museum Victoria, where the studied material is
115 deposited.

116

117 **Remarks**

118 *Muvi* gen. nov. was classified to subfamily Chondropodinae based on a combination of following
119 characters: pleon of five free pleonites, antennule peduncle article-1 with apophysis, antenna
120 peduncle article-2 elongated, mandibular palp of three articles and pereopod-1 basis with row of
121 plumose setae dorsally. genus can be immediately distinguished from other members of the
122 subfamily by having elongated, multiarticled inner flagellum of antennule, that is equal in size
123 and in number of the articles to outer flagellum. Moreover *Muvi* gen. nov. differs from:

124 - *Bamberus* Stępień & Błażewicz-Paszkowycz, 2013 by pleotelson without lateral process,
125 antennule article-1 with single apophysis, well developed inner lobe of maxillule, labial
126 palp with three setae distally and uropod basal article without apophysis. In *Bamberus*
127 pleotelson has single process on lateral sides, antennule article-1 lacks apophyses, inner
128 lobe of maxillule is reduced and bears only two distal setae, labial palp has two seta while
129 uropod basis has distinct apophysis (Stępień & Błażewicz-Paszkowycz, 2013)
130 - *Calozodion* Gardiner, 1973 by having three strong setae distally on labial palp; there is
131 only one distal spine in *Calozodion* (Guçu, 2002);
132 - *Chondropodus* Guçu, 2006 by having eyelobes with visual elements, pereonites with
133 lateral processes, pleotelson without lateral process, labium with three distal setae,
134 pereopod-1 coxa with distinct apophysis, propodus only 1.5 L:W, pleopod exopod with
135 single article. In *Chondropodus* eyelobes lacking visual elements, pereonites do not have
136 lateral processes, labial palp has single distal spine, pereopod-1 lacking coxal apophysis

137 and propodus is at least twice as long as wide and pleopod exopod is biarticled (*Guçu*,
138 2006a);

139 - *Hoplopolemius* Sganga & Roccatagliata, 2016 in antennule peduncle article-1 with only
140 single apophysis (Richardson, 1902; *Guçu*, 2002; Larsen & Shimomura, 2006);

141 - *Julmarichardia* Guçu, 1989 in rostrum with smooth lateral edges, antennule peduncle
142 article-1 with single apophysis. The lateral edges of *Julmarichardia* rostrum are distinctly
143 serrated and antennule peduncle article-1 in members of this genus has more than one
144 apophysis (Barnard, 1914; *Guçu*, 1989a; *Guçu*, 1989b; Bamber & Shearer, 2005; Ritger
145 & Heard, 2007);

146 - *Trichapseudes* Barnard, 1920 by having five pairs of pleopods – in *Trichapseudes* only
147 three pairs of pleopods are present (Barnard, 1920);

148 - *Vestigiramus* Guçu, 2009 in well-developed and setose cheliped exopod. *Vestigiramus*
149 has reduced uniarticled and naked cheliped exopod (*Guçu*, 2009);

150 - *Zaraza* Guçu, 2006 by three setae distally on labial palp and five pairs of pleopods.
151 *Zaraza* has labial palp with single terminal seta (spine) and three pairs of pleopods (*Guçu*,
152 2006b).

153

154 **Key to the genera of the subfamily Chondropodinae (modified after Guçu 2008)**

155 1 - Rostrum very with denticles around ... *Julmarichardia* Guçu, 1989

156 - Rostrum without denticles around ... 2

157 2 - Pereopod-1 propodus cylindrical, much longer than its thickness or the length of carpus...3

158 - Pereopod-1 propodus wide, not much longer than its thickness or the length of carpus ... 4

159 3- Uropod peduncle with strong apophysis dorsally ... *Bamberus* Stępień & Błażewicz, 2013

160 Uropod peduncle without strong apophysis dorsally ... *Chondropodus* Guçu, 2006

161 4 - Antennule inner flagellum **twoarticulated** ... 5

162 - Antennule inner flagellum **multiarticulated** ... 6

163 5 - Cheliped exopod triarticulated, with terminal setae ... *Calozodion* Gardiner, 1973 Cheliped

164 exopod uniarticulated, without terminal setae ... *Vestigiramus* Guçu, 2009

165 6 - Antennule inner flagellum equal in length to outer flagellum ... *Muvi* gen. nov.

166 Antennule inner flagellum shorter than outer flagellum ... 7

167 7 - Pereopod-1 exopod with last article round (and large), having more **of** 20 plumose setae
around..... *Trichapseudes* Barnard, 1920

168 - Pereopod-1 exopod with last article normal (elongated), having **some** plumose setae around... 8

170 9 - Five pairs of pleopods ... *Hoplopolemius* Sganga & Roccatagliata, 2016

171 - Three pairs of pleopods ... *Zaraza* Guçu, 2006

172

173 *Muvi schmollenbergi* sp. nov.

174 urn:lsid:zoobank.org:act:14743564-C6F2-42CE-A181-CE30F5C5A2C2

175 (Figs 1 – 3)

176 **Material examined.** **Holotype female** (MNV J74649), SLOPE 99, Victoria, Off Portland, 38°
31' 34'' S, 141° 58' 46'' E, depth 49.6 m, 11 May 1994, Smith-McIntyre grab, coll. G.C.B.

178 Poore. Paratype, female (MNV J74648), 5.9 mm, the same locality, dissected on slides.

179 **Diagnosis.** As for the genus.

180 **Etymology.** The new species is dedicated to Barbara Schmollenberg.

181 **Description of female**

182 Body (Fig. 1A, B) 5.95 mm long. Cephalothorax 21% of total body length; rostrum triangular
183 and pointed (Fig. 2C); **eyelobes pointed with visual elements**. Pereonites length-width ratio: 0.3,
184 0.4, 0.5, 0.5 and 0.3; pereonites 2–5 with dorsoproximal apophyses on lateral margin. Pleon
185 32% of total body length; pleonites equal in length about 0.2 L:W, with pointed lateral margins;
186 pleotelson just longer than last three pleonites combined.

187 Antennule (Fig. 2A) peduncle article-1 2.1 L:W and 1.9x article-2, with four simple and two
188 penicillate setae on inner margin and one simple, one plumose and four penicillate setae on outer
189 margin; single apophysis present in distoouter corner; article-2 1.2 L:W and 1.9x article-3, with
190 five simple and two penicillate setae subdistally; article-3 as long as wide, with two simple setae
191 distally; common article short and naked; flagella subequal, each with 12 segments, setation as
192 figured.

193 Antenna (Fig. 2B) peduncle article-2 1.7 L:W and 3x article-3, with three minute distal and
194 subdistal setae; squama narrow, 4.5 L:W, with simple subdistal seta and three distal setae;
195 peduncle article-3 0.8 L:W and 0.7x article-4, with two long simple setae distally; article-4 1.2
196 L:W and 0.9x article-5, with three penicillate distal setae; article-5 1.4 L:W, with two short
197 simple, two long simple and two penicillate setae distally and one midlength simple seta;
198 flagellum of six segments, setation as figured.

199 Mouthparts. Labrum (Fig. 2D) rectangular with numerous minute setae on distal and lateral
200 margins. Right mandible (Fig. 2E) incisor with four well calcified triangular teeth; outer margin
201 with tubercles and with minute setae distally. Left mandible (Fig. 2F) outer margin with distally
202 setulose tubercles; incisor with four distal teeth; *lacinia mobilis* as long as incisor, with four
203 teeth, setiferous lobe with four complex-tip setae; molar broad, distally serrated; palp (Fig. 2G)
204 article-1 1.1 L:W, with five inner setae; article-2 2.1 L:W with outer margin serrated, two simple

205 distal setae and **row of inner setae** started from middle of article, setae decreasing in length
206 towards distal end of article; article-3 3.7 L:W, with five outer setae and **row of setae** along inner
207 margin. Maxillule (Fig. 2H) inner endite with five setae distally (at least three of them setulated),
208 inner and outer margins with serration, outer margin with tuft of **setae**; outer endite with eleven
209 spines (apparently one serrated), outer margin setulated. Maxilla (Fig. 2I) outer lobe of moveable
210 endite with two subdistal simple and **five** distal serrated setae, outer margin with microtrichiae;
211 inner lobe of moveable endite with ten serrated setae distally; outer lobe of fixed endite distally
212 with three trifurcated and three serrated setae; inner lobe of fixed endite with 22 setae (at least
213 five of them serrated). Labium (Fig. 2J) outer and inner margins with setation distally; palp (Fig.
214 2K) lateral margins setulated, distally, with three simple spines.
215 Maxilliped (Fig. 2L) basis 1.1 L:W, with outerodistal **spine** and three innerodistal **long** setae,
216 **additionally** outer margin with teeth and inner margin with proximal microtrichiae. Palp article-1
217 0.4 L:W, with long simple seta on inner **margin** and one simple and two plumose setae on outer
218 margin; article-2 1.2 L:W, with two **rows of setae** on inner margin and **two long** outerodistal
219 **setae**; article-3 about as long as wide, with **row of setae** along inner margin (at least one
220 plumose); article-4 1.3 L:W, with **row of distal setae** (at least five of them serrated) and one outer
221 seta. Endite (Fig. 2M) outer margin setulated; inner margin with three coupling hooks and five
222 short plumose setae; distal margin with nine short plumose setae/spines (some with complex tip)
223 and one long plumose seta, **subdistal** seta simple.
224 Cheliped (Fig. 3A) basis 1.1 L:W, with plumose dorsodistal seta, simple seta ventrop proximally,
225 spine ventrally at midlength and four long setae ventrodistally; exopod of three articles, article-3
226 with **nine** **plumose** setae; merus 1.2 L:W and 0.7x basis, **with one simple and one plumose setae**,
227 **four** spines and apophysis ventrally, carpus 0.9 L:W and 1.2x merus, with **row of setae** along

228 dorsal margin, one apophysis and three setae ventrally and distal apophysis; propodus 0.9 L:W
229 and 1.8x carpus, with three short dorsal and three outer setae and one serrated inner spine near
230 dactylus insertion; fixed finger about 0.8x propodus, with two proximal outer setae, four setae
231 ventrally, cutting margin with two long setae near dactylus insertion, four setae distally and small
232 teeth accompanied with minute setae in proximal half; dactylus just longer than fixed finger with
233 two subdistal setae and row of teeth and spinules along cutting edge.

234 Pereopod-1 (Fig. 3B) coxa with two setae; basis 2.2 L:W and 2.0x merus, with two ventral setae
235 and four ventrodistal setae, row of plumose and simple setae along dorsal margin; exopod of
236 three articles, article-3 with eleven plumose setae; ischium with three setae, merus 1.3 L:W and
237 1.1x carpus, with dorsodistal spine, other setation as figured; carpus 1.1 L:W and 1.1x propodus,
238 with two ventrodistal spines, other setation as figured; propodus 1.5 L:W and 1.5x dactylus, with
239 three spines and three setae ventrally and two spines and two setae dorsally; dactylus 2.9 L:W
240 and 2x unguis, with dorsal seta and ventral apophysis; dactylus and unguis combined as long as
241 propodus.

242 Pereopod-3 (Fig. 3C) coxa with seta; basis 2.1 L:W and 1.8x merus, with tuft of setae
243 ventrodistally, other setation as figured; ischium with two setae, merus 1.7 L:W and 1.3x carpus,
244 with one small and one bigger spines ventrodistally, other setation as figured; carpus 1.2 L:W
245 and 0.65x propodus, with ventral spine in proximal part, two ventrodistal spines, two long setae
246 and three spines dorsodistally; propodus 2.5 L:W and 1.5x dactylus, with two ventral spine
247 proximal part, one ventrodistal spine, one dorsal subdistal spine and one dorsodistal spine, other
248 setation as figured; dactylus 3.2 L:W, with ventral tooth, ventrodistal seta and two dorsal setae;
249 unguis about 0.5x dactylus; together about as long as propodus.

250 Pereopod-4 (Fig. 3D) coxa with two penicillate setae; basis 2.1 L:W and 2.0x merus, with one ventroproximal seta, two simple, three penicillate setae dorsally and two short and one long setae ventrodistally; ischium with three setae, merus 1.5 L:W and 0.9x carpus, with two short ventrodistal spines, other setation as figured, carpus 1.8 L:W and as long as propodus, with two short and one longer dorsal spines and two ventrodistal spines, other setation as figured; propodus 3.3 L:W and 2.0x dactylus, with eight serrated setae distally; dactylus damaged, 2.0x unguis, with two short setae ventrally.

257 Pereopod-5 (Fig. 3E) coxa with one simple and one plumose setae; basis 2.3 L:W and 2.2x merus, with simple ventroproximal seta, midlength ventral seta, one plumose and three simple setae ventrodistally, dorsal margin with one simple, five plumose and three penicillate setae; ischium with one plumose and one short simple seta, merus 1.7 L:W and as long as carpus, with short ventrodistal spine, other setation as figured; carpus 1.5 L:W and 0.8x propodus, with four increasing in size spines along ventral margin and one dorsodistal spine, other setation as figured, propodus 2.0 L:W and 1.7x dactylus, with two spines ventrally, serrated dorsodistal spine and three ventrodistal serrated minute spines, other setation as figured; dactylus with midlength minute ventral spine, short dorsal seta and one short ventrodistal seta, dactylus combined with unguis 0.9x propodus.

267 Pereopod-6 (Fig. 3F) basis 3.1 L:W and 3.4x merus, with two plumose dorsal setae and four plumose ventral setae; ischium with plumose seta, merus 1.3 L:W and 0.6x carpus, with one dorsodistal plumose seta and two ventrodistal plumose setae; carpus 1.9 L:W and 0.9x propodus, with two ventrodistal spines and one dorsodistal spine, other setation as figured; propodus 2.2 L:W and 1.2x dactylus, with one midlength spine ventrally and some minute serrated ventrodistal and dorsodistal spines, and dorsal midlength penicillate seta; dactylus with

273 ventrodistal seta and three setae dorsally and with ventral serration; dactylus combined with
274 unguis 1.1x propodus.

275 Pleopods (Fig. 3G) basal article 1.7 L:W, with plumose distal seta; endopod just longer than
276 exopod, with nine plumose setae distally and one dorsal and one ventral midlength setae; exopod
277 with eleven plumose setae along distal end and plumose ventroproximal seta.

278 Uropod (Fig. 3H) basal article 1.8 L:W, with seven simple setae distally; exopod of three
279 segments, article-2 with two distal setae, article-3 with three distal setae; exopod of seven
280 segments 3.7x endopod, some of them with midlength setae apparently indicated fusion of
281 segments, other setation as figured.

282 **Distribution.** Species is known only from the type locality - off Portland, Australia from
283 depth 49.6 m.

284

285 **Discussion**

286 **Distribution of Chondropodinae**

287 Depth and type of sediment

288 Bathymetrically Chondropodinae are mostly shallow water tanaidaceans and their vertical
289 distribution usually not exceeds shelf depths (Table 1). So far only few species were recorded
290 from deeper areas, namely: *Julmarichardia thomassini* Guçu, 1989 found at 250 m, *Calozodion*
291 *pabisi* Jakiel & Jóźwiak, 2015 found at 386 m and *Julmarichardia alinati* Guçu, 1989 with
292 maximum depth at 450 m. Intriguingly the shallowest record of the last species is from only 6 m.
293 Family Metapsedidae to which chondropodins are classified are often considered as being
294 associated with coral reefs or hydroid colonies (Sieg, 1986; Stępień & Błażewicz-Paszkowycz,
295 2013). However closer look only on the Chondropodinae, reveals that members of this subfamily

296 can be found in fact on various sediments, e.g. sand, silt clay, rubble, algea or dead corals (Table
297 1). The limited data do not allow to point– substrate preferences at the species level.

298 Horizontal distribution

299 Chondropodinae are widespread worldwide (Figs 4, 5). The highest number of species
300 belonging to this subfamily were so far recorded from waters around Central America – six
301 species, from East African coasts – with five species, and West Africa – with four species. At the
302 genus level, chondropodins are in most cases not restricted to one marine basin for example
303 *Julmarichardia* was found in Mozambique Channel as well as on Maleysian coast and North-
304 west Australia, and *Calozoaion* was found on Brasilian coast, off Angola and from Malaysia
305 (Figs 4 and 5). Some others genera are monotypic – *Bamberus*, *Trichapseudes* and *Zaraza*,
306 making impossible to comment any zoogeographical patterns. So far only two non-monotypic
307 genera of Chondropodinae show restricted distribution, namely *Vestigiramus* with three species
308 recorded along ~~east~~ coast of South America, and *Chondropodus* with two species described from
309 coast of *Mauretania*.

310 The most striking aspect of Chondropodinae distribution is fact that they are limited to tropics
311 and to some extend to temperate area, and completely absent in higher latitudes (Figs 4 and 5).

312 The most northward record of this subfamily is for *Julmarichardia dollfusi* (Guçu, 1989)
313 described from Jersey Island (North-east Atlantic, apparently without precise location of
314 sampling site) (Guçu, 1989a). The most southward records of Chondropodinae are for species

315 described by Barnard - *Julmarichardia deltoides* (Barnard, 1914) found off Gt. Fish Point

316 Lighthouse and *Trichapseudes tridens* Barnard, 1920 taken off East London, South Africa, both
317 locations about 33°S (coordinates not specified in original descriptions) (Barnard, 1914;

318 Barnard, 1920). It is worth to mention that absence of this subfamily in polar regions is not

319 biased by a low sampling effort. In fact, at least Atlantic sector of Arctica and Antarctica are
320 among the best studied areas of World Ocean regarding to tanaidaceans fauna (Bird, 2010;
321 Blažewicz-Paszkowycz, 2014; Jakiel et al., 2018).

322 The longitudinal gradient in diversity from the peak in the tropics and decrease towards the poles
323 is observed in many marine groups of invertebrates e.g., decapods, gastropods and bivalves
324 (Clarke & Crame, 2010) or vertebrates e.g., fishes (Rabosky et al., 2018).

325 One of the possible explanation of this phenomenon is that the tropical climates are older and
326 larger and the tropical regions diversify faster due higher rates of speciation and lower extinction
327 rates (Mittelbach et al., 2007; Brown, 2014).

328 At the same time the main factor assumed to be responsible for extinctions of shallow-water taxa
329 in the polar regions are glaciations periods, especially when the shelf may have been completely
330 covered by ice (Clarke & Crame, 2010; Thatje, 2012). Then the potential recolonization of shelf
331 in polar areas might be limited for some tropic or even temperate taxa because of theirs
332 physiology (Thatje, 2012; Brown, 2014). As was pointed by Brown (2014) tropical species and
333 lineages that have long evolutionary history in relatively equable environments, may not tolerate
334 the abiotic stresses at higher latitudes with emphasis on cold temperature and extreme
335 seasonality.

336 Within Tanaidacea the pantropical and pantemperate distribution with no representatives on high
337 latitudes is often described phenomenon. It was so far assigned for most of shallow-water
338 families of Apseudomorpha (Blažewicz-Paszkowycz, 2014) and some Tanaidomorpha families
339 considered as plesiomorphic: Tanaididae, Pseudozeuxidae, Paratanaidae and Leptocheliidae
340 (Blažewicz et al., 2012).

341 For Antarctic, Sieg (1992) suggested the extinction of shallow-water tropical or temperate
342 tanaidacean taxa during glaciations, and then in postglacial periods the colonisation of the
343 vacant habitats by deep-sea forms. At the same time, he pointed out that according to fossil
344 records all recent tanaidacean families had evolved before the Eocene and thus theirs
345 representatives were theoretically able to colonize the antarctic shelf. To support his extinction
346 hypothesis Sieg stated that Antarctic tanaidacean fauna is characterised by the high ratio between
347 deep-sea and shallow-water taxa, presence of relatively phylogenetically young taxa and lack of
348 species with functional eyes on the shelf (Sieg, 1992).

349 Over two decades later, Błażewicz-Paszkowycz (2014) developed Sieg's hypothesis pointing out
350 that some tanaidaceans might survived the glaciations in shelf or slope refugia or colonized the
351 Antarctic via the Scotia Arc. This idea is strongly supported by presence in Antarctica
352 representatives of typically tropical families - *Paratanais oculatus* (Paratanaidae) and *Allotanais*
353 *hirsutus* (Tanaididae).

354 The Arctic tanaidacean fauna share some species with temperate Atlantic and to a lesser extent
355 with temperate Pacific and is thus characterised by lower level of endemism (Sieg, 1986). Still
356 this area is underrepresent by some taxa like e.g. shallow-water Apseudomorpha and similarly to
357 the Antarctic area it may be a result of glaciation events.

358 In particular, majority of Apseudomorpha including Chondropodinae appeared to have radiated
359 in Indo-West Pacific and at the same time theirs physiology adapted to tropics making them
360 unable to recolonise polar regions (Błażewicz-Paszkowycz, 2014).

361

362

363 **Acknowledgements**

364 Authors would like to thank Gary Poore for collecting the material and Melanie Mackenzie and
365 Joanne Taylor from Museum Victoria for making it available for the study.

366

367 **References**

368 Araújo-Silva CL, Larsen K. 2012. Tanaidacea from Brazil. III New records and description of a
369 new species collected from REVIZEE-NE Program. *Nauplius* 20 (2): 87–105.

370 Băcescu M. 1981. Contribution to the knowledge of the Monokonophora (Crustacea,
371 Tanaidacea) of the eastern Australian coral reefs. *Revue Roumaine de Biologie (Biologie
372 animale)* 26: 111–120.

373 Bamber RN. 2008. Tanaidaceans (Crustacea: Peracarida: Tanaidacea) from Moreton Bay,
374 Queensland, Australia. In: Davie PJF & Phillips JA, eds. Proceedings of the Thirteenth
375 International Marine Biological Workshop, The Marine Fauna and Flora of Moreton Bay,
376 Queensland. *Memoirs of the Queensland Museum, Nature* 54: 143–217.

377 Bamber RN, Błażewicz-Paszkowycz M. 2013. Another inordinate fondness: diversity of the
378 tanaidacean fauna of Australia, with description of three new taxa. *Journal of Natural History*
379 47(25–28): 1767–1789. <https://doi.org/10.1080/00222933.2012.742164>

380 Bamber R, Shearer M. 2005. Apseudomorph Tanaidacea (Crustacea: Peracarida) from shallow
381 waters off Sabah, Malaysia. *Systematics and Biodiversity* 26 (3): 281–303.

382 Barnard KH. 1914. Contributions to the crustacean fauna of South Africa. 3. Additions to the
383 marine Isopoda, with notes on some previously incompletely known species. *Annals of the South
384 African Museum* 10 (11): 325a–358a, 359–440.

385 Barnard KH. 1920. Contributions to the crustacean fauna of South Africa. No. 6.- Further
386 additions to the list of marine Isopoda. *Annals of the South African Museum* 17(5): 319–438.

387 Bird GJ. 2010. Tanaidacea (Crustacea, Peracarida) of the North-east Atlantic: the
388 Agathotanaidae of the AFEN, BIOFAR and BIOICE projects, with a description of a new
389 species of *Paragathotanais* Lang. *Zootaxa* 2730: 1–22.

390 Błażewicz-Paszkowycz M. 2014. Tanaidacea. In: De Broyer C, Koubbi P, Griffiths H, Danis B,
391 David B, eds. *Biogeographic Atlas of the Southern Ocean*. Scientific Committee on Antarctic
392 Research: Cambridge, 173–180.

393 Błażewicz-Paszkowycz M, Bamber RN. 2007a. Parapseudid tanaidaceans (Crustacea:
394 Tanaidacea: Apseudomorpha) from Eastern Australia. *Zootaxa* 1401: 1–32.

395 Błażewicz-Paszkowycz M, Bamber RN. 2007b. New apseudomorph tanaidaceans (Crustacea:
396 Peracarida: Tanaidacea: Apseudidae, Whiteleggiidae, Metapseudidae
397 and Pagurapseudidae. *Memoirs of Museum Victoria* 64: 107–148.

398 Błażewicz-Paszkowycz M, Bamber RN. 2009. A new genus of a new Austral family of
399 paratanaidoid tanaidacean (Crustacea: Peracarida: Tanaidacea), with two new species. *Memoirs of*
400 *Museum Victoria* 66: 5–15.

401 Błażewicz-Paszkowycz M, Bamber RN. 2012. The shallow-water Tanaidacea (Arthropoda:
402 Malacostraca: Peracarida) of the Bass Strait, Victoria, Australia (other than the Tanaidae).
403 *Memoirs of Museum Victoria* 69: 1–235.

404 Błażewicz-Paszkowycz M, Bamber R, Anderson G. 2012. Diversity of Tanaidacea (Crustacea:
405 Peracarida) in the World's Oceans – How Far Have We Come? *PLoS ONE* 7(4): e33068.
406 <https://doi.org/10.1371/journal.pone.0033068>

407 Błażewicz-Paszkowycz M, Bamber RN, Jóźwiak P. 2013. Tanaidaceans (Crustacea: Peracarida)
408 from the SoJaBio joint expedition in slope and deeper waters in the Sea of Japan. *Deep-Sea*
409 *Research II* 111: 325–332. <https://doi.org/10.1016/j.dsr2.2014.08.021>

410 Bochert R. 2012. Apseudomorph Tanaidacea from the continental shelf of Angola and Namibia
411 with descriptions of three new species. *Zootaxa* 3583: 31–50.

412 Boesch DF. 1973. Three new tanaids (Crustacea, Tanaidacea) from southern Queensland. *Pacific*
413 *Science* 27: 168–188.

414 Brown JH. 2014. Why are there so many species in the tropics? *Journal of Biogeography* 41: 8–
415 22. <https://doi.org/10.1111/jbi.12228>

416 Clarke A, Crame JA. 2010. Evolutionary dynamics at high latitudes: speciation and extinction in
417 polar marine faunas. *Philosophical Transactions of the Royal Society of London B* 365: 3655–
418 3666.

419 Edgar GJ. 1997. A new genus and three new species of apseudomorph tanaidacean (Crustacea)
420 from the Darwin region. In: Hanley JR, Caswell G, Megirian D, Larson HK, eds. *Proceedings of*
421 *the Sixth International Marine Biological Workshop. The Marine Flora and Fauna of Darwin*
422 *Harbour, Northern Territory, Australia*. Darwin: 279–299.

423 Edgar GJ. 2008. Shallow water Tanaidae (Crustacea: Tanaidacea) of Australia. *Zootaxa* 1836: 1–
424 92.

425 Gardiner LF. 1973. *Calozodion wadei*, a new genus and species of apseudid tanaidacean
426 (Crustacea) from Jamaica, W. I. *Journal of Natural History* 7: 499–507.

427 Guțu M. 1984. Contribution to the knowledge of the genus *Calozodion* (Crustacea, Tanaidacea).
428 *Travaux du Muséum National d'Histoire naturelle “Grigore Antipa”* 26: 35–43.

429 Guțu M. 1989a. La description de *Calozodion Dollfusi*, espèce nouvelle de tanaïdacés
430 (Crustacea) provenant des eaux européennes de l'Atlantique. *Travaux du Muséum National*
431 *d'Histoire naturelle “Grigore Antipa”* 30: 129–133.

432 Guțu M. 1989b. Tanaidacea (Crustacea) collected by the “Benthédi” French Expedition (1977) in
433 the South-Western Indian Ocean. I. *Travaux du Muséum National d'Histoire naturelle “Grigore*
434 *Antipa*” 30: 135–160.

435 Guțu M. 1996. Tanaidaceans (Crustacea, Peracarida) from Brazil, with description of new taxa
436 and systematical remarks on some families. *Travaux du Muséum National d'Histoire naturelle*
437 “*Grigore Antipa*” 36: 23–133.

438 Guțu M. 2002. New apseudid and metapseudid taxa (Crustacea: Tanaidacea) from the Gulf of
439 Mexico, and new diagnoses of some genera. *Travaux du Muséum National d'Histoire naturelle*
440 “*Grigore Antipa*” 44: 41–68.

441 Guțu M. 2006a. *New Apseudomorph Taxa (Crustacea, Tanaidacea) of the World Ocean*. Curtea
442 Veche, Bucharest.

443 Guțu M. 2006b. A new metapseudid genus and species (Crustacea: Tanaidacea) from the
444 northeast of the Hispaniola Island (Dominican Republic). *Travaux du Muséum National*
445 *d'Histoire naturelle “Grigore Antipa”* 49: 49–57.

446 Guțu M. 2008. On the systematic position of the genera *Trichapseudes* Barnard and
447 *Hoplomachus* Guțu, 2002 and the description of a new metapseudid subfamily (Crustacea:
448 Tanaidacea: Apseudomorpha). *Travaux du Museum National d'Histoire Naturelle*, 51, 71–77.
449 <http://dx.doi.org/10.2478/v10191-010-0004-9>

450 Guțu M. 2009. A contribution to the knowledge of metapseudids. Description of a new genus
451 and three new species from the Caribbean Sea and the Indian Ocean (Crustacea: Tanaidacea:
452 Apseudomorpha). *Travaux du Muséum National d'Histoire naturelle “Grigore Antipa”* 52: 101–
453 125.

454 Guçu M. 2014. Two new species of the genus *Calozodion* Gardiner (Crustacea: Tanaidacea:
455 Apseudomorpha) from the Adriatic sea and the Indian Ocean, and the reclassification of *C.*
456 *dollfusi* Guçu, 1989 in the genus *Julmarichardia* Guçu. *Travaux du Muséum National d'Histoire*
457 *Naturelle "Grigore Antipa"* 57 (1): 13–26.

458 Guçu M, Heard RW. 2002. A new genus and species of a new family of apseudomorph
459 tanaidaceans (Crustacea: Peracarida) from Australian waters. *Travaux du Muséum National*
460 *d'Histoire Naturelle Grigore Antipa* 44: 93–103.

461 Guçu M, Iliffe TM. 1985. The redescription of *Apseudes* (?) *propinquus* Richardson, 1902
462 (Crustacea, Tanaidacea) from Bermuda Caves. *Travaux du Muséum National d'Histoire*
463 *Naturelle "Grigore Antipa"* 27, 55–62.

464 Jakiel A, Stępień A, Jóźwiak P, Serigstad B, Błażewicz-Paszkowycz M. 2015. First record of
465 Tanaidacea (Crustacea) from a deep-sea coral reef in the Gulf of Guinea. *Zootaxa* 3995(1): 203–
466 228.

467 Jakiel A, Stępień A, Błażewicz M. 2018. A tip of the iceberg - Pseudotanaidae (Tanaidacea)
468 diversity in the North Atlantic. *Marine Biodiversity* 48: 859–895.

469 Larsen K. 2000. Revision of the genus *Collettea* Lang (Crustacea: Tanaidacea). *Invertebrate*
470 *Taxonomy* 14: 681–693.

471 Larsen K. 2001. Morphological and molecular investigation of polymorphism and cryptic
472 species in tanaid crustaceans: implications for tanaid systematics and biodiversity estimates.
473 *Zoological Journal of the Linnean Society* 131: 353–379.

474 Larsen K, Hansknecht T. 2002. Three new species of the deep-sea genus *Neotanais* Beddard
475 (Crustacea: Peracarida). *Journal of Natural History* 37: 2787–2806.

476 Larsen K, Heard RW. 2001. A new tanaidacean subfamily, Bathytanaidinae (Crustacea:
477 Paratanaididae), from the Australian continental shelf and slope. *Zootaxa* 19: 1–22.

478 Larsen K, Shimomura M. 2006. Tanaidacea (Crustacea: Peracarida) from Japan. I.
479 Apseudomorpha from the East China Sea, Seto Inland Sea, and Nansei Islands. *Zootaxa* 1341:
480 29–48.

481 Menioui M. 2013. *Calozodion moyas*, a new metapseudid species (Crustacea: Tanaidacea:
482 Apseudomorpha) from the Moroccan Atlantic Coast. *Travaux du Muséum National d'Histoire
483 naturelle “Grigore Antipa”* 36 (1): 9–18.

484 Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP,
485 Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune MR, McDade LA, McPeek MA,
486 Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M. 2007.
487 Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. *Ecology
488 Letters* 10: 315–331.

489 Poore GCB., Avery L, Błażewicz-Paszkowycz M, Browne J, Bruce NL, Gerken S, Glasby C,
490 Greaves E, McCallum AW, Staples D, Syme A, Taylor J, Walker-Smith G, Warne M, Watson C,
491 Williams A, Wilson RS, Woolley S. 2015. Invertebrate diversity of the unexplored marine
492 western margin of Australia: taxonomy and implications for global biodiversity. *Marine
493 Biodiversity* 45: 271. <https://doi.org/10.1007/s12526-014-0255-y>

494 Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedman M, Kaschner K, Garlao C,
495 Near TJ, Coll M, Alfaro ME. 2018. An inverse latitudinal gradient in speciation rate for marine
496 fishes. *Nature* 559: 392–395. <https://doi.org/10.1038/s41586-018-0273-1>

497 Richardson H. 1902. The marine and terrestrial isopods of the Bermudas, with descriptions of
498 new genera and species. *Transactions of the Connecticut Academy of Sciences* 11: 277–310.

499 Ritger RK, Heard RW. 2007. *Julmarichardia gutui*, a new species of Apseudomorph

500 Tanaidacean (Crustacea: Malacostraca: Peracarida) from the Australian northwest continental

501 shelf. *Zootaxa* 1559: 59–68.

502 Sganga DE, Roccatagliata D. 2016. A new genus and species of Apseudomorpha (Crustacea:

503 Tanaidacea) from the Mar del Plata submarine Canyon, South West Atlantic, and replacement of

504 the preoccupied name *Hoplomachus* Guțu 2002. *Marine Biodiversity* 46 (3): 687–698.

505 Sieg J. 1986. Distribution of the Tanaidacea: Synopsis of the known data and suggestions on

506 possible distribution patterns. In: Gore RH, Heck KL, eds. *Crustacean Biogeography-*

507 *Crustacean Issues* 4. Rotterdam: A.A. Balkema, 165–194.

508 Sieg J. 1992. On the origin and age of the Antarctic tanaidacean fauna. In: Gallardo VA, Ferretti

509 O, Moyano HI, eds. *Oceanografía en Antártica*. Concepción: Centro Eula, 421–429.

510 Sieg J. 1993. Remarks on the Tanaidacea (Crustacea: Isopoda) of Australia: on *Bilobatus*

511 *crenulatus* gen. et sp. nov., [sic] from Port Darwin. *The Beagle, Records of the Northern*

512 *Territory Museum of Arts and Sciences* 10(1): 45–54.

513 Stępień A, Błażewicz-Paszkowycz M. 2013. Four new species and two new genera of

514 Metapseudidae (Crustacea: Tanaidacea: Apseudomorpha) from Australian coral reefs. *Zootaxa*

515 3717(4): 559.

516 Stępień A, Pabis K, Błażewicz M (2018) Small-scale species richness of the Great Barrier Reef

517 tanaidaceans — results of the CReefs compared with worldwide diversity of coral reef

518 tanaidaceans. *Marine Biodiversity* 49: 1169. <https://doi.org/10.1007/s12526-018-0894-5>

519 Thatje S. 2012. Effects of Capability for Dispersal on the Evolution of Diversity in Antarctic

520 Benthos. *Integrative and Comparative Biology* 52: 470–482.

521 World Register of Marine Species. Available from <http://www.marinespecies.org> [accessed 31
522 July 2019].

523

524 **Table title and legend**

525 **Table 1. Depth and sediment type for known Chondropodinae species.** Hyphen was used
526 when the collection details were not specified in paper with description of species.

527

528 **Figure captions**

529 **Figure 1.** *Muvi schmollenbergi* sp. nov. holotype female (XXX), length 4.5 mm. **Habitus**
530 **illustration.**

531 (A) Body dorsal view. (B) Body lateral view. Scale bar = 1 mm. Photographs: Magdalena
532 Błażewicz.

533 **Figure 2.** *Muvi schmollenbergi* sp. nov. holotype female (cat. no. J61578). **Antennule,**
534 **antenna, and mouth parts illustrations.**

535 (A) Antennule. (B) Antenna. (C) Rostrum. (D) Labrum. (E) Right mandible. (F) Left mandible.
536 (G) Mandibular palp. (H) Maxillule. (I) Maxilla. (J) Labium. (K) Labial palp. (L) Maxilliped.
537 (M) Maxillipedal endite. Scale bars = 0.1 mm.

538 **Figure 3.** *Muvi schmollenbergi* sp. nov. holotype female (cat. no. J61578). **Cheliped and**
539 **pereopods illustrations.**

540 (A) Cheliped. (B) Pereopod-1. (C) Pereopod-3. (D) Pereopod-4. (E) Pereopod-5. (F) Pereopod-6.
541 (G) Pleopod. (H) Uropod. Scale bars = 0.1 mm.

542 **Figure 4. Distribution of Chondropodinae (1).**

543 **Circle – genus *Bamberus*** represented only by *B. jinigudirus*. Triangle – genus ***Muvi*** represented
544 only by *M. schmallenbergi*. **Diamond – genus *Calozodion*:** light green – *C. bacescui*; yellow –
545 *C. bogoescui*; red – *C. dominiki*; purple – *C. heardi*; blue – *C. moyas*; orange – *C. multispinosum*;
546 green – *C. pabisi*; pink – *C. simile*; light blue – *C. singularis*; brown – *C. suluk*; black – *C.*
547 *tanzaniense*; grey – *C. wadei*. **Square – genus *Chondropodus*:** blue – *Ch. curvispinus*; green –
548 *Ch. rectispinus*.

549 **Figure 5. Distribution of Chondropodinae (2).**

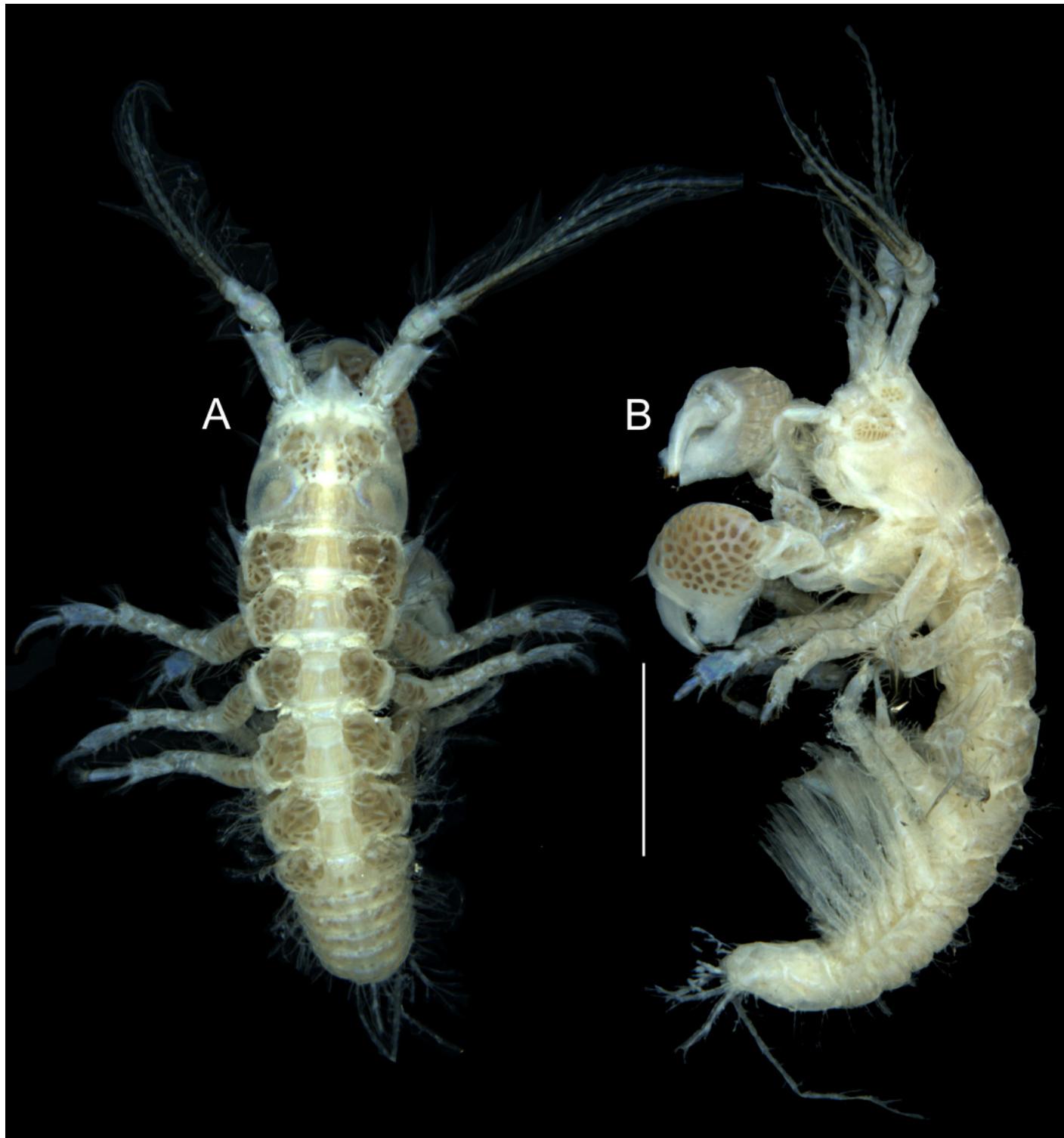

550 **Circle – genus *Hoplopolemius*:** yellow – *H. propinquus*; red – *H. toyoshious*; blue – *H.*
551 *triangulatus*. **Triangle – genus *Julmarichardia*:** green – *J. alinati*; yellow – *J. bajau*; orange – *J.*
552 *deltoides*; red – *J. dollfusi*; *J. gutui*; blue – *J. thomassini*. **Diamond – genus *Trichapseudes***
553 represented only by *T. tridens*. **Pentagon – genus *Vestigiramus*:** red – *V. antillensis*; green – *V.*
554 *codreanui*; orange – *Vestigiramus* sp. Araujo-Silva & Larsen, 2012. **Square – genus *Zaraza***
555 represented only by *Z. linda*.

Figure 1

Muvi schmollenbergi sp. nov. holotype female (XXX), length 4.5 mm. Habitus illustration.

(A) Body dorsal view. (B) Body lateral view. Scale bar = 1 mm. Photographs: Magdalena Błażewicz.

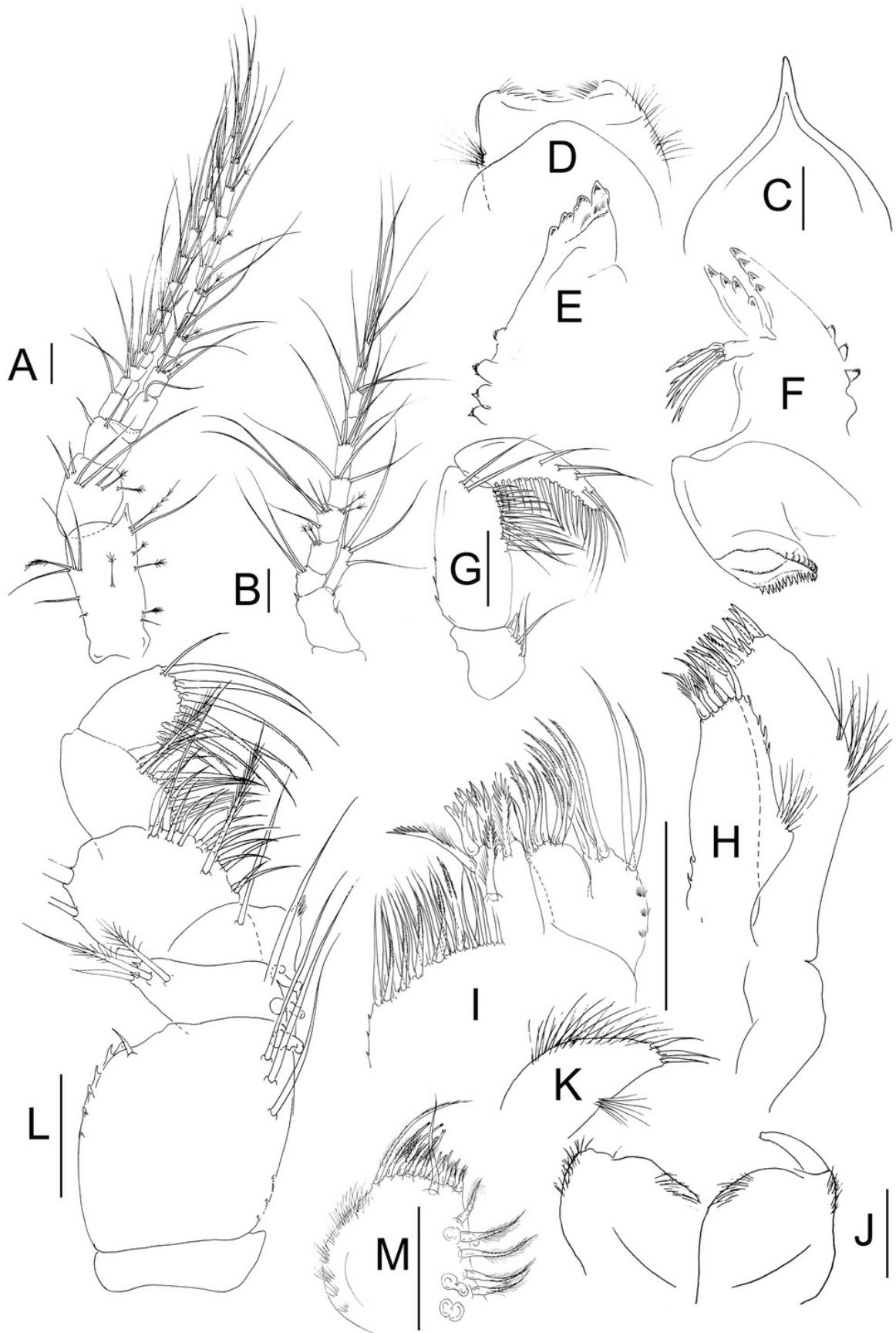


Figure 2

Muvi schmollenbergi sp. nov. holotype female (cat. no. J61578). Antennule, antenna, and mouth parts illustrations.

(A) Antennule. (B) Antenna. (C) Rostrum. (D) Labrum. (E) Right mandible. (F) Left mandible. (G) Mandibular palp. (H) Maxillule. (I) Maxilla. (J) Labium. (K) Labial palp. (L) Maxilliped. (M) Maxillipedal endite. Scale bars = 0.1 mm.

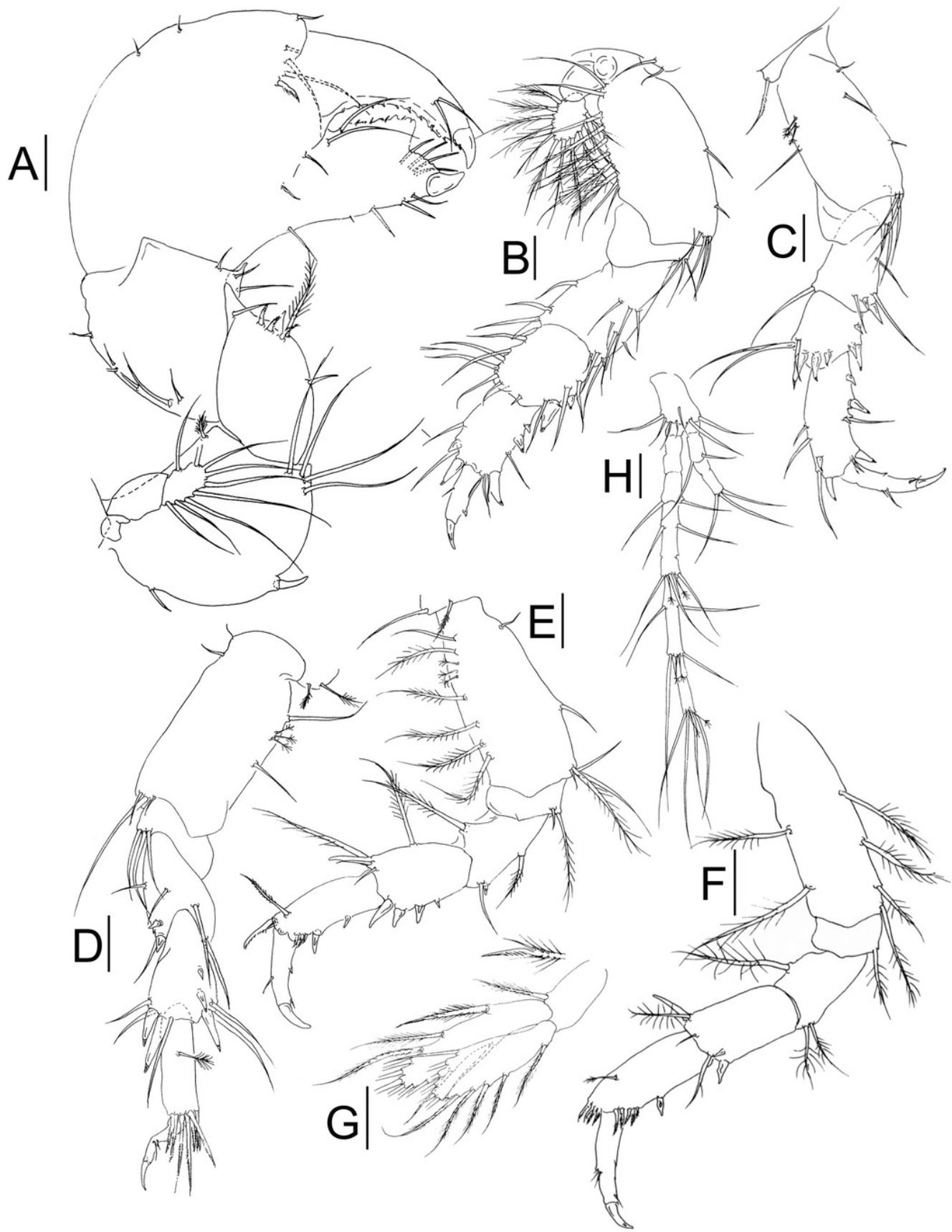


Figure 3

Muvi schmollenbergi sp. nov. holotype female (cat. no. J61578). Cheliped and pereopods illustrations.

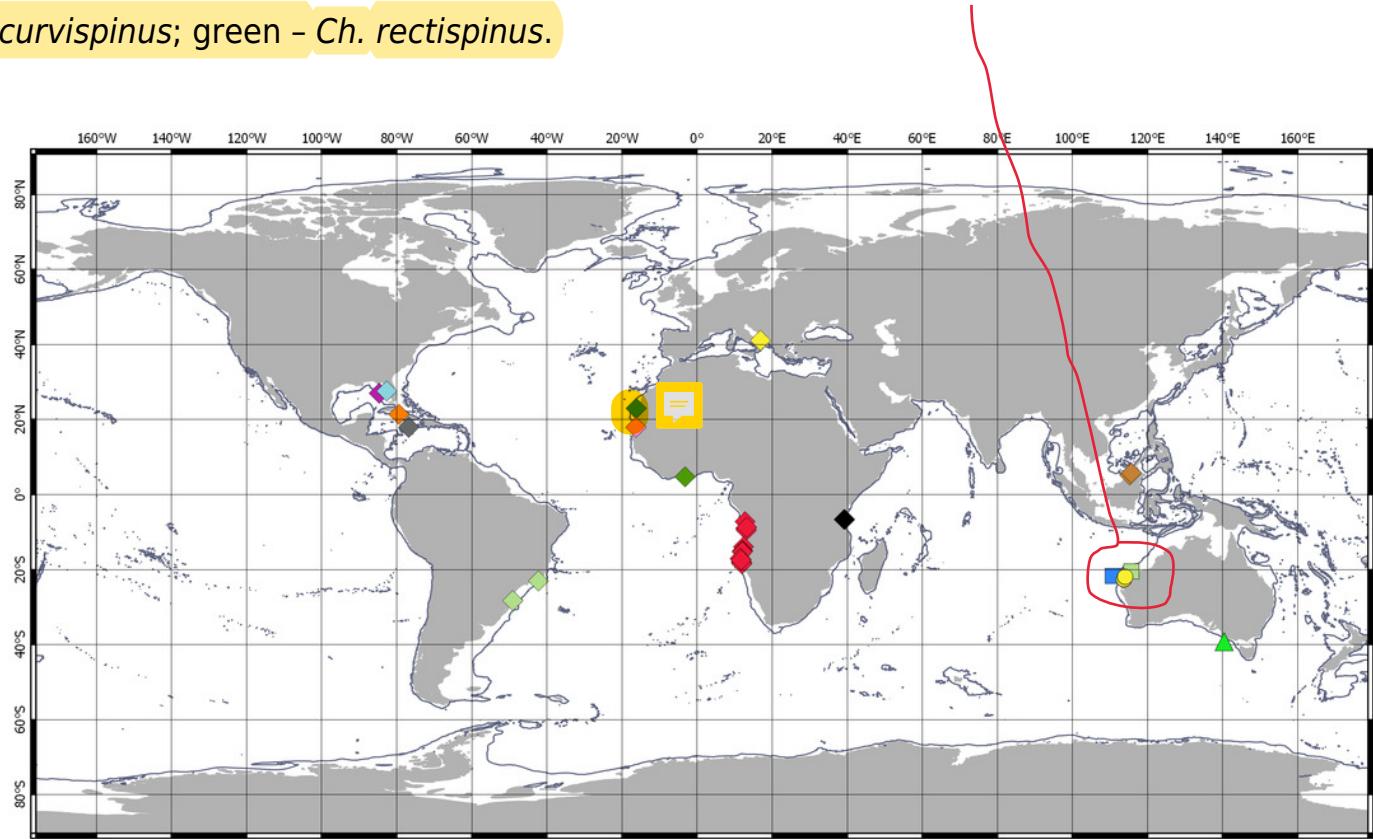

(A) Cheliped. (B) Pereopod-1. (C) Pereopod-3. (D) Pereopod-4. (E) Pereopod-5. (F) Pereopod-6. (G) Pleopod. (H) Uropod. Scale bars = 0.1 mm.

Figure 4

Figure 4. Distribution of Chondropodinae (1).

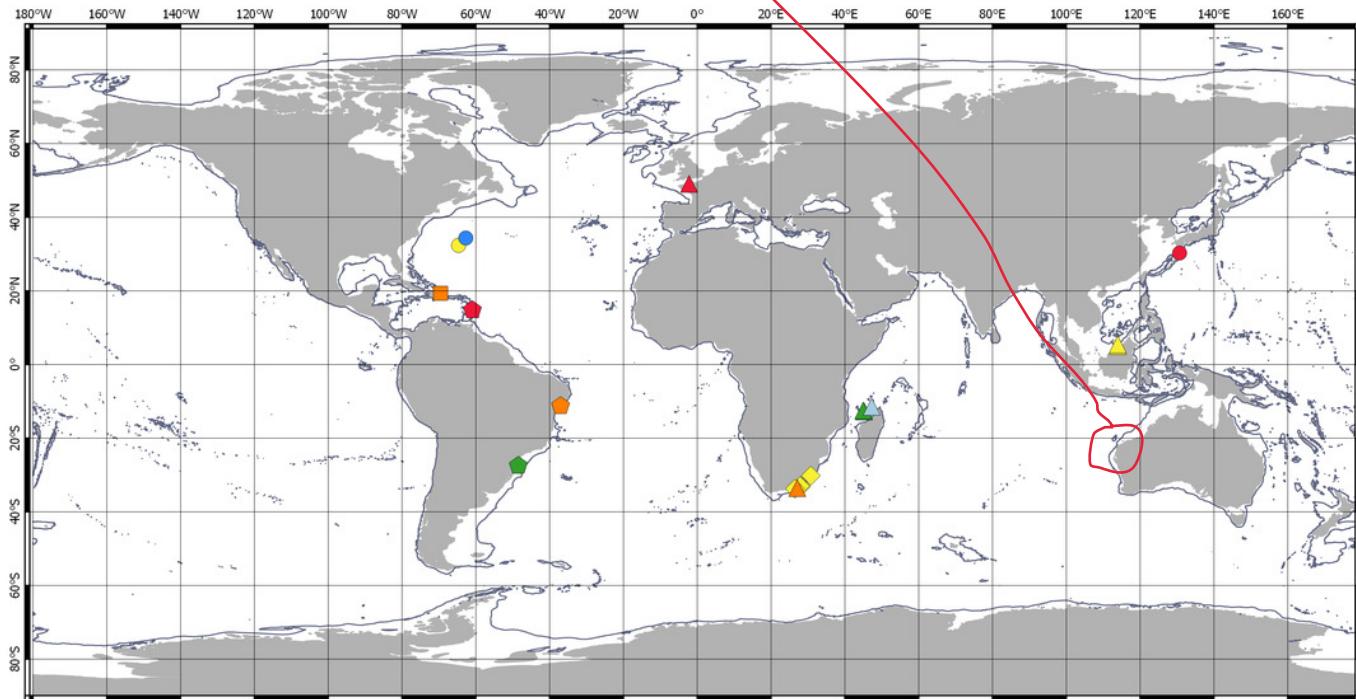

Circle - genus *Bamberus* represented only by *B. jinigudirus*. **Triangle - genus *Muvi*** represented only by *M. schmallenbergi*. **Diamond - genus *Calozodion*:** light green - *C. bacescui*; yellow - *C. bogoescui*; red - *C. dominiki*; purple - *C. heardi*; blue - *C. moyas*; orange - *C. multispinosum*; green - *C. p₁₀isi*; pink - *C. simile*; light blue - *C. singularis*; brown - *C. suluk*; black - *C. tanzaniense*; grey - *C. wadei*. **Square - genus *Chondropodus*:** blue - *Ch. curvispinus*; green - *Ch. rectispinus*.

Figure 5

Distribution of Chondropodinae (2).

Circle - genus *Hoplopolemius*: yellow - *H. propinquus*; red - *H. toyoshious*; blue - *H. triangulatus*. **Triangle - genus *Julmarichardia*:** green - *J. alinati*; yellow - *J. bajau*; orange - *J. deltoides*; red - *J. dollfusi*; *J. gutui*; blue - *J. thomassini*. **Diamond - genus *Trichapseudes*** represented only by *T. tridens*. **Pentagon - genus *Vestigiramus*:** red - *V. antillensis*; green - *V. codreanui*; orange - *Vestigiramus* sp. Araujo-Silva & Larsen, 2012. **Square - genus *Zaraza*** represented only by *Z. linda*.

Table 1(on next page)

Depth and sediment type for known Chondropodinae species.

Hyphen was used when the collection details were not specified in paper with description of species.

Species	Depth [m]	Sediment	References
<i>Bamberus jinigudirus</i> Stępień & Błażewicz-Paszkowycz, 2013	4–12	sand, fine rubble in groove, dead <i>Acropora</i> , finger rubble	Stępień & Błażewicz-Paszkowycz, 2013
<i>Calozodion bacescui</i> Gutu, 1996	29–50	sandy substratum with biogenic gravel, limestone concretions and algae	Gutu, 1996
<i>Calozodion bogoescui</i> Gutu, 2014	shallow waters	-	Gutu, 2014
<i>Calozodion dominiki</i> Bochert, 2012	26–117	-	Bochert, 2012
<i>Calozodion heardi</i> Gutu, 2002	-	-	Gutu, 2002
<i>Calozodion moyas</i> Menioui, 2013	6	-	Menioui, 2013
<i>Calozodion multispinosum</i> Gutu, 1984	22	dark grey mud	Gutu, 1984
<i>Calozodion pabisi</i> Jakiel & Józwiak, 2015	386	<i>Lophelia</i> reef	Jakiel et al., 2015
<i>Calozodion simile</i> Gutu, 2006	-	-	Gutu, 2006a
<i>Calozodion singularis</i> Gutu, 2002	-	-	Gutu, 2002
<i>Calozodion suluk</i> Bamber & Sheader, 2005	23–35	2% gravel, 75–78% sand, 9–12% silt, 10–11% clay	Bamber & Sheader, 2005
<i>Calozodion tanzaniense</i> Gutu, 2014	shallow waters	-	Gutu, 2014
<i>Calozodion wadei</i> Gardiner, 1973	6.1	fine sand, silt and clay	Gardiner, 1973
<i>Chondropodus curvispinus</i> Gutu, 2006	-	-	Gutu, 2006a
<i>Chondropodus rectispinus</i> Gutu,	-	-	Gutu, 2006a

2006			
<i>Hoplopolemius propinquus</i> (Richardson, 1902)	-	-	<i>Richardson, 1902</i>
<i>Hoplopolemius toyoshious</i> (Larsen & Shimomura, 2006)	73	shell sand	<i>Larsen & Shimomura, 2006</i>
<i>Hoplopolemius triangulatus</i> (Richardson, 1902)	-	-	<i>Richardson, 1902</i>
<i>Julmarichardia alinati</i> Gutu, 1989	6-450	-	<i>Gutu, 1989b</i>
<i>Julmarichardia bajau</i> Bamber & Sheader, 2005	23-35	2% gravel, 75-78% sand, 9-12% silt, 10-11% clay	<i>Bamber & Sheader, 2005</i>
<i>Julmarichardia deltoides</i> (Barnard, 1914)	90	-	<i>Barnard, 1914</i>
<i>Julmarichardia dollfusi</i> (Gutu, 1989)	-	-	<i>Gutu, 1989</i>
<i>Julmarichardia gutui</i> Ritger & Heard, 2007	78-83	-	<i>Ritger & Heard, 2007</i>
<i>Julmarichardia thomassini</i> Gutu, 1989	250	-	<i>Gutu, 1989b</i>
<i>Muvi schmallenbergi</i> sp. Nov.	49.6	-	
<i>Trichapseudes tridens</i> Barnard, 1920	31-155	-	<i>Barnard, 1920</i>
<i>Vestigiramus antillensis</i> Gutu, 2009	1-2	dead corals and seagrass beds	<i>Gutu, 2009</i>
<i>Vestigiramus codreanui</i> (Gutu, 1996)	29	limestone concretions and algae	<i>Gutu, 1996</i>
<i>Vestigiramus</i> sp. Araujo-Silva & Larsen, 2012	71.6	sandy bottom associated with sponge and algae	<i>Araujo-Silva & Larsen, 2012</i>

<i>Zaraza linda</i> Gutu, 2006	0.5–2	dead corals covered with algae	<i>Gutu, 2006b</i>
-----------------------------------	-------	-----------------------------------	--------------------

1