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Deep-sea octocorals are common habitat-formers in deep-sea ecosystems, however our
knowledge on their early life history stages is extremely limited. The objective of this study
was to describe the embryo and larval biology of the deep-sea octocoral Dentomuricea aff.
meteor, a common habitat-forming species in the Azores, under two temperature regimes,
corresponding to the minimum and maximum temperatures in their natural environment
during the spawning season. Under temperature of 13 = 0.5°C, embryos of the species
reached the planula stage after 96h and displayed Pelagic Larval Duration (PLD) of 24
days. Planula larvae displayed swimming only after stimulation, larval swimming speed

was 0.24 + 0.16 mm s and seemed to increase slightly but significantly with time. Under
a higher temperature (15°C £ 0.5°C) embryos reached the planula stage 24h earlier (after
72h), displayed PLD of 27 days and had significantly higher swimming speed (0.3 = 0.27

mm s™). Survival was not affected significantly by temperature, however our results
highlight how small changes in temperature can affect larval characteristics with potential
cascading effects in larval success and dispersal. In both temperatures, larvae displayed
unselective settlement behaviour and metamorphosis occurred even without settlement.
Such information is rarely available for deep-sea corals, although it is essential to achieve
a better understanding of dispersal, connectivity and biogeographical patterns of benthic
species.
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Abstract

Deep-sea octocorals are common habitat-formers in deep-sea ecosystems, however our
knowledge on their early life history stages is extremely limited. The objective of this study was
to describe the embryo and larval biology of the deep-sea octocoral Dentomuricea aff. meteor, a
common habitat-ferming species in the Azores, under two temperature regimes; corresponding to
the minimum and maximum temperatures in their natural environment during the spawning
season. Under temperature of 13 + 0.5°C, embryos of the species reached the planula stage after
96h and displayea 1 ¢lagic Larval Duration (PLD) of 24 days. Planula larvae displayed
swimming only after stimulation, farval swimming speed was 0.24 + 0.16 mm s and-seemed-to
increase slightly but significantly with time. Under a higher temperature (15°C + 0.5°C) embryos
reached the planula stage 24h earlier (after 72h), displayedC;’LD of 27 days and had significantly
higher swimming speed (0.3 £+ 0.27 mm s™!). Survival was not affected significantly by
temperature, however, our results highlight how small changes in temperature can affect larval
characteristics with potential cascading effects in larval success and dispersal. In both
temperatures, larvae displayed unselective settlement behaviour and metamorphosis occurred
even without settlement. Such information is rarely available for deep-sea corals, although it-is
essential to achieve a better understanding of dispersal, connectivity,and biogeographical

7/

patterns of benthic species.

Introduction

Species persistence requires the successful completion of a life cycle against biotic and abiotic
odds, starting with survival at early life history stages. These stages are key for sessile species,

such as benthic marine invertebrates, which upon reaching the adult stage cannot escape
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40 unfavorable conditions. For these organisms, early life events such as larval survival and

41 settlement determine the fate of the adult phase and are therefore extremely important (Marshal
42 and Morgan, 2011; Byrne, 2012). Moreover, i.cval stages eensist the only pelagic phase that
43  ensures dispersal and connectivity among populations (Cowen and Sponaugle, 2009). In deep-
44  sea communities whieh-are dominated by benthic marine invertebrates, knowledge on early life
45  stages is therefore key in understanding species distributions, biogeographical patterns,

46  population and metapopulation dynamics (Treml et al., 2015), eensisting an essential tool for

47 management (Hilario et al., 2015).

48 Deep-sea octocorals are major habitat-formers in the deep-sea, usually occurring in complex

49 geological settings such as continental shelves and margins (Yesson et al., 2008, Taylor et al.,

50 2013), underwater canyons (Brooke et al., 2017),and seamounts (Tempera et al., 2012; Braga-
51 Henriques et al., 2013). Due to the habitat requirements of some octocoral species;-including

52 hard substrates for settlement and strong currents which optimize food delivery;-their distribution
53 can be quite fragmented (Bryan and Metaxas, 2006; Tong et al., 2012), as observed for other

54 deep-sea benthic species (Miller and Gulasekera, 2017). Anthropogenic disturbance and global
55 climate change are likely to ir i« ase habitat fragmentation even more, by altering habitat

56 characteristics (Sweetman et al., 2017; Levin et al., 2019) and causing a decrease in the available
57 suitable habitat ef some species (Morato et al., 2020). Under these circumstances, obtaining a

58 solid understanding of larval biology and population connectivity is essential to understand

59 community dynamics and the potential of deep-sea octocoral populations to recover from

60 disturbance (Cowen et al., 2007).

61 So far, our knowledge on larval biology of deep-sea octocorals is limited to a few brooding

62 species (Cordes et al., 2001; Sun et al., 2010; 2011; Mercier and Hamel, 2011). In most of these
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cases, larvae settled within 2-5 days after larvae release and shortly metamorphosed into primary
polyps, e.g. Anthomastus ritteri (Cordes et al., 2001), Gersemia fruticosa and Duva florida (Sun
etal., 2011). They also displayed short competency periods with limited swimming behaviour
(Sun et al., 2010). However, many deep-sea octocorals are broadcast-spawners and are therefore
expected to display different larval characteristics and dispersal capabilities (Harrison and
Wallace, 1990; Nishikawa et al., 2003). To our knowledge, so far no information exists on the

larval biology of broadcast spawning deep-sea octocorals.

Larvae from broadcast spawning species undergo early development in the water column, where
they are mostly transported as passive particles until they reach the planula stage. During
transportation, embryos can be exposed to variable environmental conditions which may affect
their development (Melzner et al., 2009). This phenomenon can be even more pronounced in
deep-sea species, in which embryos and larvae can often display upward swimming, crossing
water masses with very different physicochemical characteristics (Young et al., 1996, 2012;
Arellano et al., 2014; Stromberg and Larsson, 2017). One of the most important factors
influencing early development in marine organisms is temperature (Hoegh-Guldberg and Pearse,
1995; Przeslawski et al., 2015). Despite its importance and the increasing interest for the effect
of global warming on larvae of shallow scleractinian species (Randall et al., 2009; Figueiredo et
al. 2014), so far limited attention has been breught-en-temperature-effeets on the embryonic
development of deep-sea coral species, with some information existing only for the scleractinian

Lophelia pertusa (Stromberg and Larsson, 2017).

The aim of this study is to provide a detailed description of the larval biology of the deep-sea
broadcast spawning species Dentomuricea aff. mei~o ', a common habitat-forming deep-sea

octocoral in the Azores. To achieve our goal, we employed an experimental approach with
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assisted fertilization and larvae rearing in aquaria. We also report on the embryonic development
and larval characteristics of D. aff. meteor under two temperature regimes, representing the

minimum and maximum temperatures experienced by the species in its natural habitat.

Materials and Methods

Target species and specimen collection

The Azores Archipelago, located above the Mid-Atlantic Ridge, is a biodiversity hotspot for
deep-sea octocorals (Sampaio et al., 2019). Coral gardens (OSPAR, 2010) formed by deep-sea
octocorals are among the most prominent deep-sea communities on regional seamounts and
island slopes (Braga-Henriques et al., 2013). Dentomuricea aff. meteci s an octocoral species of
the family Plexauridae, so far only recorded on the seamounts of the North Mid-Atlantic Ridge.
It is common in regional seamounts between 200-600 meters (Braga-Henriques et al., 2013),
where it forms dense populations, often in combination with other octocoral species such as
Viminella flagellum and Callogorgia verticillate. The species is gonochoristic and presents
gametes all year round, with seasonal peaks of gamete maturation and spawning usually

occurring in autumn (Rakka et al., unpubl. data).

A total of 11 colonies of the-speetes Dentomuricea-aft. meteor were collected from Condor
Seamount in September and October 2019, as by-catch from experimental long-line fisheries on
board RV Archipelago (ARQDACO monitoring programme). Colonies were divided in large
fragments (20-30 cm height) and were kept at the DeepSealLab aquaria facilities (Orejas et al.,
2019), in six 33L aquaria positioned in a thermo-regulated room at 14°C. Aquaria were supplied

continuously with seawater pumped from Sm depth, previously treated with UV light (P10
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UVsystem & Vecton 600 TMC™) and passed through 50 um and 1 um mesh filters. Circulation
within the aquaria was maintained by pumps. Seawater temperature was kept between 13-14°C
with the aid of chillers while colonies were fed twice per day with a mixture of frozen
zooplankton and microplankton which was frequently enriched with live microalgae

(Chaetoceros calcitrans and Nannochloropsis gaditana) and live rotifers.

Larvae rearing

Larvae were obtained by maintaining reproductively active female and male colonies in the same
aquaria to achieve natural spawning and fertilization. Coral fragments were allowed to
acclimatize in the above aquaria conditions for approximately a month. Subsequently, colonies
with mature gametes were identified by dissecting two branchlets (3-5 cm height) from each
colony and observing their tissue under a dissecting microscope. Reproductively immature
colonies and fragments in poor condition were excluded from further analysis. This procedure
resulted in selection of six female and three male colonies. Coral fragments from the female
colonies were distributed in two aquaria, referred to as spawning aquaria. Subsequently the
fertile male colony with the higher number of available fragments was selected and four of its
fragments were distributed in each of the two spawning aquaria. The remaining male colonies

were not used to avoid polyspermy (Levitan et al., 2007),

To increase the potential of spawning, we enriched the aquaria water with free mature sperm,
obtained from the selected male colony. This was achieved by dissecting mature spermatocysts
from coral tissue, which were subsequently concentrated in 50 ml flasks with filtered (0.2 pm)

SW, hemegenized by gently shaking and redistributed to the aquaria. Water inflow was stopped

Peer] reviewing PDF | (2020:12:56492:0:0:NEW 22 Dec 2020)


sustromberg
Cross-Out
Larval rearing

sustromberg
Inserted Text
 It was a bit risky using only one male. Sometimes pairs of corals aren't compatible and produce non-viable malformed larvae

sustromberg
Cross-Out
dispersed? 
Suggestion: New sentence
...filtered () SW. Sperm was dispersed by gently shaking...
homogenized sounds like you ran the tissues through a blender.

sustromberg
Cross-Out
flow-through?


PeerJ

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

and aquaria pumps were substituted with aeration to ensure water circulation without losing or
harming potentially spawned gametes. Upon gamete spawning; which happened in batches, all
gametes/fertilized eggs were collected from the water column and distributed in ten 750 ml-

culture flasks (20-100 fertilized eggs per flask) that were filled with filtered SW (mesh size: 0.2

pm),
Temperature experiments

In order to chose appropriate temperature regimes for larval rearing, we utilized temperature data
collected during annual CTD surveys, under the framework of the projects CONDOR (EEA
Grants PT-0040) and SMaRT (SRECC- Azores Regional Government M.2.1.2/029/2011). Data
were collected between 2010 and 2012, above the coral garden where specimen collection took
place. Subsequently, we utilized the minimum and maximum recorded values (13.4°C and
15.12°C respectively) during the spawning season of the target species (October-November) to
define the target rearing temperatures (13 = 0.5°C and 15 £ 0.5°C). Upon collection of fertilized
eggs/embryos, culture flasks were distributed in two water baths, maintaining temperature within
0.5 °C of the target temperatures, with the aid of an aquaria chiller and a heater respectively.
Culture flasks were equipped with glass pipettes connected to an aquaria air pump, achieving

continuous light circulation, while water in the flasks was exchanged daily,
Embryonic and larval development

Embryos were monitored every 3-4 hours during the first 48 hours and subsequently once a day
until reaching the planula stage, to study their early development. In every monitoring event, all
embryos were counted to estimate survival, while 10-15 embryos were randomly removed from

the flask, photographed with a digital camera (DIGICAM SMEG LCMOS MAC) attached to a
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microscope (10x) and returned to the flasks. Images were later processed to record the
developmental stage and size of each embryo. Due to repetitive and frequent spawning within
the aquaria and continuous collection of embryos, oocytes from different spawning events were
frequently mixed and therefore the timing of embryonic development is approximate. Moreover,
since it was not possible to define the moment of fertilization, embryo development is presented
in respect to spawning time. To estimate size, we measured width and length (mm) of each larva
using the open software Fiji/Image J (Schindelin et al., 2012). The data were subsequently used
to estimate volume (mm?) assuming larvae had the shape of a prolate spheroid (Larsson et al.,

2014). The ratio of length to width was used as a proxy of sphericity.
Swimming behaviour

Data on swimming speed and behaviour were collected by video recording and analysis. Videos
were recorded with a Canon EOS 600D digital camera, equipped with a regular 22-55mm lens,
on day 4 and day 15 after spawning, which corresponded to the first day larvae reached the
mature planula stage and the first day larvae displayed competency to settle, respectively. To
avoid larvae handling, swimming behaviour was recorded in the same culture flasks used for
larvae rearing. Videos were captured in the dark, using lateral led lights for illumination
(Stromberg and Larsson, 2017). Flasks were positioned in front of a black slide with a calibrated
grid that was used as background and a 2-minute waiting period was implemented to ensure no
water movement was interfering with larvae swimming. Subsequently, three videos (duration: 1

min) were recorded between intervals of three minutes.

Videos were converted to videe frames and were analyzed by an automatic particle tracking

method, using the open software Fiji/Image J (Schindelin et al., 2012) and the plugin TrackMate
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(Tinevez et al., 2017) to record data on vertical swimming behaviour; namely swimming
direction (up/down), displacement/ and swimming speed. Estimates of swimming speed only
considered tracks with displacement higher than 2 mm, to exclude data from larvae that did not

move or moved minimally.
Settlement and metamorphosis

After reaching the planula stage, larvae were counted every 2-3 days until day 39 to estimate
survival. Moreover, during counting, each larva was assigned to one of four stages: planula,
settled, pelagically metamorphose(} and deformed. Because counts were made simultaneously for
all flasks and each flask contained a bateh-ef-different-age, e.g. some batches were spawned with
1-3 day difference, when average counts were estimated these were sometimes heavily
influenced by the available count for that day. To be able to estimate robust mean counts for each
monitoring day, missing values wer<«2generated for each flask by using linear interpolation
between existing data points. Lastly, on days 4 and 14 after spawning, five planulae were
removed from each flask (total n=25 for each temperature regime) and photographed with a

digital microscope camera to estimate their size.

Pelagic Larval Duration (PLD) was inferred from the proportion of larvae abandoning the
planula state, either by settling or deceasing, thus taking survival and larvae development into
account. We report the time point at which 50% of the initial number of larvae left the pelagic
stage as median PLD, as well as the minimum and maximum observed in individual batches,
Metamorphosed larvae that did not settle were assumed to continue in a pelagic phase. Since
larvae did not display clear bottom probing behaviour, the onset of competency was defined by

the first settling larvae.
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After larvae presented competency (day 14), substrate was provided to the culture flasks in order
to monitor settlement behaviour. Three flasks from each temperature regime were randomly
selected and three pieces (approximate diameter: 0.5 cm) of basalt rock attached to a plastic slide
(1 cm x 8 cm) were offered as potential substrate in each flask. Settled larvae were observed and
photographed every 2-3 days to assess and describe settlement and metamorphosis, during a
period of approximately two weeks. After metamorphosis was observed, a mixture of live
microalgae (Nannochloropsis gaditana and Chaetoceros calcitrans) and rotifers was provided

weekly,

Statistical analysis

Survival analysis was performed using the Kaplan-Meier method, following Graham et al.
(2008). Since monitoring was done in time intervals and the exact time of death for each larva
was not known (interval-censored data), we assumed that time of death was the moment at which
each larva was observed for the last time. However, for each batch, the remaining larvae at the
last monitoring event were considered alive (censored data). As the Kaplan-Meier method does
not allow for incorporation of replicate information into the analysis, we performed the analysis
by pooling data from all batches together, for each rearing temperature. Subsequently the
analysis was repeated separately for each batch, to provide information about the variability
among batches (Graham et al., 2008). A log-rank test was performed to compare the survival
curves between larvae reared under 13°C and 15°C. Survival analysis was performed by using
the packages survival (Therneau and Grambsch, 2017) and survminer (Kassambara et al., 2019)

in R 3.5.0 (R Core Team, 2018).
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For the rest of the dependent variables, we firstly performed exploratory analysis (Zuur et al.,
2010) to select the most appropriate modeling method. The effect of each independent variable
was subsequently tested with linear models (LMs), by adding the independent variables
progressively to the respective model and using maximum likelihood ratio (MLR) tests and the
Akaike Information Criterion (AIC). Data collected from monitoring larvae stages (proportions)
were modeled by means of Generalized Linear Models (GLMs) with a binomial distribution.
Summarized results of the MLR test for each variable in question are provided in Table 1, while
the results from each selected model are provided graphically as supplementary material (Fig.

S1-S4). Statistical analysis was performed in R (R Core Team, 2019).

Results

Spawning

The first spawning event occurred on the 27" of November. Oocytes were encountered within 15
minutes from enrichment with free live sperm, in both aquaria. During spawning, oocytes and
early-stage embryos floated in the water column, heweves, spawning was not coordinated among
colonies, neither among polyps of the same colony. Despite careful observation, it was not
possible to directly observe polyps releasing sperm or oocytes and determine whether one or
more colonies participated in each spawning event. Similarly, it was not possible to directly
observe if fertilization was internal or external. All collected oocytes were fertilized, therefore
fertilization was either internal or external with very high fertilization rates. Oocytes were
spherical, they had no visible germinal vesicle and were released in batches of 10-80 at a time.

They were mostly negatively buoyant, however,they remained in suspension for several hours
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due to water movement within the aquaria. Average oocyte diameter was 365.4 +24.2 um.
Frequent spawning events, i.e. every 2-3 hours, continued for a week, while spawning continued

with lower frequency for approximately a month.
Embryonic and larval development

Cell division was always equal but cleavage varied highly among stages and embryos. It was not
possible to determine the time of the first division after spawning. Cytokinesis was never visible
for the 2-cell stage, in which cleavage seemed to be always superficial (Fig. 1), During the
following stages, cleavage varied from radial to pseudospiral and in some cases superficial,
leading to embryos with substantial differences in shape. However, development always led to a
hollow blastula (Fig. 1) followed by gastrulation and the formation of planula larvae without
visible oral traek (Fig. 1). Cleavage and cell division did not differ between the two rearing

temperatures,

Under 13°C, all the embryos reached the blastula stage within 10h frem spawning and the
gastrula stage within 48h. After 72h all embryos reached the late gastrula stage and could
perform slow, mainly rotating movements by cilia, while fully competent, swimming planulae_,
larvae were formed after 96h (4 days). During their development, embryos were negatively
buoyant and accumulated at the bottom of the flasks. In the first batch this resulted in the
formation of embryo aggregations and abnormal embryo development, however/ this issue was
solved by adding slight aeration that ensured water and oxygen circulation within the flasks.
Under 15°C, during the first 10 hours cleavage seemed to be occurring at similar intervals until
reaching the blastula stage (Fig. 2), however,embryos reached the gastrula and subsequently the

/

planula stage approximately 24h (after 72h) earlier than embryos reared sndes 13°C (Fig. 2),
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Embryos between the 2-cell and 32-cell stage obtained variable shapes (Fig. 1) and their volume
was on average 0.03 £ 0.0073 mm?. Subsequently, during the 64-cell stage and blastulathey

a
turned more spherical but had similar volume range (0.03 + 0.005 mm?). After reaching the

planula stage, embryos increased significantly in size (Table 1) with planu_k% larvae reaching 0.28
+ 0.1 mm? on day 4 and 0.67 = 0.28 mm? on day 14. Hewever on day 14 a substantial variability
in larvae volume was observed. Mature planula larvae displayed the capacity to change their
shape between spherical and elongated, and more elongated larvae were observed on day 14
compared to day 4 (Figure S1). This was also confirmed from the LW, ratio which decreased
from late gastrula embryos (1.49 + 0.17 mm?) to planula larvae on day 4 (1.22 + 0.29 mm?) but
increased significantly (Table 1) on day 14 (2.02 = 0.45 mm?). Embryo sizes were not
statistically different between the two temperatures (Table 1). However, planula larvae on day 4

had significantly higher LW ratios under 15°C (LW=1.59 £0.39; Table 1), showing a tendency to

maintain a more elongated shape than under 13°C.

Under 13°C, survival differed substantially among batches (Fig. S5). In most batches, a sharp
decline in survival rates was observed during the first 48 hours, followed by a decrease in
mortality until day 10 after which a more moderate mortality rate was established (Fig. 3).
Overall, median survival time, i.e. time when mortality reached 50%, was 11 days while final
survival rate after one month was 16.4%. Under 15 °C, the average mortality rate seemed to be
more constant (Fig. 3). Median survival time was 5 days highes than under 13°C (16 days, Table
2), however, final survival rate after 32 days was slightly lower (11.5%, Table 2). Overall, these

differences were not statistically significant according to the log-rank test (p=0.07; Fig. 3).

Swimming behaviour
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Planula larvae remained mostly at the bottom of the culture flasks, where they displayed slight
rotating and unidirectional movements, however, they rarely became waterborne without the aid
of water movement. Once in the water column, larvae did not show a specific swimming pattern
but followed random trajectories. Overall, for larvae reared under 13°C, 51.2 + 14.2 % of the
recorded larval tracks were directed upwards while 50.7 + 6.33 % were directed downwards. It
was not clear if downward movement involved swimming or just sinkii 2 The proportion of
upward/downward swimming larvae did not change significantly with time (Table 1). Larvae
displayed an average swimming speed of 0.24 +0.16 mm s™! on day 4 and 0.36 + 0.21 mm s'! on
day 15. Swimming speed did not differ significantly between upward and downward movements
(Table 1; Fig. 4), however) it was significantly higher on day 15 compared to day 4 (Table 1; Fig.

4).

Swimming velocity for larvae reared under 15 °C was similar between upward and downward
swimming (Table 1) and increased slightly but significantly with time (Table 1), from 0.4 + 0.24
mm s on day 4 to 0.44 + 0.23 mm s°'. Overall, 52.7% of the recorded tracks were directed
downwards and the proportion of upward/downward swimming tracks did not differ significantly
between dates (Table 1). Larvae swimming velocity was significantly higher under 15 °C

compared to 13 °C, (Fig. 4) both on day 4 and day 15 (Table 1).
Settlement and metamorphosis

In both rearing temperatures, most larvae settled on the flask walls and plastic slides whereas no
larvae attached to the provided basalt rock. Planula larvae under 13°C started settling on day 14
and the proportion of settled larvae increased significantly with time, reaching 23.96 = 24.1 % on

day 36 (Fig. 4). There was high variance associated with the estimates of the average proportion
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of settled larvae (Fig. 4), however, this was due to a single batch in which very few larvae settled
throughout the study period. Larvae under 15°C started settling later (Table 1) and overall, a
lower proportion of larvae settled throughout the study. Moreover, under 15°C a significantly
higher proportion (Table 1) remained in the planula stage for longer time (Fig. 4), leading to a
slightly higher PLD. However, in both temperatures, on day 36 only a minimal proportion of

planula larvae remained (Fig. 4).

After day 14, an increasing proportion of larvae initiated metamorphosis without settling (Fig. 4),
reaching 57.31 + 6.75 % on day 36. This form of pelagic metamorphosis started with planula
larvae obtaining a pear shape, (Fig. 5) and continued with formation of mouth, mesenteries,
tentacles/ and finally sclerites (Fig. 5). Metamorphosis from planula larva to primary polyp took
approximately 2-3 days. None of the larvae that displayed pelagic metamorphosis settled during
the course of the study. This pelagic form of metamorphosis resulted in a high percentage of
deformed larvae (Fig. 5). Metamorphosed larvae were still able to get transported by water
movements, however, they displayed limited swimming ability. By day 28, 50% of the planula
larvae had settled, metamorphosed/ or deceased. The last free swimming planula larva was

observed on day 39.

Under 15°C, metamorphosed and deformed larvae started appearing later in time (Fig. 4),
however/ in the last 5 days a significantly higher proportion of metamorphosed larvae were
observed compared to 13°C (Table 1). The pattern for deformed larvae between the two
temperatures was also significantly different (Table 1), as they appeared earlier in time under

13°C than at 15°C. Under 15°C, the number of deformed larvae increased only after day 32 but

within the last two days it reached higher values compared to 13°C (Fig. 4).
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For settled larvae, metamorphosis followed a similar pattern to pelagic metamorphosis. Larvae
firstly obtained g pear-like shape and subsequently became more round, gradually forming a
polyp base, mouth and mesenteries (Fig. 6A). Fully developed primary polyps were formed
within approximately 2-3 days, after the formation of tentacles, sclerites,and tentacle pinnules

(Fig. 6B).

Discussion

So far, studies on the biology and ecology of deep-sea octocorals have focused mainly on the
adult stage (Watling et al., 2011), with very few studies tackling early life history stages (Cordes
et al., 2001, Sun et al., 2010; 2011). To our knowledge, the present study is the first to provide a
detailed insight to the larval biology of a deep-sea octocoral species including embryo
development, larval survival and swimming behaviour, which are essential variables to

understand dispersal and connectivity in the deep-sea (Gary et al., 2020).

In our study, it was not clear if spawning was actually induced, assisted, or just coincided with
sperm enrichment, due to the small time interval between sperm enrichment and the first
spawning event, Repetitive spawning within a specific period is common for tropical broadcast
spawning octocorals within the family Plexauridae such as Plexaura homomalla (Wells et al.,
2020) and Plexaura flexuosa (Pakes and Woolakott, 2008). Repetitive planulation has also been
recorded for some brooding octocorals, including temperate (e.g. Corallium rubrum, Martinez
Quintana, 2015 and Eunicella singularis, Weinberg and Weinberg, 1979) and deep-sea species
(e.g. Gersemia fruticosa, Sun et al., 2011). It has been suggested that repetitive gamete release

can increase the probability of embryo and larva development under optimal conditions (Kahng
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et al., 2008). In species that display this behaviour, studying the effects of different
environmental variables on embryo development is crucial, as embryos of different cohorts are
likely to be released in different environmental conditions including temperature, salinity, pH

and food availability,

Embryo and larval development of D, aff. meteor had many similar characteristics with shallow-
water, tropical octocorals. Unequal cleavage that ranges from radial to pseudospiral is common
among cnidarians (Fritzenwanker et al., 2007), including tropical brooding (Benayahu and Loya,
1983; Dahan and Benayahu, 1998), and broadcast spawning (Mandelberg-Aharon and Benayahu,
2015) octocorals. Superficial cleavage is frequently encountered in embryos with high amounts
of yolk reserves (Scriba, 2015). Similarly to other octocoral species (Mandelberg-Aharon and
Benayahu, 2015; Wells et al., 2020), larvae of D. aff. meteor appeared to be lecithotrophic since
no mouth or oral opening was observed before metamorphosis. Moreover, the temporal
developmental profile of D. aff. meteor was comparable to that of broadcast spawning tropical
species from the same family which reached the planula stage within 2-3 days and had relatively
quick onset of competency (4-5 days), short longevity,and low selectivity in settlement (Lasker
and Kim, 1996; Coelho and Lasker, 2016; Wells et al., 2020). Overall, these findings suggest
that some reproductive and larval characteristics might be conserved among taxonomically

related groups, despite local adaptations due to depth and other habitat limitations.

For most deep-sea octocorals studied so far, planulae appeared to have low mobility, with
negative buoyancy and crawling (e.g. Drifa glomerata, Sun et al., 2010; Duva florida, Sun et al.,
2011) or limited swimming capacity generated by body contractions (e.g. Drifa sp., Sun et al.,
2010). Larvae of D. aff. meteor were active swimmers, however, they initiated swimming only

after stimulation. Similar behaviour has been reported for the octocoral Corallium rubrum which
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displayed increased motility after stimulation (Martinez-Quintana, 2015). Swimming speed was
also similar to that of C. rubrum (0.45-0.55 mm s'), hewever larvae in that study were
maintained under higher temperature (19-20 °C). When compared to other deep-sea broadcast
spawners, such as the scleractinian L, pertusa, D. aff. meteor had lower swimming capabilities,
especially since L. pertusa displayed intense, negatively geotactic behaviour and higher

swimming velocity (Larsson et al., 2014),

Larvae planktonic period can be divided in two phases, an obligatory phase that lasts until the
onset of developmental competence (the ability to respond to settlement cues) and a facultative
phase that depends on settlement behaviour in response to the existence of certain chemical and
physical properties of benthic substrate (Elkin and Marshal, 2007). In this study it was not
possible to determine the exact onset of competency since larvae did not display any specific
geotactic or bottom probing behaviour. Instead, larvae displayed three types of behaviour: non-
selective settling, pelagic metamorphosis,and continuation in the pelagic phase;-as planula
larvae. All larvae that settled presented non-selective settling behavior, settling on the flask walls
and plastic slides after 14 days of larvae development, whereas no larvae attached to the
provided basalt rock. This might have been a result of the absence of settlement cues or adequate
settlement surface in the provided substrate, Non-selective settlement behavior in the absence of
proper substrate has been observed before in coral larvae, including octocorals (Lasker and Kim,
1996: Freire et al., 2019). This phenomenon has been tentatively explained by\\the desperate
larvae hypothesis”(Gibson, 1995; Marshal and Keough, 2003), which states that larvae should
accept less preferred habitats as time progresses, because metamorphosis is energetically
demanding and non-feeding larvae can only delay metamorphosis until reaching a specific

reserve level (Elkin and Marshall, 2007). The hypothesis is particularly pertinent for non-feeding
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lecithotrophic larvae, since the duration of the planktonic phase is likely determined by the
availability of energetic reserves (Wendt, 2000). However; there is considerable interspecific
variation in the ability of larva to delay competence, and this is not always correlated to larval
size or maternal provision; suggesting the existence of additional factors, such as developmental

and phylogenetic constrains (Bishop et al., 2006).

A high proportion of non-settled planulae initiated metamorphosis after 14 days of development,
resulting in a high proportion of pelagic polyps after 36 days eflarvae-development. Pelagic
metamorphosis of planulae into polyps has been reported for tropical (Zaslow and Benayahu,
1996; Lasker and Kim, 1996) and temperate (Linares et al., 2008) octocorals, for the deep-sea
octocoral Gersemia fruticosa (Sun et al., 2011) and for some scleractinian species (Vermeij
2009; Mizrahi et al., 2014), suggesting that this behaviour is not uncommon among corals. In
some scleractinians, pelagic polyps can display high survival and dispersal potential (Mizrahi et
al., 2014), and in some cases pelagic polyps have been observed feeding (Zazlow and Benayahu,
1996; Linares et al., 2008). In our study, pelagic polyps had high mortality but this could be due
to the absence of sufficient or adequate food sources. Nevertheless, pelagic metamorphosis might
be another response to potential shortage of energy reserves, as it provides a way to acquire
feeding structures and allows the acquisition of energy while waiting for the right settlement cue,
In the case of D. aff. meteor,this behaviour, along with the non-selective settling, enhanee the
hypothesis that larvae had limited energy reserves and possibly reached their maximum larval

duration during the experiment.

Collectively, the embryonic and larval characteristics of D. aff. meteor suggest a higher dispersal
potential than most deep-sea octocorals studied so far. However, when compared to other deep-

sea species, the dispersal capacity of D. aff. meteor appears to be limited due to its short PLD,

Peer] reviewing PDF | (2020:12:56492:0:0:NEW 22 Dec 2020)


sustromberg
Cross-Out

sustromberg
Inserted Text
 There is, however, ...

sustromberg
Cross-Out
redundant comma

sustromberg
Cross-Out

sustromberg
Pencil

sustromberg
Inserted Text
 I like this reasoning, it's very likely this is the case

sustromberg
Pencil

sustromberg
Cross-Out
'support' might be a better word here


PeerJ

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

short competency period, weak swimming (Table 2),and unselective settlement behaviour. For
example, L. pertusa displayed onset of competency within 3-5 weeks frem spawning, active
upward swimming and survival without settlement for a year (Larsson et al., 2014). Similarly,
other deep-sea species such as the bivalve Bathymodiolus childressi and the gastropod
Bathynerita naticoidea display longer PLDs which indicate much higher dispersal potential than
D. aff. meteor (Arellano and Young, 2009). The three deep-sea species, L. pertusa, B. childressi
and B. naticoidea, have been shown to perform ontogenetic migrations to the surface (Arellano
et al., 2014; Larsson et al., 2014) which does not seem likely for D. aff. meteor, based on the
characteristics described herein. Nevertheless, the dispersal capacities of these species
eorreberate with their distributions, with L. pertusa and B. childressi displaying strong dispersal
potential which is consistent with their wide distributions,and D. aff. meteor displaying lower
dispersal capacities, eerreborating with its narrow regional distribution in the Mid-Atlantic

Ridge.

Temperature is considered one of the main factors affecting larvae biology, with higher
temperatures usually resulting in highes developmental rates (Hoegh-Guldberg and Pearse,
1995). Our results were consistent with this premise, with larvae reaching the planula stage 24
hours earlier undes 15°C when compared to 13 °C. These results also eerreberate with studies on
other deep-sea species, such as L. pertusa (Stromberg and Larsson, 2017) and B. childressi
(Arellano and Young, 2009) which displayed faster development with increased temperature.
However, both studies tested larger temperature differences and concern species which perform
long vertical migrations to the surface and therefore display high tolerance to different
temperature and salinity (Arellano and Young, 2011; Stromberg and Larsson, 2017). The higher

developmental rate observed undes 15 °C is expected to be accompanied by earlier competency,
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shorter pelagic duration,and higher settlement rates (O’Connor et al., 2007; Heyward and Negri,
2010),with further consequences for larval transport and dispersal (Metaxas and Saunders, 2009).
However, undes higher temperature, larvae of D. aff. meteor displayed lower settlement rate and
higher proportion of deformed larvae, Faster developmental rates, accompanied by decreased
settlement tndet, increased temperature (+ 3°C) has been reported for the tropical octocoral
Heliopora coerulea (Conaco et al., 2020), while abnormal metamorphosis and lower survival has
been recorded in larvae of the temperate octocoral P. clavata that were transferred to higher
temperature (+ 5°C) after reaching the planula stage (Kipson et al., 2012). It is possible that these
results are related to temperature-induced changes in aspects that were not evaluated in our
study, including developmental and physiological mechanisms. For example, it is possible that
faster development under higher temperature was accompanied by faster metabolic rates
(O’Connor et al., 2007) /and resulted in faster consumption of reserves, leading to high mortality
under the absence of proper settlement cues. Ontogeny depends on certain developmental
processes and their timing and while developmental rate can be plastic, changes in timing are
likely to have consequences on structure and function, ultimately affecting individual

performance (Kovac, 2002),

Since the two temperature regimes, used in this study are likely to be experienced by embryos of
the target species during spawning, our results highlight how small changes in temperature can
affect an array of larval characteristics with substantial effects on larval behaviour, dispersal and
ultimately, success. Similar results have been reported for tropical scleractinian species (e.g.
Randall and Szmant, 2009; Heyward and Negri, 2010). In the deep-sea, refined embryo and
larval responses under a narrow temperature range (2-3°C) have even allowed species to disperse

in specific water masses and expand their range to greater depths, e.g. the Antarctic echinoderm
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Sterechinus neumayeri (Tyler et al., 2000). Larvae dispersal and success are important features
not only from an ecological but also from an evolutionary perspective, as they can define the
selection of reproductive strategies, including reproductive timing. Reproductive timing can be
the result of complex mechanisms that are difficult to unravel. In deep-sea corals it has been
discussed in relation to adult physiology and its seasonal constraints, or to environmental cues
that induce gametogenesis and spawning (e.g. Orejas et al., 2002; Waller et al., 2014). Hewever;
the adaptive significance of reproductive timing can also be defined by processes that affect
larval survival and success (Olive, 1992). The connection between the optimal time of spawning
and larval success has been addressed in other ectotherms such as fish (Asoh and Yoshikawa,
2002), crustaceans (Morgan and Christy, 1995)’ and tropical scleractinian corals (Crowder et al.
2014; Fan et al., 2017), however,these aspects have not been addressed yet for deep-sea corals.
Further studies on the effect of temperature on larval development, physiology, and behaviour are
therefore essential to obtain a holistic view of reproductive timing and the potential impacts of

climate change on deep-sea corals.
Conclusions

In our study, we provided a detailed description of embryo and larval characteristics of the
species D. aff. meteor. Our results suggest that D. aff. meteor larvae are lecithotrophic with
development similar to other octocorals;and low dispersal capacity compared to other deep-sea
species. This eerroberates with its limited geographical distribution. Femperatare-ehanges did
not affect survival, howeverJ significant effects were detected on the rate of embryo development
and swimming speed, which in the field can potentially alter larval dispersal and ultimately

success. Deep-sea octocorals are receiving increasing attention as a growing number of studies

focus on the habitat requirements and environmental conditions shaping deep-sea communities
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(Radice et al., 2016; Barbosa et al., 2020; Morato et al., 2020). Hewever; species distribution is a
result of complex interactions between factors #g various ecological levels, with early life history
biology and dispersal playing a key role in the successful occupation of available suitable habitat

(Schurr et al., 2007; Robinson et al., 2011). As-biephysteal-dispersal-modelling-attempts are

increasing in the deep-sea (Hilario et al., 2015; Ross et al., 2016), further research on embryo

and larval biology are essential to obtain a-better-understanding-of-deep-sea-eeosystems;
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Figure 1

Stages of embryo development of the octocoral species Dentomuricea aff. meteor

(a) fertilized oocyte, (b) 2-cell, (c) 4-cell , (d) 8-cell, (e) 16-cell, (f) 64-cell, (g) hollow blastula,

(g) gastrula, (i) pIanuIaL
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Figure 2

Early development of embryos of the octocoral speeies Dentomuricea aff. meteor reared

u-nelei13°C and 15 °C.

Bars display the proportion of embryos in each developmental stage over g course of 96

hours after spawning.
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Figure 3(on next page)

Comparison of Kaplan-Meier estimates, of larvae survival of the-speeies Dentomuricea
aff. meteor under two temperature regimesl
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Figure 4

Larval stages of the octocoral speeies Dentomuricea aff. meteor.

The graph displays the proportion of larvae in different developmental stages (planula,

metamorphosed but not settled, settled, deformed) under two experimental rearing

temperatu res,
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Figure 5

Pelagic metamorphosis of larvae of the octocoral speeies Dentomuricea aff. meteor.

A: pear shaped larva with formed mouth i1 the oral side, (0) and closed aboral sieg (ab); B:

tentacle formation on the oral S-i'd'eiC: Fully formed tentacles, mesenteries and sclerites (sc);

D: deformed larva with abnormal mesentery and tentacle formationl
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Figure 6

Formation of primary polyps from planula larvae of the octocoral Dentomuricea aff.
meteor.

A: Recently settled primary polyp with a polyp base (b) and formation of eight mesenteries

(m); B: final primary polyp with sclerites (i)' tentacles and tentacle pinnules (p). Scale bar:

500 um
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Table 1l(on next page)

Model selection results.

The results of Maximum Likelihood Ratio (MLR) tests; reveal significant effects of the

independent variables in question. Selected models are highlighted in grey.
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1 Table I: Results of Maximum Likelihood Ratio (MLR) tests, revealing significant effects of the
2 independent variables in question. Selected models are highlighted in grey.

Dependent Model Model AIC X2 df |p
variable type
Size LM Null -186.35
Stage -725.87 | 8.63 13 |2.20x
10-16
Stage + -724.69 | 0.004 12 1037
Temperature
Stage x -708.56 | 0.03 11 |0.90
Temperature
Length/width LM Null 184.68
ratio Stage -132.57 | 21.66 13 12.20x
10-16
Stage + -130.58 | 0.0004 |12 | 091
Temperature
Stage x -159.44 | 1.66 11 | 4.78x
Temperature 10”7
Proportion of | Binomial | Null 2770.58 31
planula GLM Time 633.32 | 2137.27 |30 [2.20x
1 0- 16
Time + 567.36 | 67.95 29 |2.20x
Temperature 10-16
Time x 55894 | 10.42 28 10.0012
Temperature
Proportion of | Binomial | Null 1676.96 31
metamorphosed | GLM Time 48296 | 1196.60 |30 |2.20x
10-16
Time + 484.12 | 0.19 29 10.65
Temperature
Time x 47591 |10.22 28 | 0.001
Temperature
Proportion of Binomial | Null 744.30 31
settled GLM Time 484.34 126190 |30 |2.20x
10-16
Time + 398.76 | 87.57 29 |2.20x
Temperature 10-16
Time x 387.71 | 13.05 28 | 0.0003
Temperature
Proportion of Binomial | Null 466.04 31
deformed GLM Time 201.97 | 266 30 [2.20x
10-16
Time + 203.65 | 0.32 29 10.56
Temperature
Time x 160.93 | 44.7 28 |2.27x

Peer] reviewing PDF | (2020:12:56492:0:0:NEW 22 Dec 2020)



PeerJ Manuscript to be reviewed

Temperature 101
Swimming LM Null -141.32
speed (13°C) Time -170.05 | 1.24 1 1.95 x
108

Time + Direction -168.18 | 0.005 1 0.71
Time x Direction -166.18 | 0.00001 | 1 0.99
Swimming LM Null 77.12
speed (15°C) Time 63.7 1.02 1 7.91 x
10-
Time + Direction 64.11 0.10 1 0.20
Time x Direction 65.75 0.23 1 0.54

Swimming LM Null 42.04
speed Time -24.12 1 4.00 1 2.20x
10-16
Time + -79.80 | 3.17 1 1.41 x
Temperature 1014
Time x -77.89 | 0.04 1 0.767
Temperature
Swimming LM Null 80.31
direction Time 82.31 0 1 1
(13°C) Time + Direction 84.15 5.35 1 0.70
Time x Direction 82.90 95.15 1 0.11
Swimming LM Null 89.65
direction Time 91.65 0.00 1 1
(15°C) Time + Direction 92.38 88.60 1 0.34
Time x Direction 94.38 0.09 1 0.97
3
4
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Table 2(on next page)

Summary of embryo and larval characteristics of the deep-sea octocoral speeies
Dentomuricea aff. meteor reared under two temperature regimes.

Data include estimated (average = mean} survival time, survival rate, Pelagic Larval Duration
(PLD),and swimming speed. The min and max values correspond to minimum and maximum
estimates observed in individual batches, whereas median takes into account all batches

pooled together. Swimming speed data were collected on day 4 and day 14.
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1 Table 2: Summary of embryo and larval characteristics of the deep-sea octocoral species
2 Dentomuricea aff. meteor reared under two temperature regimes, including estimated (average
3 £ mean) survival time, survival rate, Pelagic Larval Duration (PLD) and swimming speed. The
4  min and max values correspond to minimum and maximum estimates observed in individual
5 batches, whereas median takes into account all batches pooled together. Swimming speed was
6 calculated on day 4 and day 14.
13°C 15°C
Survival rate Median Survival
Survival time
after 30 days |PLD survival time |rate after 30 |[PLD
(days)
(%) (days) days (%)
Min 5 17.1+4.5 1 6 0 1
Max 28 34+£6091 35 23 21 +3.47 35
Median 11 16.4+2.07 24 16 11.5+£2.09 |27
Swimming
speedgays |0.24 £0.16 0.36 +0.21
(mm s1)
Swimming
speedgayis (0.4 +0.24 0.44+0.23
(mm s)
7
8
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