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Deep-sea octocorals are common habitat-formers in deep-sea ecosystems, however our
knowledge on their early life history stages is extremely limited. The objective of this study
was to describe the embryo and larval biology of the deep-sea octocoral Dentomuricea aff.
meteor, a common habitat-forming species in the Azores, under two temperature regimes,
corresponding to the minimum and maximum temperatures in their natural environment
during the spawning season. Under temperature of 13 ± 0.5°C, embryos of the species
reached the planula stage after 96h and displayed Pelagic Larval Duration (PLD) of 24
days. Planula larvae displayed swimming only after stimulation, larval swimming speed
was 0.24 ± 0.16 mm s-1 and seemed to increase slightly but significantly with time. Under
a higher temperature (15°C ± 0.5°C) embryos reached the planula stage 24h earlier (after
72h), displayed PLD of 27 days and had significantly higher swimming speed (0.3 ± 0.27
mm s-1). Survival was not affected significantly by temperature, however our results
highlight how small changes in temperature can affect larval characteristics with potential
cascading effects in larval success and dispersal. In both temperatures, larvae displayed
unselective settlement behaviour and metamorphosis occurred even without settlement.
Such information is rarely available for deep-sea corals, although it is essential to achieve
a better understanding of dispersal, connectivity and biogeographical patterns of benthic
species.
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18 Abstract

19 Deep-sea octocorals are common habitat-formers in deep-sea ecosystems, however our 

20 knowledge on their early life history stages is extremely limited. The objective of this study was 

21 to describe the embryo and larval biology of the deep-sea octocoral Dentomuricea aff. meteor, a 

22 common habitat-forming species in the Azores, under two temperature regimes, corresponding to 

23 the minimum and maximum temperatures in their natural environment during the spawning 

24 season. Under temperature of 13 ± 0.5°C, embryos of the species reached the planula stage after 

25 96h and displayed Pelagic Larval Duration (PLD) of 24 days. Planula larvae displayed 

26 swimming only after stimulation, larval swimming speed was 0.24 ± 0.16 mm s-1 and seemed to 

27 increase slightly but significantly with time. Under a higher temperature (15°C ± 0.5°C) embryos 

28 reached the planula stage 24h earlier (after 72h), displayed PLD of 27 days and had significantly 

29 higher swimming speed (0.3 ± 0.27 mm s-1). Survival was not affected significantly by 

30 temperature, however our results highlight how small changes in temperature can affect larval 

31 characteristics with potential cascading effects in larval success and dispersal. In both 

32 temperatures, larvae displayed unselective settlement behaviour and metamorphosis occurred 

33 even without settlement. Such information is rarely available for deep-sea corals, although it is 

34 essential to achieve a better understanding of dispersal, connectivity and biogeographical 

35 patterns of benthic species.

36 Introduction

37 Species persistence requires the successful completion of a life cycle against biotic and abiotic 

38 odds, starting with survival at early life history stages. These stages are key for sessile species, 

39 such as benthic marine invertebrates, which upon reaching the adult stage cannot escape 
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40 unfavorable conditions. For these organisms, early life events such as larval survival and 

41 settlement determine the fate of the adult phase and are therefore extremely important (Marshal 

42 and Morgan, 2011; Byrne, 2012). Moreover, larval stages consist the only pelagic phase that 

43 ensures dispersal and connectivity among populations (Cowen and Sponaugle, 2009). In deep-

44 sea communities which are dominated by benthic marine invertebrates, knowledge on early life 

45 stages is therefore key in understanding species distributions, biogeographical patterns, 

46 population and metapopulation dynamics (Treml et al., 2015), consisting an essential tool for 

47 management (Hilario et al., 2015).

48 Deep-sea octocorals are major habitat-formers in the deep-sea, usually occurring in complex 

49 geological settings such as continental shelves and margins (Yesson et al., 2008, Taylor et al., 

50 2013), underwater canyons (Brooke et al., 2017) and seamounts (Tempera et al., 2012; Braga-

51 Henriques et al., 2013). Due to the habitat requirements of some octocoral species, including 

52 hard substrates for settlement and strong currents which optimize food delivery, their distribution 

53 can be quite fragmented (Bryan and Metaxas, 2006; Tong et al., 2012), as observed for other 

54 deep-sea benthic species (Miller and Gulasekera, 2017). Anthropogenic disturbance and global 

55 climate change are likely to increase habitat fragmentation even more, by altering habitat 

56 characteristics (Sweetman et al., 2017; Levin et al., 2019) and causing a decrease in the available 

57 suitable habitat of some species (Morato et al., 2020). Under these circumstances, obtaining a 

58 solid understanding of larval biology and population connectivity is essential to understand 

59 community dynamics and the potential of deep-sea octocoral populations to recover from 

60 disturbance (Cowen et al., 2007). 

61 So far, our knowledge on larval biology of deep-sea octocorals is limited to a few brooding 

62 species (Cordes et al., 2001; Sun et al., 2010; 2011; Mercier and Hamel, 2011). In most of these 
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63 cases, larvae settled within 2-5 days after larvae release and shortly metamorphosed into primary 

64 polyps, e.g. Anthomastus ritteri (Cordes et al., 2001), Gersemia fruticosa and Duva florida (Sun 

65 et al., 2011). They also displayed short competency periods with limited swimming behaviour 

66 (Sun et al., 2010). However, many deep-sea octocorals are broadcast-spawners and are therefore 

67 expected to display different larval characteristics and dispersal capabilities (Harrison and 

68 Wallace, 1990; Nishikawa et al., 2003). To our knowledge, so far no information exists on the 

69 larval biology of broadcast spawning deep-sea octocorals.

70 Larvae from broadcast spawning species undergo early development in the water column, where 

71 they are mostly transported as passive particles until they reach the planula stage. During 

72 transportation, embryos can be exposed to variable environmental conditions which may affect 

73 their development (Melzner et al., 2009). This phenomenon can be even more pronounced in 

74 deep-sea species, in which embryos and larvae can often display upward swimming, crossing 

75 water masses with very different physicochemical characteristics (Young et al., 1996, 2012; 

76 Arellano et al., 2014; Stromberg and Larsson, 2017). One of the most important factors 

77 influencing early development in marine organisms is temperature (Hoegh-Guldberg and Pearse, 

78 1995; Przeslawski et al., 2015). Despite its importance and the increasing interest for the effect 

79 of global warming on larvae of shallow scleractinian species (Randall et al., 2009; Figueiredo et 

80 al. 2014), so far limited attention has been brought on temperature effects on the embryonic 

81 development of deep-sea coral species, with some information existing only for the scleractinian 

82 Lophelia pertusa (Stromberg and Larsson, 2017).

83 The aim of this study is to provide a detailed description of the larval biology of the deep-sea 

84 broadcast spawning species Dentomuricea aff. meteor, a common habitat-forming deep-sea 

85 octocoral in the Azores. To achieve our goal, we employed an experimental approach with 
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86 assisted fertilization and larvae rearing in aquaria. We also report on the embryonic development 

87 and larval characteristics of D. aff. meteor under two temperature regimes, representing the 

88 minimum and maximum temperatures experienced by the species in its natural habitat.

89

90 Materials and Methods

91 Target species and specimen collection

92 The Azores Archipelago, located above the Mid-Atlantic Ridge, is a biodiversity hotspot for 

93 deep-sea octocorals (Sampaio et al., 2019). Coral gardens (OSPAR, 2010) formed by deep-sea 

94 octocorals are among the most prominent deep-sea communities on regional seamounts and 

95 island slopes (Braga-Henriques et al., 2013). Dentomuricea aff. meteor is an octocoral species of 

96 the family Plexauridae, so far only recorded on the seamounts of the North Mid-Atlantic Ridge.  

97 It is common in regional seamounts between 200-600 meters (Braga-Henriques et al., 2013), 

98 where it forms dense populations, often in combination with other octocoral species such as 

99 Viminella flagellum and Callogorgia verticillate. The species is gonochoristic and presents 

100 gametes all year round, with seasonal peaks of gamete maturation and spawning usually 

101 occurring in autumn (Rakka et al., unpubl. data).

102 A total of 11 colonies of the species Dentomuricea aff. meteor were collected from Condor 

103 Seamount in September and October 2019, as by-catch from experimental long-line fisheries on 

104 board RV Archipelago (ARQDAÇO monitoring programme). Colonies were divided in large 

105 fragments (20-30 cm height) and were kept at the DeepSeaLab aquaria facilities (Orejas et al., 

106 2019), in six 33L aquaria positioned in a thermo-regulated room at 14°C. Aquaria were supplied 

107 continuously with seawater pumped from 5m depth, previously treated with UV light (P10 
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108 UVsystem & Vecton 600 TMCTM) and passed through 50 μm and 1 μm mesh filters. Circulation 

109 within the aquaria was maintained by pumps. Seawater temperature was kept between 13-14°C 

110 with the aid of chillers while colonies were fed twice per day with a mixture of frozen 

111 zooplankton and microplankton which was frequently enriched with live microalgae 

112 (Chaetoceros calcitrans and Nannochloropsis gaditana) and live rotifers.

113

114 Larvae rearing

115 Larvae were obtained by maintaining reproductively active female and male colonies in the same 

116 aquaria to achieve natural spawning and fertilization. Coral fragments were allowed to 

117 acclimatize in the above aquaria conditions for approximately a month. Subsequently, colonies 

118 with mature gametes were identified by dissecting two branchlets (3-5 cm height) from each 

119 colony and observing their tissue under a dissecting microscope. Reproductively immature 

120 colonies and fragments in poor condition were excluded from further analysis. This procedure 

121 resulted in selection of six female and three male colonies. Coral fragments from the female 

122 colonies were distributed in two aquaria, referred to as spawning aquaria. Subsequently the 

123 fertile male colony with the higher number of available fragments was selected and four of its 

124 fragments were distributed in each of the two spawning aquaria. The remaining male colonies 

125 were not used to avoid polyspermy (Levitan et al., 2007). 

126 To increase the potential of spawning, we enriched the aquaria water with free mature sperm, 

127 obtained from the selected male colony. This was achieved by dissecting mature spermatocysts 

128 from coral tissue, which were subsequently concentrated in 50 ml flasks with filtered (0.2 μm) 

129 SW, homogenized by gently shaking and redistributed to the aquaria. Water inflow was stopped 

PeerJ reviewing PDF | (2020:12:56492:0:0:NEW 22 Dec 2020)

Manuscript to be reviewed

sustromberg
Cross-Out
Larval rearing

sustromberg
Inserted Text
 It was a bit risky using only one male. Sometimes pairs of corals aren't compatible and produce non-viable malformed larvae

sustromberg
Cross-Out
dispersed? 
Suggestion: New sentence
...filtered () SW. Sperm was dispersed by gently shaking...
homogenized sounds like you ran the tissues through a blender.

sustromberg
Cross-Out
flow-through?



130 and aquaria pumps were substituted with aeration to ensure water circulation without losing or 

131 harming potentially spawned gametes. Upon gamete spawning, which happened in batches, all 

132 gametes/fertilized eggs were collected from the water column and distributed in ten 750 ml-

133 culture flasks (20-100 fertilized eggs per flask) that were filled with filtered SW (mesh size: 0.2 

134 μm). 

135 Temperature experiments

136 In order to chose appropriate temperature regimes for larval rearing, we utilized temperature data 

137 collected during annual CTD surveys, under the framework of the projects CONDOR (EEA 

138 Grants PT-0040) and SMaRT (SRECC- Azores Regional Government M.2.1.2/029/2011). Data 

139 were collected between 2010 and 2012, above the coral garden where specimen collection took 

140 place. Subsequently, we utilized the minimum and maximum recorded values (13.4°C and 

141 15.12°C respectively) during the spawning season of the target species (October-November) to 

142 define the target rearing temperatures (13 ± 0.5°C and 15 ± 0.5°C). Upon collection of fertilized 

143 eggs/embryos, culture flasks were distributed in two water baths, maintaining temperature within 

144 0.5 °C of the target temperatures, with the aid of an aquaria chiller and a heater respectively. 

145 Culture flasks were equipped with glass pipettes connected to an aquaria air pump, achieving 

146 continuous light circulation, while water in the flasks was exchanged daily.

147 Embryonic and larval development

148 Embryos were monitored every 3-4 hours during the first 48 hours and subsequently once a day 

149 until reaching the planula stage, to study their early development. In every monitoring event, all 

150 embryos were counted to estimate survival, while 10-15 embryos were randomly removed from 

151 the flask, photographed with a digital camera (DIGICAM 5MEG LCMOS MAC) attached to a 

PeerJ reviewing PDF | (2020:12:56492:0:0:NEW 22 Dec 2020)

Manuscript to be reviewed

sustromberg
Cross-Out
release

sustromberg
Inserted Text
Could you add total number of larvae for each treatment?
Where gametes from subsequent batches distributed over the same 10 flasks? Is that why spawning dates varied within flasks?


sustromberg
Inserted Text
 was the full volume changed or just a fraction of the volume?

sustromberg
Cross-Out
During

sustromberg
Cross-Out
MEG is not a standard abbreviation for megabyte/megapixel
check this



152 microscope (10x) and returned to the flasks. Images were later processed to record the 

153 developmental stage and size of each embryo. Due to repetitive and frequent spawning within 

154 the aquaria and continuous collection of embryos, oocytes from different spawning events were 

155 frequently mixed and therefore the timing of embryonic development is approximate. Moreover, 

156 since it was not possible to define the moment of fertilization, embryo development is presented 

157 in respect to spawning time. To estimate size, we measured width and length (mm) of each larva 

158 using the open software Fiji/Image J (Schindelin et al., 2012). The data were subsequently used 

159 to estimate volume (mm3) assuming larvae had the shape of a prolate spheroid (Larsson et al., 

160 2014). The ratio of length to width was used as a proxy of sphericity.

161 Swimming behaviour

162 Data on swimming speed and behaviour were collected by video recording and analysis. Videos 

163 were recorded with a Canon EOS 600D digital camera, equipped with a regular 22-55mm lens, 

164 on day 4 and day 15 after spawning, which corresponded to the first day larvae reached the 

165 mature planula stage and the first day larvae displayed competency to settle, respectively. To 

166 avoid larvae handling, swimming behaviour was recorded in the same culture flasks used for 

167 larvae rearing. Videos were captured in the dark, using lateral led lights for illumination 

168 (Stromberg and Larsson, 2017). Flasks were positioned in front of a black slide with a calibrated 

169 grid that was used as background and a 2-minute waiting period was implemented to ensure no 

170 water movement was interfering with larvae swimming. Subsequently, three videos (duration: 1 

171 min) were recorded between intervals of three minutes.

172 Videos were converted to video frames and were analyzed by an automatic particle tracking 

173 method, using the open software Fiji/Image J (Schindelin et al., 2012) and the plugin TrackMate 
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174 (Tinevez et al., 2017) to record data on vertical swimming behaviour, namely swimming 

175 direction (up/down), displacement and swimming speed. Estimates of swimming speed only 

176 considered tracks with displacement higher than 2 mm, to exclude data from larvae that did not 

177 move or moved minimally.

178 Settlement and metamorphosis

179 After reaching the planula stage, larvae were counted every 2-3 days until day 39 to estimate 

180 survival. Moreover, during counting, each larva was assigned to one of four stages: planula, 

181 settled, pelagically metamorphosed and deformed. Because counts were made simultaneously for 

182 all flasks and each flask contained a batch of different age, e.g. some batches were spawned with 

183 1-3 day difference, when average counts were estimated these were sometimes heavily 

184 influenced by the available count for that day. To be able to estimate robust mean counts for each 

185 monitoring day, missing values were regenerated for each flask by using linear interpolation 

186 between existing data points. Lastly, on days 4 and 14 after spawning, five planulae were 

187 removed from each flask (total n=25 for each temperature regime) and photographed with a 

188 digital microscope camera to estimate their size.

189 Pelagic Larval Duration (PLD) was inferred from the proportion of larvae abandoning the 

190 planula state, either by settling or deceasing, thus taking survival and larvae development into 

191 account. We report the time point at which 50% of the initial number of larvae left the pelagic 

192 stage as median PLD, as well as the minimum and maximum observed in individual batches. 

193 Metamorphosed larvae that did not settle were assumed to continue in a pelagic phase. Since 

194 larvae did not display clear bottom probing behaviour, the onset of competency was defined by 

195 the first settling larvae.
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196 After larvae presented competency (day 14), substrate was provided to the culture flasks in order 

197 to monitor settlement behaviour. Three flasks from each temperature regime were randomly 

198 selected and three pieces (approximate diameter: 0.5 cm) of basalt rock attached to a plastic slide 

199 (1 cm x 8 cm) were offered as potential substrate in each flask. Settled larvae were observed and 

200 photographed every 2-3 days to assess and describe settlement and metamorphosis, during a 

201 period of approximately two weeks. After metamorphosis was observed, a mixture of live 

202 microalgae (Nannochloropsis gaditana and Chaetoceros calcitrans) and rotifers was provided 

203 weekly.

204

205 Statistical analysis

206 Survival analysis was performed using the Kaplan-Meier method, following Graham et al. 

207 (2008). Since monitoring was done in time intervals and the exact time of death for each larva 

208 was not known (interval-censored data), we assumed that time of death was the moment at which 

209 each larva was observed for the last time. However, for each batch, the remaining larvae at the 

210 last monitoring event were considered alive (censored data). As the Kaplan-Meier method does 

211 not allow for incorporation of replicate information into the analysis, we performed the analysis 

212 by pooling data from all batches together, for each rearing temperature. Subsequently the 

213 analysis was repeated separately for each batch, to provide information about the variability 

214 among batches (Graham et al., 2008). A log-rank test was performed to compare the survival 

215 curves between larvae reared under 13°C and 15°C. Survival analysis was performed by using 

216 the packages survival (Therneau and Grambsch, 2017) and survminer (Kassambara et al., 2019) 

217 in R 3.5.0 (R Core Team, 2018).
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218 For the rest of the dependent variables, we firstly performed exploratory analysis (Zuur et al., 

219 2010) to select the most appropriate modeling method. The effect of each independent variable 

220 was subsequently tested with linear models (LMs), by adding the independent variables 

221 progressively to the respective model and using maximum likelihood ratio (MLR) tests and the 

222 Akaike Information Criterion (AIC). Data collected from monitoring larvae stages (proportions) 

223 were modeled by means of Generalized Linear Models (GLMs) with a binomial distribution. 

224 Summarized results of the MLR test for each variable in question are provided in Table 1, while 

225 the results from each selected model are provided graphically as supplementary material (Fig. 

226 S1-S4). Statistical analysis was performed in R (R Core Team, 2019).

227

228 Results

229 Spawning

230 The first spawning event occurred on the 27th of November. Oocytes were encountered within 15 

231 minutes from enrichment with free live sperm, in both aquaria. During spawning, oocytes and 

232 early-stage embryos floated in the water column, however spawning was not coordinated among 

233 colonies, neither among polyps of the same colony. Despite careful observation, it was not 

234 possible to directly observe polyps releasing sperm or oocytes and determine whether one or 

235 more colonies participated in each spawning event. Similarly, it was not possible to directly 

236 observe if fertilization was internal or external. All collected oocytes were fertilized, therefore 

237 fertilization was either internal or external with very high fertilization rates. Oocytes were 

238 spherical, they had no visible germinal vesicle and were released in batches of 10-80 at a time. 

239 They were mostly negatively buoyant, however they remained in suspension for several hours 
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240 due to water movement within the aquaria. Average oocyte diameter was 365.4 ± 24.2 μm. 

241 Frequent spawning events, i.e. every 2-3 hours, continued for a week, while spawning continued 

242 with lower frequency for approximately a month. 

243 Embryonic and larval development

244 Cell division was always equal but cleavage varied highly among stages and embryos. It was not 

245 possible to determine the time of the first division after spawning. Cytokinesis was never visible 

246 for the 2-cell stage, in which cleavage seemed to be always superficial (Fig. 1). During the 

247 following stages, cleavage varied from radial to pseudospiral and in some cases superficial, 

248 leading to embryos with substantial differences in shape. However, development always led to a 

249 hollow blastula (Fig. 1) followed by gastrulation and the formation of planula larvae without 

250 visible oral track (Fig. 1). Cleavage and cell division did not differ between the two rearing 

251 temperatures.

252 Under 13°C, all the embryos reached the blastula stage within 10h from spawning and the 

253 gastrula stage within 48h. After 72h all embryos reached the late gastrula stage and could 

254 perform slow, mainly rotating movements by cilia, while fully competent, swimming planula 

255 larvae were formed after 96h (4 days). During their development, embryos were negatively 

256 buoyant and accumulated at the bottom of the flasks. In the first batch this resulted in the 

257 formation of embryo aggregations and abnormal embryo development, however this issue was 

258 solved by adding slight aeration that ensured water and oxygen circulation within the flasks. 

259 Under 15°C, during the first 10 hours cleavage seemed to be occurring at similar intervals until 

260 reaching the blastula stage (Fig. 2), however embryos reached the gastrula and subsequently the 

261 planula stage approximately 24h (after 72h) earlier than embryos reared under 13°C (Fig. 2).

PeerJ reviewing PDF | (2020:12:56492:0:0:NEW 22 Dec 2020)

Manuscript to be reviewed

sustromberg
Cross-Out
timing


sustromberg
Inserted Text
 add letters – Fig. 1a...

sustromberg
Cross-Out
oral pore ?

sustromberg
Inserted Text
 it did differ slightly in the timing though? maybe you can add some clarification on what aspects that did differ and which didn't?

sustromberg
Cross-Out
Reared at...

sustromberg
Cross-Out

sustromberg
Cross-Out

sustromberg
Cross-Out

sustromberg
Cross-Out

sustromberg
Pencil

sustromberg
Pencil

sustromberg
Cross-Out
At 15°C,...

sustromberg
Pencil

sustromberg
Cross-Out

sustromberg
Inserted Text
at

sustromberg
Cross-Out

sustromberg
Inserted Text
add letter

sustromberg
Cross-Out

sustromberg
Inserted Text
after

sustromberg
Pencil

sustromberg
Pencil



262 Embryos between the 2-cell and 32-cell stage obtained variable shapes (Fig. 1) and their volume 

263 was on average 0.03 ± 0.0073 mm3. Subsequently, during the 64-cell stage and blastula they 

264 turned more spherical but had similar volume range (0.03 ± 0.005 mm3). After reaching the 

265 planula stage, embryos increased significantly in size (Table 1) with planula larvae reaching 0.28 

266 ± 0.1 mm3 on day 4 and 0.67 ± 0.28 mm3 on day 14. However on day 14 a substantial variability 

267 in larvae volume was observed. Mature planula larvae displayed the capacity to change their 

268 shape between spherical and elongated, and more elongated larvae were observed on day 14 

269 compared to day 4 (Figure S1). This was also confirmed from the LW ratio which decreased 

270 from late gastrula embryos (1.49 ± 0.17 mm3) to planula larvae on day 4 (1.22 ± 0.29 mm3) but 

271 increased significantly (Table 1) on day 14 (2.02 ± 0.45 mm3).  Embryo sizes were not 

272 statistically different between the two temperatures (Table 1). However, planula larvae on day 4 

273 had significantly higher LW ratios under 15°C (LW=1.59 ±0.39; Table 1), showing a tendency to 

274 maintain a more elongated shape than under 13°C.

275 Under 13°C, survival differed substantially among batches (Fig. S5). In most batches, a sharp 

276 decline in survival rates was observed during the first 48 hours, followed by a decrease in 

277 mortality until day 10 after which a more moderate mortality rate was established (Fig. 3). 

278 Overall, median survival time, i.e. time when mortality reached 50%, was 11 days while final 

279 survival rate after one month was 16.4%. Under 15 °C, the average mortality rate seemed to be 

280 more constant (Fig. 3). Median survival time was 5 days higher than under 13°C (16 days, Table 

281 2), however final survival rate after 32 days was slightly lower (11.5%, Table 2). Overall, these 

282 differences were not statistically significant according to the log-rank test (p=0.07; Fig. 3).

283

284 Swimming behaviour
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285 Planula larvae remained mostly at the bottom of the culture flasks, where they displayed slight 

286 rotating and unidirectional movements, however, they rarely became waterborne without the aid 

287 of water movement. Once in the water column, larvae did not show a specific swimming pattern 

288 but followed random trajectories. Overall, for larvae reared under 13°C, 51.2 ± 14.2 % of the 

289 recorded larval tracks were directed upwards while 50.7 ± 6.33 % were directed downwards. It 

290 was not clear if downward movement involved swimming or just sinking. The proportion of 

291 upward/downward swimming larvae did not change significantly with time (Table 1). Larvae 

292 displayed an average swimming speed of 0.24 ± 0.16 mm s-1 on day 4 and 0.36 ± 0.21 mm s-1 on 

293 day 15. Swimming speed did not differ significantly between upward and downward movements 

294 (Table 1; Fig. 4), however it was significantly higher on day 15 compared to day 4 (Table 1; Fig. 

295 4).

296 Swimming velocity for larvae reared under 15 °C was similar between upward and downward 

297 swimming (Table 1) and increased slightly but significantly with time (Table 1), from 0.4 ± 0.24 

298 mm s-1 on day 4 to 0.44 ± 0.23 mm s-1. Overall, 52.7% of the recorded tracks were directed 

299 downwards and the proportion of upward/downward swimming tracks did not differ significantly 

300 between dates (Table 1). Larvae swimming velocity was significantly higher under 15 °C 

301 compared to 13 °C, (Fig. 4) both on day 4 and day 15 (Table 1).

302 Settlement and metamorphosis

303 In both rearing temperatures, most larvae settled on the flask walls and plastic slides whereas no 

304 larvae attached to the provided basalt rock. Planula larvae under 13°C started settling on day 14 

305 and the proportion of settled larvae increased significantly with time, reaching 23.96 ± 24.1 % on 

306 day 36 (Fig. 4). There was high variance associated with the estimates of the average proportion 
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307 of settled larvae (Fig. 4), however this was due to a single batch in which very few larvae settled 

308 throughout the study period. Larvae under 15°C started settling later (Table 1) and overall, a 

309 lower proportion of larvae settled throughout the study. Moreover, under 15°C a significantly 

310 higher proportion (Table 1) remained in the planula stage for longer time (Fig. 4), leading to a 

311 slightly higher PLD. However, in both temperatures, on day 36 only a minimal proportion of 

312 planula larvae remained (Fig. 4).

313 After day 14, an increasing proportion of larvae initiated metamorphosis without settling (Fig. 4), 

314 reaching 57.31 ± 6.75 % on day 36. This form of pelagic metamorphosis started with planula 

315 larvae obtaining a pear shape (Fig. 5) and continued with formation of mouth, mesenteries, 

316 tentacles and finally sclerites (Fig. 5). Metamorphosis from planula larva to primary polyp took 

317 approximately 2-3 days. None of the larvae that displayed pelagic metamorphosis settled during 

318 the course of the study. This pelagic form of metamorphosis resulted in a high percentage of 

319 deformed larvae (Fig. 5). Metamorphosed larvae were still able to get transported by water 

320 movements, however they displayed limited swimming ability. By day 28, 50% of the planula 

321 larvae had settled, metamorphosed or deceased. The last free swimming planula larva was 

322 observed on day 39.

323 Under 15°C, metamorphosed and deformed larvae started appearing later in time (Fig. 4), 

324 however in the last 5 days a significantly higher proportion of metamorphosed larvae were 

325 observed compared to 13°C (Table 1). The pattern for deformed larvae between the two 

326 temperatures was also significantly different (Table 1), as they appeared earlier in time under 

327 13°C than at 15°C. Under 15°C, the number of deformed larvae increased only after day 32 but 

328 within the last two days it reached higher values compared to 13°C (Fig. 4).
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329 For settled larvae, metamorphosis followed a similar pattern to pelagic metamorphosis. Larvae 

330 firstly obtained a pear-like shape and subsequently became more round, gradually forming a 

331 polyp base, mouth and mesenteries (Fig. 6A). Fully developed primary polyps were formed 

332 within approximately 2-3 days, after the formation of tentacles, sclerites and tentacle pinnules 

333 (Fig. 6B).

334

335 Discussion

336 So far, studies on the biology and ecology of deep-sea octocorals have focused mainly on the 

337 adult stage (Watling et al., 2011), with very few studies tackling early life history stages (Cordes 

338 et al., 2001, Sun et al., 2010; 2011). To our knowledge, the present study is the first to provide a 

339 detailed insight to the larval biology of a deep-sea octocoral species including embryo 

340 development, larval survival and swimming behaviour, which are essential variables to 

341 understand dispersal and connectivity in the deep-sea (Gary et al., 2020).

342 In our study, it was not clear if spawning was actually induced, assisted or just coincided with 

343 sperm enrichment, due to the small time interval between sperm enrichment and the first 

344 spawning event. Repetitive spawning within a specific period is common for tropical broadcast 

345 spawning octocorals within the family Plexauridae such as Plexaura homomalla (Wells et al., 

346 2020) and Plexaura flexuosa (Pakes and Woolakott, 2008). Repetitive planulation has also been 

347 recorded for some brooding octocorals, including temperate (e.g. Corallium rubrum, Martínez 

348 Quintana, 2015 and Eunicella singularis, Weinberg and Weinberg, 1979) and deep-sea species 

349 (e.g. Gersemia fruticosa, Sun et al., 2011). It has been suggested that repetitive gamete release 

350 can increase the probability of embryo and larva development under optimal conditions (Kahng 
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351 et al., 2008). In species that display this behaviour, studying the effects of different 

352 environmental variables on embryo development is crucial, as embryos of different cohorts are 

353 likely to be released in different environmental conditions including temperature, salinity, pH 

354 and food availability.

355 Embryo and larval development of D. aff. meteor had many similar characteristics with shallow-

356 water, tropical octocorals. Unequal cleavage that ranges from radial to pseudospiral is common 

357 among cnidarians (Fritzenwanker et al., 2007), including tropical brooding (Benayahu and Loya, 

358 1983; Dahan and Benayahu, 1998) and broadcast spawning (Mandelberg-Aharon and Benayahu, 

359 2015) octocorals. Superficial cleavage is frequently encountered in embryos with high amounts 

360 of yolk reserves (Scriba, 2015). Similarly to other octocoral species (Mandelberg-Aharon and 

361 Benayahu, 2015; Wells et al., 2020), larvae of D. aff. meteor appeared to be lecithotrophic since 

362 no mouth or oral opening was observed before metamorphosis. Moreover, the temporal 

363 developmental profile of D. aff. meteor was comparable to that of broadcast spawning tropical 

364 species from the same family which reached the planula stage within 2-3 days and had relatively 

365 quick onset of competency (4-5 days), short longevity and low selectivity in settlement (Lasker 

366 and Kim, 1996; Coelho and Lasker, 2016; Wells et al., 2020). Overall, these findings suggest 

367 that some reproductive and larval characteristics might be conserved among taxonomically 

368 related groups, despite local adaptations due to depth and other habitat limitations.

369 For most deep-sea octocorals studied so far, planulae appeared to have low mobility, with 

370 negative buoyancy and crawling (e.g. Drifa glomerata, Sun et al., 2010; Duva florida, Sun et al., 

371 2011) or limited swimming capacity generated by body contractions (e.g. Drifa sp., Sun et al., 

372 2010). Larvae of D. aff. meteor were active swimmers, however they initiated swimming only 

373 after stimulation. Similar behaviour has been reported for the octocoral Corallium rubrum which 
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374 displayed increased motility after stimulation (Martínez-Quintana, 2015). Swimming speed was 

375 also similar to that of C. rubrum (0.45-0.55 mm s-1), however larvae in that study were 

376 maintained under higher temperature (19-20 °C). When compared to other deep-sea broadcast 

377 spawners, such as the scleractinian L. pertusa, D. aff. meteor had lower swimming capabilities, 

378 especially since L. pertusa displayed intense, negatively geotactic behaviour and higher 

379 swimming velocity (Larsson et al., 2014).

380 Larvae planktonic period can be divided in two phases, an obligatory phase that lasts until the 

381 onset of developmental competence (the ability to respond to settlement cues) and a facultative 

382 phase that depends on settlement behaviour in response to the existence of certain chemical and 

383 physical properties of benthic substrate (Elkin and Marshal, 2007). In this study it was not 

384 possible to determine the exact onset of competency since larvae did not display any specific 

385 geotactic or bottom probing behaviour. Instead, larvae displayed three types of behaviour: non-

386 selective settling, pelagic metamorphosis and continuation in the pelagic phase, as planula 

387 larvae. All larvae that settled presented non-selective settling behavior, settling on the flask walls 

388 and plastic slides after 14 days of larvae development, whereas no larvae attached to the 

389 provided basalt rock. This might have been a result of the absence of settlement cues or adequate 

390 settlement surface in the provided substrate. Non-selective settlement behavior in the absence of 

391 proper substrate has been observed before in coral larvae, including octocorals (Lasker and Kim, 

392 1996: Freire et al., 2019). This phenomenon has been tentatively explained by the desperate 

393 larvae hypothesis (Gibson, 1995; Marshal and Keough, 2003), which states that larvae should 

394 accept less preferred habitats as time progresses, because metamorphosis is energetically 

395 demanding and non-feeding larvae can only delay metamorphosis until reaching a specific 

396 reserve level (Elkin and Marshall, 2007). The hypothesis is particularly pertinent for non-feeding 
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397 lecithotrophic larvae, since the duration of the planktonic phase is likely determined by the 

398 availability of energetic reserves (Wendt, 2000). However, there is considerable interspecific 

399 variation in the ability of larva to delay competence, and this is not always correlated to larval 

400 size or maternal provision, suggesting the existence of additional factors, such as developmental 

401 and phylogenetic constrains (Bishop et al., 2006).

402  A high proportion of non-settled planulae initiated metamorphosis after 14 days of development, 

403 resulting in a high proportion of pelagic polyps after 36 days of larvae development. Pelagic 

404 metamorphosis of planulae into polyps has been reported for tropical (Zaslow and Benayahu, 

405 1996; Lasker and Kim, 1996) and temperate (Linares et al., 2008) octocorals, for the deep-sea 

406 octocoral Gersemia fruticosa (Sun et al., 2011) and for some scleractinian species (Vermeij 

407 2009; Mizrahi et al., 2014), suggesting that this behaviour is not uncommon among corals. In 

408 some scleractinians, pelagic polyps can display high survival and dispersal potential (Mizrahi et 

409 al., 2014), and in some cases pelagic polyps have been observed feeding (Zazlow and Benayahu, 

410 1996; Linares et al., 2008). In our study, pelagic polyps had high mortality but this could be due 

411 to the absence of sufficient or adequate food sources. Nevertheless, pelagic metamorphosis might 

412 be another response to potential shortage of energy reserves, as it provides a way to acquire 

413 feeding structures and allows the acquisition of energy while waiting for the right settlement cue. 

414 In the case of D. aff. meteor this behaviour, along with the non-selective settling, enhance the 

415 hypothesis that larvae had limited energy reserves and possibly reached their maximum larval 

416 duration during the experiment.

417 Collectively, the embryonic and larval characteristics of D. aff. meteor suggest a higher dispersal 

418 potential than most deep-sea octocorals studied so far. However, when compared to other deep-

419 sea species, the dispersal capacity of D. aff. meteor appears to be limited due to its short PLD, 
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420 short competency period, weak swimming (Table 2) and unselective settlement behaviour. For 

421 example, L. pertusa displayed onset of competency within 3-5 weeks from spawning, active 

422 upward swimming and survival without settlement for a year (Larsson et al., 2014). Similarly, 

423 other deep-sea species such as the bivalve Bathymodiolus childressi and the gastropod 

424 Bathynerita naticoidea display longer PLDs which indicate much higher dispersal potential than 

425 D. aff. meteor (Arellano and Young, 2009). The three deep-sea species, L. pertusa, B. childressi 

426 and B. naticoidea, have been shown to perform ontogenetic migrations to the surface (Arellano 

427 et al., 2014; Larsson et al., 2014) which does not seem likely for D. aff. meteor, based on the 

428 characteristics described herein. Nevertheless, the dispersal capacities of these species 

429 corroborate with their distributions, with L. pertusa and B. childressi displaying strong dispersal 

430 potential which is consistent with their wide distributions and D. aff. meteor displaying lower 

431 dispersal capacities, corroborating with its narrow regional distribution in the Mid-Atlantic 

432 Ridge.

433 Temperature is considered one of the main factors affecting larvae biology, with higher 

434 temperatures usually resulting in higher developmental rates (Hoegh-Guldberg and Pearse, 

435 1995). Our results were consistent with this premise, with larvae reaching the planula stage 24 

436 hours earlier under 15°C when compared to 13 °C. These results also corroborate with studies on 

437 other deep-sea species, such as L. pertusa (Stromberg and Larsson, 2017) and B. childressi 

438 (Arellano and Young, 2009) which displayed faster development with increased temperature. 

439 However, both studies tested larger temperature differences and concern species which perform 

440 long vertical migrations to the surface and therefore display high tolerance to different 

441 temperature and salinity (Arellano and Young, 2011; Stromberg and Larsson, 2017). The higher 

442 developmental rate observed under 15 °C is expected to be accompanied by earlier competency, 
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443 shorter pelagic duration and higher settlement rates (O’Connor et al., 2007; Heyward and Negri, 

444 2010) with further consequences for larval transport and dispersal (Metaxas and Saunders, 2009). 

445 However, under higher temperature, larvae of D. aff. meteor displayed lower settlement rate and 

446 higher proportion of deformed larvae. Faster developmental rates, accompanied by decreased 

447 settlement under increased temperature (+ 3°C) has been reported for the tropical octocoral 

448 Heliopora coerulea (Conaco et al., 2020), while abnormal metamorphosis and lower survival has 

449 been recorded in larvae of the temperate octocoral P. clavata that were transferred to higher 

450 temperature (+ 5°C) after reaching the planula stage (Kipson et al., 2012). It is possible that these 

451 results are related to temperature-induced changes in aspects that were not evaluated in our 

452 study, including developmental and physiological mechanisms. For example, it is possible that 

453 faster development under higher temperature was accompanied by faster metabolic rates 

454 (O’Connor et al., 2007) and resulted in faster consumption of reserves, leading to high mortality 

455 under the absence of proper settlement cues. Ontogeny depends on certain developmental 

456 processes and their timing and while developmental rate can be plastic, changes in timing are 

457 likely to have consequences on structure and function, ultimately affecting individual 

458 performance (Kováč, 2002). 

459 Since the two temperature regimes used in this study are likely to be experienced by embryos of 

460 the target species during spawning, our results highlight how small changes in temperature can 

461 affect an array of larval characteristics with substantial effects on larval behaviour, dispersal and 

462 ultimately, success. Similar results have been reported for tropical scleractinian species (e.g. 

463 Randall and Szmant, 2009; Heyward and Negri, 2010). In the deep-sea, refined embryo and 

464 larval responses under a narrow temperature range (2-3°C) have even allowed species to disperse 

465 in specific water masses and expand their range to greater depths, e.g. the Antarctic echinoderm 
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466 Sterechinus neumayeri (Tyler et al., 2000). Larvae dispersal and success are important features 

467 not only from an ecological but also from an evolutionary perspective, as they can define the 

468 selection of reproductive strategies, including reproductive timing. Reproductive timing can be 

469 the result of complex mechanisms that are difficult to unravel. In deep-sea corals it has been 

470 discussed in relation to adult physiology and its seasonal constraints, or to environmental cues 

471 that induce gametogenesis and spawning (e.g. Orejas et al., 2002; Waller et al., 2014). However, 

472 the adaptive significance of reproductive timing can also be defined by processes that affect 

473 larval survival and success (Olive, 1992). The connection between the optimal time of spawning 

474 and larval success has been addressed in other ectotherms such as fish (Asoh and Yoshikawa, 

475 2002), crustaceans (Morgan and Christy, 1995) and tropical scleractinian corals (Crowder et al. 

476 2014; Fan et al., 2017), however these aspects have not been addressed yet for deep-sea corals. 

477 Further studies on the effect of temperature on larval development, physiology and behaviour are 

478 therefore essential to obtain a holistic view of reproductive timing and the potential impacts of 

479 climate change on deep-sea corals.

480 Conclusions

481 In our study, we provided a detailed description of embryo and larval characteristics of the 

482 species D. aff. meteor. Our results suggest that D. aff. meteor larvae are lecithotrophic with 

483 development similar to other octocorals and low dispersal capacity compared to other deep-sea 

484 species. This corroborates with its limited geographical distribution. Temperature changes did 

485 not affect survival, however significant effects were detected on the rate of embryo development 

486 and swimming speed, which in the field can potentially alter larval dispersal and ultimately 

487 success. Deep-sea octocorals are receiving increasing attention as a growing number of studies 

488 focus on the habitat requirements and environmental conditions shaping deep-sea communities 
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489 (Radice et al., 2016; Barbosa et al., 2020; Morato et al., 2020). However, species distribution is a 

490 result of complex interactions between factors in various ecological levels, with early life history 

491 biology and dispersal playing a key role in the successful occupation of available suitable habitat 

492 (Schurr et al., 2007; Robinson et al., 2011). As biophysical dispersal modelling attempts are 

493 increasing in the deep-sea (Hilario et al., 2015; Ross et al., 2016), further research on embryo 

494 and larval biology are essential to obtain a better understanding of deep-sea ecosystems.

495
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Figure 1
Stages of embryo development of the octocoral species Dentomuricea aff. meteor

(a) fertilized oocyte, (b) 2-cell, (c) 4-cell , (d) 8-cell, (e) 16-cell, (f) 64-cell, (g) hollow blastula,
(g) gastrula, (i) planula.
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Figure 2
Early development of embryos of the octocoral species Dentomuricea aff. meteor reared
under 13°C and 15 °C.

Bars display the proportion of embryos in each developmental stage over a course of 96
hours after spawning.
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Figure 3(on next page)

Comparison of Kaplan-Meier estimates of larvae survival of the species Dentomuricea
aff. meteor under two temperature regimes.
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Figure 4
Larval stages of the octocoral species Dentomuricea aff. meteor.

The graph displays the proportion of larvae in different developmental stages (planula,
metamorphosed but not settled, settled, deformed) under two experimental rearing
temperatures.
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Figure 5
Pelagic metamorphosis of larvae of the octocoral species Dentomuricea aff. meteor.

A: pear shaped larva with formed mouth in the oral side (o) and closed aboral side (ab); B:
tentacle formation on the oral side; C: Fully formed tentacles, mesenteries and sclerites (sc);
D: deformed larva with abnormal mesentery and tentacle formation.
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Figure 6
Formation of primary polyps from planula larvae of the octocoral Dentomuricea aff.
meteor.

A: Recently settled primary polyp with a polyp base (b) and formation of eight mesenteries
(m); B: final primary polyp with sclerites (s), tentacles and tentacle pinnules (p). Scale bar:
500 μm
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Table 1(on next page)

Model selection results.

The results of Maximum Likelihood Ratio (MLR) tests, reveal significant effects of the
independent variables in question. Selected models are highlighted in grey.
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1 Table 1: Results of Maximum Likelihood Ratio (MLR) tests, revealing significant effects of the 

2 independent variables in question. Selected models are highlighted in grey.

Dependent 

variable

Model 

type

Model AIC Χ2 df p

Null -186.35

Stage -725.87 8.63 13 2.20 x 

10-16

Stage + 

Temperature

-724.69 0.004 12 0.37

Size LM

Stage x 

Temperature

-708.56 0.03 11 0.90

Null 184.68

Stage -132.57 21.66 13 2.20 x 

10-16

Stage + 

Temperature

-130.58 0.0004 12 0.91

Length/width 

ratio

LM

Stage x 

Temperature

-159.44 1.66 11 4.78 x 

10-7

Null 2770.58 31

Time 633.32 2137.27 30 2.20 x 

10-16

Time + 

Temperature

567.36 67.95 29 2.20 x 

10-16

Proportion of 

planula

Binomial 

GLM

Time x 

Temperature

558.94 10.42 28 0.0012

Null 1676.96 31

Time 482.96 1196.60 30 2.20 x 

10-16

Time + 

Temperature

484.12 0.19 29 0.65

Proportion of 

metamorphosed

Binomial 

GLM

Time x 

Temperature

475.91 10.22 28 0.001

Null 744.30 31

Time 484.34 261.90 30 2.20 x 

10-16

Time + 

Temperature

398.76 87.57 29 2.20 x 

10-16

Proportion of 

settled

Binomial 

GLM

Time x 

Temperature

387.71 13.05 28 0.0003

Null 466.04 31

Time 201.97 266 30 2.20 x 

10-16

Time + 

Temperature

203.65 0.32 29 0.56

Proportion of 

deformed

Binomial 

GLM

Time x 160.93 44.7 28 2.27 x 
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Temperature 10-11

Null -141.32

Time -170.05 1.24 1 1.95 x 

10-8

Time + Direction -168.18 0.005 1 0.71

Swimming 

speed (13°C)

LM

Time x Direction -166.18 0.00001 1 0.99

Null 77.12

Time 63.7 1.02 1 7.91 x 

10-5

Time + Direction 64.11 0.10 1 0.20

Swimming 

speed (15°C)

LM

Time x Direction 65.75 0.23 1 0.54

Null 42.04

Time -24.12 4.00 1 2.20 x 

10-16

Time + 

Temperature

-79.80 3.17 1 1.41 x 

10-14

Swimming 

speed

LM

Time x 

Temperature

-77.89 0.04 1 0.767

Null 80.31

Time 82.31 0 1 1

Time + Direction 84.15 5.35 1 0.70

Swimming 

direction 

(13°C)

LM

Time x Direction 82.90 95.15 1 0.11

Null 89.65

Time 91.65 0.00 1 1

Time + Direction 92.38 88.60 1 0.34

Swimming 

direction 

(15°C)

LM

Time x Direction 94.38 0.09 1 0.97

3

4
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Table 2(on next page)

Summary of embryo and larval characteristics of the deep-sea octocoral species
Dentomuricea aff. meteor reared under two temperature regimes.

Data include estimated (average ± mean) survival time, survival rate, Pelagic Larval Duration
(PLD) and swimming speed. The min and max values correspond to minimum and maximum
estimates observed in individual batches, whereas median takes into account all batches
pooled together. Swimming speed data were collected on day 4 and day 14.
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1 Table 2: Summary of embryo and larval characteristics of the deep-sea octocoral species 

2 Dentomuricea aff. meteor reared under two temperature regimes, including estimated (average 

3 ± mean) survival time, survival rate, Pelagic Larval Duration (PLD) and swimming speed. The 

4 min and max values correspond to minimum and maximum estimates observed in individual 

5 batches, whereas median takes into account all batches pooled together. Swimming speed was 

6 calculated on day 4 and day 14.

13 °C 15 °C

Survival time 

(days)

Survival rate 

after 30 days 

(%)

PLD

Median 

survival time 

(days)

Survival 

rate after 30 

days (%)

PLD

Min 5 17.1 ± 4.5 1 6 0 1

Max 28 34 ± 6.91 35 23 21 ± 3.47 35

Median 11 16.4 ± 2.07 24 16 11.5 ± 2.09 27

Swimming 

speedday4 

(mm s-1)

0.24 ± 0.16 0.36 ± 0.21

Swimming 

speedday14

(mm s-1)

0.4 ± 0.24 0.44 ± 0.23

7

8
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