Embryo and larval biology of the deep octocoral species *Dentomuricea* aff. *meteor* under different temperature regimes (#56492)

First submission

Guidance from your Editor

Please submit by 8 Jan 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 11 Figure file(s)
- 2 Table file(s)
- 2 Raw data file(s)

Ī

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Embryo and larval biology of the deep octocoral species Dentomuricea aff. meteor under different temperature regimes

Maria Rakka ^{Corresp., 1, 2}, Antonio Godinho ^{1, 2}, Covadonga Orejas ³, Marina Carreiro-Silva ^{1, 2}

Corresponding Author: Maria Rakka Email address: marianinha.rk@gmail.com

Deep-sea octocorals are common habitat-formers in deep-sea ecosystems, however our knowledge on their early life history stages is extremely limited. The objective of this study was to describe the embryo and larval biology of the deep-sea octocoral *Dentomuricea* aff. meteor, a common habitat-forming species in the Azores, under two temperature regimes, corresponding to the minimum and maximum temperatures in their natural environment during the spawning season. Under temperature of 13 ± 0.5 °C, embryos of the species reached the planula stage after 96h and displayed Pelagic Larval Duration (PLD) of 24 days. Planula larvae displayed swimming only after stimulation, larval swimming speed was 0.24 ± 0.16 mm s⁻¹ and seemed to increase slightly but significantly with time. Under a higher temperature (15°C ± 0.5°C) embryos reached the planula stage 24h earlier (after 72h), displayed PLD of 27 days and had significantly higher swimming speed (0.3 \pm 0.27 mm s⁻¹). Survival was not affected significantly by temperature, however our results highlight how small changes in temperature can affect larval characteristics with potential cascading effects in larval success and dispersal. In both temperatures, larvae displayed unselective settlement behaviour and metamorphosis occurred even without settlement. Such information is rarely available for deep-sea corals, although it is essential to achieve a better understanding of dispersal, connectivity and biogeographical patterns of benthic species.

¹ IMAR-Instituto do Mar, University of the Azores, Horta, Portugal

² Okeanos Research Unit-Faculty of Science and Technology, University of the Azores, Horta, Portugal

³ Group of Ecosystems Oceanography (GRECO), Instituto Español de Oceanografía, Centro oceanográfico de Baleares, Palma de Mallorca, Spain

1	
2	Embryo and larval biology of the deep octocoral species Dentomuricea aff. meteor under
3	different temperature regimes
4	Maria Rakka ^{1,2} , Antonio Godinho ^{1,2} , Covadonga Orejas ³ , Marina Carreiro-Silva ^{1,2}
5	
6	¹ IMAR – Instituto do Mar, University of the Azores, Rua Frederico Machado 4, 9901-862
7	Horta, Portugal
8	² OKEANOS Research Unit, Faculty of Science and Technology, University of the Azores,
9	9901-862, Horta, Portugal
10	³ Group of Ecosystems Oceanography (GRECO), Instituto Español de Oceanografía, Centro
l1	Oceanográfico de Baleares, Moll de Ponent s/n, 07015 Palma, Spain
12	
13 14 15 16	Corresponding Author: Maria Rakka ^{1,2} Rua Frederico Machado 4, 9901-862 Horta, Portugal Email address: marianinha.rk@gmail.com

Abstract

Deep-sea octocorals are common habitat-formers in deep-sea ecosystems, however our 19 20 knowledge on their early life history stages is extremely limited. The objective of this study was to describe the embryo and larval biology of the deep-sea octocoral *Dentomuricea* aff. *meteor*, a 21 22 common habitat-forming species in the Azores, under two temperature regimes, corresponding to 23 the minimum and maximum temperatures in their natural environment during the spawning 24 season. Under temperature of 13 ± 0.5 °C, embryos of the species reached the planula stage after 96h and displayed relagic Larval Duration (PLD) of 24 days. Planula larvae displayed 25 26 swimming only after stimulation, larval swimming speed was 0.24 ± 0.16 mm s⁻¹ and seemed to increase slightly but significantly with time. Under a higher temperature (15°C \pm 0.5°C) embryos 27 28 reached the planula stage 24h earlier (after 72h), displayed PLD of 27 days and had significantly higher swimming speed $(0.3 \pm 0.27 \text{ mm s}^{-1})$. Survival was not affected significantly by 29 temperature, however, our results highlight how small changes in temperature can affect larval 30 characteristics with potential cascading effects in larval success and dispersal. In both 31 temperatures, larvae displayed unselective settlement behaviour and metamorphosis occurred 32 33 even without settlement. Such information is rarely available for deep-sea corals, although it is essential to achieve a better understanding of dispersal, connectivity, and biogeographical 34 patterns of benthic species. 35

Introduction

36

Species persistence requires the successful completion of a life cycle against biotic and abiotic odds, starting with survival at early life history stages. These stages are key for sessile species, such as benthic marine invertebrates, which upon reaching the adult stage cannot escape

40	unfavorable conditions. For these organisms, early life events such as larval survival and
41	settlement determine the fate of the adult phase and are therefore extremely important (Marshal
42	and Morgan, 2011; Byrne, 2012). Moreover, larval stages consist the only pelagic phase that
43	ensures dispersal and connectivity among populations (Cowen and Sponaugle, 2009). In deep-
44	sea communities which are dominated by benthic marine invertebrates, knowledge on early life
45	stages is therefore key in understanding species distributions, biogeographical patterns,
46	population and metapopulation dynamics (Treml et al., 2015), consisting an essential tool for
47	management (Hilario et al., 2015).
48	Deep-sea octocorals are major habitat-formers in the deep-sea, usually occurring in complex
49	geological settings such as continental shelves and margins (Yesson et al., 2008, Taylor et al.,
50	2013), underwater canyons (Brooke et al., 2017), and seamounts (Tempera et al., 2012; Braga-
51	Henriques et al., 2013). Due to the habitat requirements of some octocoral species, including
52	hard substrates for settlement and strong currents which optimize food delivery, their distribution
53	can be quite fragmented (Bryan and Metaxas, 2006; Tong et al., 2012), as observed for other
54	deep-sea benthic species (Miller and Gulasekera, 2017). Anthropogenic disturbance and global
55	climate change are likely to ir ase habitat fragmentation even more, by altering habitat
56	characteristics (Sweetman et al., 2017; Levin et al., 2019) and causing a decrease in the available
57	suitable habitat of some species (Morato et al., 2020). Under these circumstances, obtaining a
58	solid understanding of larval biology and population connectivity is essential to understand
59	community dynamics and the potential of deep-sea octocoral populations to recover from
60	disturbance (Cowen et al., 2007).
61	So far, our knowledge on larval biology of deep-sea octocorals is limited to a few brooding
62	species (Cordes et al., 2001; Sun et al., 2010; 2011; Mercier and Hamel, 2011). In most of these

63	cases, larvae settled within 2-5 days after larvae release and shortly metamorphosed into primary
64	polyps, e.g. Anthomastus ritteri (Cordes et al., 2001), Gersemia fruticosa and Duva florida (Sun
65	et al., 2011). They also displayed short competency periods with limited swimming behaviour
66	(Sun et al., 2010). However, many deep-sea octocorals are broadcast-spawners and are therefore
67	expected to display different larval characteristics and dispersal capabilities (Harrison and
68	Wallace, 1990; Nishikawa et al., 2003). To our knowledge, so far no information exists on the
69	larval biology of broadcast spawning deep-sea octocorals.
70	Larvae from broadcast spawning species undergo early development in the water column, where
71	they are mostly transported as passive particles until they reach the planula stage. During
72	transportation, embryos can be exposed to variable environmental conditions which may affect
73	their development (Melzner et al., 2009). This phenomenon can be even more pronounced in
74	deep-sea species, in which embryos and larvae can often display upward swimming, crossing
75	water masses with very different physicochemical characteristics (Young et al., 1996, 2012;
76	Arellano et al., 2014; Strömberg and Larsson, 2017). One of the most important factors
77	influencing early development in marine organisms is temperature (Hoegh-Guldberg and Pearse,
78	1995; Przeslawski et al., 2015). Despite its importance and the increasing interest for the effect
79	of global warming on larvae of shallow scleractinian species (Randall et al., 2009; Figueiredo et
80	al. 2014), so far limited attention has been brought on temperature effects on the embryonic
81	development of deep-sea coral species, with some information existing only for the scleractinian
82	Lophelia pertusa (Stromberg and Larsson, 2017).
83	The aim of this study is to provide a detailed description of the larval biology of the deep-sea
84	broadcast spawning species <i>Dentomuricea</i> aff. met, a common habitat-forming deep-sea
85	octocoral in the Azores. To achieve our goal, we employed an experimental approach with

assisted fertilization and larvae rearing in aquaria. We also report on the embryonic development and larval characteristics of *D*. aff. *meteor* under two temperature regimes, representing the minimum and maximum temperatures experienced by the species in its natural habitat.

89

90

86

87

88

Materials and Methods

91 Target species and specimen collection

The Azores Archipelago, located above the Mid-Atlantic Ridge, is a biodiversity hotspot for 92 deep-sea octocorals (Sampaio et al., 2019). Coral gardens (OSPAR, 2010) formed by deep-sea 93 94 octocorals are among the most prominent deep-sea communities on regional seamounts and island slopes (Braga-Henriques et al., 2013). Dentomuricea aff. meters an octocoral species of 95 the family Plexauridae, so far only recorded on the seamounts of the North Mid-Atlantic Ridge. 96 97 It is common in regional seamounts between 200-600 meters (Braga-Henriques et al., 2013), where it forms dense populations, often in combination with other octooral species such as 98 99 Viminella flagellum and Callogorgia verticillate. The species is gonochoristic and presents gametes all year round, with seasonal peaks of gamete maturation and spawning usually 100 occurring in autumn (Rakka et al., unpubl. data). 101 A total of 11 colonies of the species *Dentomuricea* aff. *meteor* were collected from Condor 102 Seamount in September and October 2019, as by-catch from experimental long-line fisheries on 103 board RV Archipelago (ARQDACO monitoring programme). Colonies were divided in large 104 fragments (20-30 cm height) and were kept at the DeepSeaLab aquaria facilities (Orejas et al., 105 2019), in six 33L aquaria positioned in a thermo-regulated room at 14°C. Aquaria were supplied 106 107 continuously with seawater pumped from 5m depth, previously treated with UV light (P10

109

110

111

112

UVsystem & Vecton 600 TMCTM) and passed through 50 μm and 1 μm mesh filters. Circulation within the aquaria was maintained by pumps. Seawater temperature was kept between 13-14°C with the aid of chillers while colonies were fed twice per day with a mixture of frozen zooplankton and microplankton which was frequently enriched with live microalgae (*Chaetoceros calcitrans* and *Nannochloropsis gaditana*) and live rotifers.

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Larvae rearing

Larvae were obtained by maintaining reproductively active female and male colonies in the same aquaria to achieve natural spawning and fertilization. Coral fragments were allowed to acclimatize in the above aquaria conditions for approximately a month. Subsequently, colonies with mature gametes were identified by dissecting two branchlets (3-5 cm height) from each colony and observing their tissue under a dissecting microscope. Reproductively immature colonies and fragments in poor condition were excluded from further analysis. This procedure resulted in selection of six female and three male colonies. Coral fragments from the female colonies were distributed in two aquaria, referred to as spawning aquaria. Subsequently the fertile male colony with the higher number of available fragments was selected and four of its fragments were distributed in each of the two spawning aquaria. The remaining male colonies were not used to avoid polyspermy (Levitan et al., 2007). To increase the potential of spawning, we enriched the aquaria water with free mature sperm, obtained from the selected male colony. This was achieved by dissecting mature spermatocysts from coral tissue, which were subsequently concentrated in 50 ml flasks with filtered (0.2 µm) SW, homogenized by gently shaking and redistributed to the aquaria. Water inflow was stopped

and aquaria pumps were substituted with aeration to ensure water circulation without losing or 130 harming potentially spawned gametes. Upon gamete spawning, which happened in batches, all 131 132 gametes/fertilized eggs were collected from the water column and distributed in ten 750 mlculture flasks (20-100 fertilized eggs per flask) that were filled with filtered SW (mesh size: 0.2 133 μ m). 134 Temperature experiments 135 In order to chose appropriate temperature regimes for larval rearing, we utilized temperature data 136 collected during annual CTD surveys, under the framework of the projects CONDOR (EEA 137 Grants PT-0040) and SMaRT (SRECC- Azores Regional Government M.2.1.2/029/2011). Data 138 were collected between 2010 and 2012, above the coral garden where specimen collection took 139 place. Subsequently, we utilized the minimum and maximum recorded values (13.4°C and 140 15.12°C respectively) during the spawning season of the target species (October-November) to 141 142 define the target rearing temperatures (13 ± 0.5 °C and 15 ± 0.5 °C). Upon collection of fertilized eggs/embryos, culture flasks were distributed in two water baths, maintaining temperature within 143 0.5 °C of the target temperatures, with the aid of an aquaria chiller and a heater respectively. 144 Culture flasks were equipped with glass pipettes connected to an aquaria air pump, achieving 145 continuous light circulation, while water in the flasks was exchanged daily, 146 Embryonic and larval development 147 Embryos were monitored every 3-4 hours during the first 48 hours and subsequently once a day 148 149 until reaching the planula stage, to study their early development. In every monitoring event, all embryos were counted to estimate survival, while 10-15 embryos were randomly removed from 150 151 the flask, photographed with a digital camera (DIGICAM 5MEG LCMOS MAC) attached to a

microscope (10x) and returned to the flasks. Images were later processed to record the developmental stage and size of each embryo. Due to repetitive and frequent spawning within the aquaria and continuous collection of embryos, oocytes from different spawning events were frequently mixed and therefore the timing of embryonic development is approximate. Moreover, since it was not possible to define the moment of fertilization, embryo development is presented in respect to spawning time. To estimate size, we measured width and length (mm) of each larva using the open software Fiji/Image J (Schindelin et al., 2012). The data were subsequently used to estimate volume (mm³) assuming larvae had the shape of a prolate spheroid (Larsson et al., 2014). The ratio of length to width was used as a proxy of sphericity.

Swimming behaviour

Data on swimming speed and behaviour were collected by video recording and analysis. Videos were recorded with a Canon EOS 600D digital camera, equipped with a regular 22-55mm lens, on day 4 and day 15 after spawning, which corresponded to the first day larvae reached the mature planula stage and the first day larvae displayed competency to settle, respectively. To avoid larvae handling, swimming behaviour was recorded in the same culture flasks used for larvae rearing. Videos were captured in the dark, using lateral led lights for illumination (Stromberg and Larsson, 2017). Flasks were positioned in front of a black slide with a calibrated grid that was used as background and a 2-minute waiting period was implemented to ensure no water movement was interfering with larvae swimming. Subsequently, three videos (duration: 1 min) were recorded between intervals of three minutes.

Videos were converted to video frames and were analyzed by an automatic particle tracking method, using the open software Fiji/Image J (Schindelin et al., 2012) and the plugin TrackMate

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

(Tinevez et al., 2017) to record data on vertical swimming behaviour, namely swimming direction (up/down), displacement, and swimming speed. Estimates of swimming speed only considered tracks with displacement higher than 2 mm, to exclude data from larvae that did not move or moved minimally.

Settlement and metamorphosis

After reaching the planula stage, larvae were counted every 2-3 days until day 39 to estimate survival. Moreover, during counting, each larva was assigned to one of four stages: planula, settled, pelagically metamorphosed and deformed. Because counts were made simultaneously for all flasks and each flask contained a batch of different age, e.g. some batches were spawned with 1-3 day difference, when average counts were estimated these were sometimes heavily influenced by the available count for that day. To be able to estimate robust mean counts for each monitoring day, missing values were generated for each flask by using linear interpolation between existing data points. Lastly, on days 4 and 14 after spawning, five planulae were removed from each flask (total n=25 for each temperature regime) and photographed with a digital microscope camera to estimate their size. Pelagic Larval Duration (PLD) was inferred from the proportion of larvae abandoning the planula state, either by settling or deceasing, thus taking survival and larvae development into account. We report the time point at which 50% of the initial number of larvae left the pelagic stage as median PLD, as well as the minimum and maximum observed in individual batches. Metamorphosed larvae that did not settle were assumed to continue in a pelagic phase. Since larvae did not display clear bottom probing behaviour, the onset of competency was defined by the first settling larvae.

After larvae presented competency (day 14), substrate was provided to the culture flasks in order to monitor settlement behaviour. Three flasks from each temperature regime were randomly selected and three pieces (approximate diameter: 0.5 cm) of basalt rock attached to a plastic slide (1 cm x 8 cm) were offered as potential substrate in each flask. Settled larvae were observed and photographed every 2-3 days to assess and describe settlement and metamorphosis, during a period of approximately two weeks. After metamorphosis was observed, a mixture of live microalgae (*Nannochloropsis gaditana* and *Chaetoceros calcitrans*) and rotifers was provided weekly.

Statistical analysis

Survival analysis was performed using the Kaplan-Meier method, following Graham et al. (2008). Since monitoring was done in time intervals and the exact time of death for each larva was not known (interval-censored data), we assumed that time of death was the moment at which each larva was observed for the last time. However, for each batch, the remaining larvae at the last monitoring event were considered alive (censored data). As the Kaplan-Meier method does not allow for incorporation of replicate information into the analysis, we performed the analysis by pooling data from all batches together, for each rearing temperature. Subsequently the analysis was repeated separately for each batch, to provide information about the variability among batches (Graham et al., 2008). A log-rank test was performed to compare the survival curves between larvae reared under 13°C and 15°C. Survival analysis was performed by using the packages survival (Therneau and Grambsch, 2017) and survminer (Kassambara et al., 2019) in R 3.5.0 (R Core Team, 2018).

For the rest of the dependent variables, we firstly performed exploratory analysis (Zuur et al., 2010) to select the most appropriate modeling method. The effect of each independent variable was subsequently tested with linear models (LMs), by adding the independent variables progressively to the respective model and using maximum likelihood ratio (MLR) tests and the Akaike Information Criterion (AIC). Data collected from monitoring larvae stages (proportions) were modeled by means of Generalized Linear Models (GLMs) with a binomial distribution. Summarized results of the MLR test for each variable in question are provided in Table 1, while the results from each selected model are provided graphically as supplementary material (Fig. S1-S4). Statistical analysis was performed in R (R Core Team, 2019).

Results

Spawning

The first spawning event occurred on the 27th of November. Oocytes were encountered within 15 minutes from enrichment with free live sperm, in both aquaria. During spawning, oocytes and early-stage embryos floated in the water column, however, spawning was not coordinated among colonies, neither among polyps of the same colony. Despite careful observation, it was not possible to directly observe polyps releasing sperm or oocytes and determine whether one or more colonies participated in each spawning event. Similarly, it was not possible to directly observe if fertilization was internal or external. All collected oocytes were fertilized, therefore fertilization was either internal or external with very high fertilization rates. Oocytes were spherical, they had no visible germinal vesicle and were released in batches of 10-80 at a time. They were mostly negatively buoyant, however, they remained in suspension for several hours

Frequent spawning events, i.e. every 2-3 hours, continued for a week, while spawning continued 241 242 with lower frequency for approximately a month. Embryonic and larval development 243 Cell division was always equal but cleavage varied highly among stages and embryos. It was not 244 possible to determine the time of the first division after spawning. Cytokinesis was never visible 245 for the 2-cell stage, in which cleavage seemed to be always superficial (Fig. 1), During the 246 following stages, cleavage varied from radial to pseudospiral and in some cases superficial, 247 leading to embryos with substantial differences in shape. However, development always led to a 248 249 hollow blastula (Fig. 1) followed by gastrulation and the formation of planula larvae without visible oral track (Fig. 1). Cleavage and cell division did not differ between the two rearing 250 251 temperatures. 252 Under 13°C, all the embryos reached the blastula stage within 10h from spawning and the gastrula stage within 48h. After 72h all embryos reached the late gastrula stage and could 253 perform slow, mainly rotating movements by cilia, while fully competent, swimming planula 254 larvae were formed after 96h (4 days). During their development, embryos were negatively 255 buoyant and accumulated at the bottom of the flasks. In the first batch this resulted in the 256 formation of embryo aggregations and abnormal embryo development, however, this issue was 257 solved by adding slight aeration that ensured water and oxygen circulation within the flasks. 258 Under 15°C, during the first 10 hours cleavage seemed to be occurring at similar intervals until 259 260 reaching the blastula stage (Fig. 2), however embryos reached the gastrula and subsequently the planula stage approximately 24h (after 72h) earlier than embryos reared under 13°C (Fig. 2). 261

due to water movement within the aquaria. Average oocyte diameter was $365.4 \pm 24.2 \,\mu m$.

262	Embryos between the 2-cell and 32-cell stage obtained variable shapes (Fig. 1) and their volume
263	was on average 0.03 ± 0.0073 mm ³ . Subsequently, during the 64-cell stage and blastula-they
264	turned more spherical but had similar volume range $(0.03 \pm 0.005 \text{ mm}^3)$. After reaching the
265	planula stage, embryos increased significantly in size (Table 1) with planula larvae reaching 0.28
266	\pm 0.1 mm ³ on day 4 and 0.67 \pm 0.28 mm ³ on day 14. However on day 14 a substantial variability
267	in larvae volume was observed. Mature planula larvae displayed the capacity to change their
268	shape between spherical and elongated, and more elongated larvae were observed on day 14
269	compared to day 4 (Figure S1). This was also confirmed from the LW ratio which decreased
270	from late gastrula embryos (1.49 \pm 0.17 mm³) to planula larvae on day 4 (1.22 \pm 0.29 mm³) but
271	increased significantly (Table 1) on day $14 (2.02 \pm 0.45 \text{ mm}^3)$. Embryo sizes were not
272	statistically different between the two temperatures (Table 1). However, planula larvae on day 4
273	had significantly higher LW ratios under 15°C (LW=1.59 ±0.39; Table 1), showing a tendency to
274	maintain a more elongated shape than under 13°C.
275	Under 13°C, survival differed substantially among batches (Fig. S5). In most batches, a sharp
276	decline in survival rates was observed during the first 48 hours, followed by a decrease in
277	mortality until day 10 after which a more moderate mortality rate was established (Fig. 3).
278	Overall, median survival time, i.e. time when mortality reached 50%, was 11 days while final
279	survival rate after one month was 16.4%. Under 15 °C, the average mortality rate seemed to be
280	more constant (Fig. 3). Median survival time was 5 days higher than under 13°C (16 days, Table
281	2), however, final survival rate after 32 days was slightly lower (11.5%, Table 2). Overall, these
282	differences were not statistically significant according to the log-rank test (p=0.07; Fig. 3).

284

Swimming behaviour

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

Planula larvae remained mostly at the bottom of the culture flasks, where they displayed slight rotating and unidirectional movements, however, they rarely became waterborne without the aid of water movement. Once in the water column, larvae did not show a specific swimming pattern but followed random trajectories. Overall, for larvae reared under 13°C, 51.2 ± 14.2 % of the recorded larval tracks were directed upwards while 50.7 ± 6.33 % were directed downwards. It was not clear if downward movement involved swimming or just sinking. The proportion of upward/downward swimming larvae did not change significantly with time (Table 1). Larvae displayed an average swimming speed of 0.24 ± 0.16 mm s⁻¹ on day 4 and 0.36 ± 0.21 mm s⁻¹ on day 15. Swimming speed did not differ significantly between upward and downward movements (Table 1; Fig. 4), however it was significantly higher on day 15 compared to day 4 (Table 1; Fig. 4). Swimming velocity for larvae reared under 15 °C was similar between upward and downward swimming (Table 1) and increased slightly but significantly with time (Table 1), from 0.4 ± 0.24 mm s⁻¹ on day 4 to 0.44 ± 0.23 mm s⁻¹. Overall, 52.7% of the recorded tracks were directed downwards and the proportion of upward/downward swimming tracks did not differ significantly between dates (Table 1). Larvae swimming velocity was significantly higher under 15 °C compared to 13 °C, (Fig. 4) both on day 4 and day 15 (Table 1). Settlement and metamorphosis

In both rearing temperatures, most larvae settled on the flask walls and plastic slides whereas no larvae attached to the provided basalt rock. Planula larvae under 13° C started settling on day 14 and the proportion of settled larvae increased significantly with time, reaching 23.96 ± 24.1 % on day 36 (Fig. 4). There was high variance associated with the estimates of the average proportion

307	of settled larvae (Fig. 4), however, this was due to a single batch in which very few larvae settled
308	throughout the study period. Larvae under 15°C started settling later (Table 1) and overall, a
309	lower proportion of larvae settled throughout the study. Moreover, under 15°C a significantly
310	higher proportion (Table 1) remained in the planula stage for longer time (Fig. 4), leading to a
311	slightly higher PLD. However, in both temperatures, on day 36 only a minimal proportion of
312	planula larvae remained (Fig. 4).
313	After day 14, an increasing proportion of larvae initiated metamorphosis without settling (Fig. 4),
314	reaching 57.31 ± 6.75 % on day 36. This form of pelagic metamorphosis started with planula
315	larvae obtaining a pear shape (Fig. 5) and continued with formation of mouth, mesenteries,
316	tentacles, and finally sclerites (Fig. 5). Metamorphosis from planula larva to primary polyp took
317	approximately 2-3 days. None of the larvae that displayed pelagic metamorphosis settled during
318	the course of the study. This pelagic form of metamorphosis resulted in a high percentage of
319	deformed larvae (Fig. 5). Metamorphosed larvae were still able to get transported by water
320	movements, however, they displayed limited swimming ability. By day 28, 50% of the planula
321	larvae had settled, metamorphosed or deceased. The last free swimming planula larva was
322	observed on day 39.
323	Under 15°C, metamorphosed and deformed larvae started appearing later in time (Fig. 4),
324	however, in the last 5 days a significantly higher proportion of metamorphosed larvae were
325	observed compared to 13°C (Table 1). The pattern for deformed larvae between the two
326	temperatures was also significantly different (Table 1), as they appeared earlier in time under
327	13°C than at 15°C. Under 15°C, the number of deformed larvae increased only after day 32 but
328	within the last two days it reached higher values compared to 13°C (Fig. 4).

330

331

332

333

For settled larvae, metamorphosis followed a similar pattern to pelagic metamorphosis. Larvae firstly obtained a pear-like shape and subsequently became more round, gradually forming a polyp base, mouth and mesenteries (Fig. 6A). Fully developed primary polyps were formed within approximately 2-3 days, after the formation of tentacles, sclerites, and tentacle pinnules (Fig. 6B).

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

Discussion

So far, studies on the biology and ecology of deep-sea octocorals have focused mainly on the adult stage (Watling et al., 2011), with very few studies tackling early life history stages (Cordes et al., 2001, Sun et al., 2010; 2011). To our knowledge, the present study is the first to provide a detailed insight to the larval biology of a deep-sea octocoral species including embryo development, larval survival and swimming behaviour, which are essential variables to understand dispersal and connectivity in the deep-sea (Gary et al., 2020). In our study, it was not clear if spawning was actually induced, assisted or just coincided with sperm enrichment, due to the small time interval between sperm enrichment and the first spawning event. Repetitive spawning within a specific period is common for tropical broadcast spawning octoograls within the family Plexauridae such as *Plexaura homomalla* (Wells et al., 2020) and *Plexaura flexuosa* (Pakes and Woolakott, 2008). Repetitive planulation has also been recorded for some brooding octocorals, including temperate (e.g. Corallium rubrum, Martínez Quintana, 2015 and Eunicella singularis, Weinberg and Weinberg, 1979) and deep-sea species (e.g. Gersemia fruticosa, Sun et al., 2011). It has been suggested that repetitive gamete release can increase the probability of embryo and larva development under optimal conditions (Kahng

351	et al., 2008). In species that display this behaviour, studying the effects of different
352	environmental variables on embryo development is crucial, as embryos of different cohorts are
353	likely to be released in different environmental conditions including temperature, salinity, pH
354	and food availability,
355	Embryo and larval development of $D_{\mathbf{k}}$ aff. meteor had many similar characteristics with shallow-
356	water, tropical octocorals. Unequal cleavage that ranges from radial to pseudospiral is common
357	among cnidarians (Fritzenwanker et al., 2007), including tropical brooding (Benayahu and Loya,
358	1983; Dahan and Benayahu, 1998), and broadcast spawning (Mandelberg-Aharon and Benayahu,
359	2015) octocorals. Superficial cleavage is frequently encountered in embryos with high amounts
360	of yolk reserves (Scriba, 2015). Similarly to other octocoral species (Mandelberg-Aharon and
361	Benayahu, 2015; Wells et al., 2020), larvae of D. aff. meteor appeared to be lecithotrophic since
362	no mouth or oral opening was observed before metamorphosis. Moreover, the temporal
363	developmental profile of D. aff. meteor was comparable to that of broadcast spawning tropical
364	species from the same family which reached the planula stage within 2-3 days and had relatively
365	quick onset of competency (4-5 days), short longevity, and low selectivity in settlement (Lasker
366	and Kim, 1996; Coelho and Lasker, 2016; Wells et al., 2020). Overall, these findings suggest
367	that some reproductive and larval characteristics might be conserved among taxonomically
368	related groups, despite local adaptations due to depth and other habitat limitations.
369	For most deep-sea octocorals studied so far, planulae appeared to have low mobility, with
370	negative buoyancy and crawling (e.g. Drifa glomerata, Sun et al., 2010; Duva florida, Sun et al.,
371	2011) or limited swimming capacity generated by body contractions (e.g. Drifa sp., Sun et al.,
372	2010). Larvae of <i>D</i> . aff. <i>meteor</i> were active swimmers, however, they initiated swimming only
373	after stimulation. Similar behaviour has been reported for the octocoral Corallium rubrum which

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

displayed increased motility after stimulation (Martínez-Quintana, 2015). Swimming speed was also similar to that of C. rubrum (0.45-0.55 mm s⁻¹), however larvae in that study were maintained under higher temperature (19-20 °C). When compared to other deep-sea broadcast spawners, such as the scleractinian L, pertusa, D. aff. meteor had lower swimming capabilities, especially since L. pertusa displayed intense, negatively geotactic behaviour and higher swimming velocity (Larsson et al., 2014), Larvae planktonic period can be divided in two phases, an obligatory phase that lasts until the onset of developmental competence (the ability to respond to settlement cues) and a facultative phase that depends on settlement behaviour in response to the existence of certain chemical and physical properties of benthic substrate (Elkin and Marshal, 2007). In this study it was not possible to determine the exact onset of competency since larvae did not display any specific geotactic or bottom probing behaviour. Instead, larvae displayed three types of behaviour: nonselective settling, pelagic metamorphosis and continuation in the pelagic phase—as planula larvae. All larvae that settled presented non-selective settling behavior, settling on the flask walls and plastic slides after 14 days of larvae development, whereas no larvae attached to the provided basalt rock. This might have been a result of the absence of settlement cues or adequate settlement surface in the provided substrate. Non-selective settlement behavior in the absence of proper substrate has been observed before in coral larvae, including octocorals (Lasker and Kim, 1996: Freire et al., 2019). This phenomenon has been tentatively explained by the desperate larvae hypothesis (Gibson, 1995; Marshal and Keough, 2003), which states that larvae should accept less preferred habitats as time progresses, because metamorphosis is energetically demanding and non-feeding larvae can only delay metamorphosis until reaching a specific reserve level (Elkin and Marshall, 2007). The hypothesis is particularly pertinent for non-feeding

lecithotrophic larvae, since the duration of the planktonic phase is likely determined by the 397 availability of energetic reserves (Wendt, 2000). However, there is considerable interspecific 398 variation in the ability of larva to delay competence, and this is not always correlated to larval 399 size or maternal provision, suggesting the existence of additional factors, such as developmental 400 and phylogenetic constrains (Bishop et al., 2006). 401 402 A high proportion of non-settled planulae initiated metamorphosis after 14 days of development, resulting in a high proportion of pelagic polyps after 36 days of larvae development. Pelagic 403 metamorphosis of planulae into polyps has been reported for tropical (Zaslow and Benayahu, 404 1996; Lasker and Kim, 1996) and temperate (Linares et al., 2008) octocorals, for the deep-sea 405 octocoral Gersemia fruticosa (Sun et al., 2011), and for some scleractinian species (Vermeij 406 2009; Mizrahi et al., 2014), suggesting that this behaviour is not uncommon among corals. In 407 some scleractinians, pelagic polyps can display high survival and dispersal potential (Mizrahi et 408 409 al., 2014), and in some cases pelagic polyps have been observed feeding (Zazlow and Benayahu, 410 1996; Linares et al., 2008). In our study, pelagic polyps had high mortality but this could be due to the absence of sufficient or adequate food sources. Nevertheless, pelagic metamorphosis might 411 be another response to potential shortage of energy reserves, as it provides a way to acquire 412 413 feeding structures and allows the acquisition of energy while waiting for the right settlement cue. In the case of D. aff. meteor, this behaviour, along with the non-selective settling, enhance the 414 hypothesis that larvae had limited energy reserves and possibly reached their maximum larval 415 duration during the experiment. 416 417 Collectively, the embryonic and larval characteristics of D. aff. meteor suggest a higher dispersal 418 potential than most deep-sea octocorals studied so far. However, when compared to other deepsea species, the dispersal capacity of D. aff. meteor appears to be limited due to its short PLD, 419

420	short competency period, weak swimming (Table 2), and unselective settlement behaviour. For
421	example, L. pertusa displayed onset of competency within 3-5 weeks from spawning, active
422	upward swimming and survival without settlement for a year (Larsson et al., 2014). Similarly,
423	other deep-sea species such as the bivalve Bathymodiolus childressi and the gastropod
424	Bathynerita naticoidea display longer PLDs which indicate much higher dispersal potential than
425	D. aff. meteor (Arellano and Young, 2009). The three deep-sea species, L. pertusa, B. childressi
426	and B. naticoidea, have been shown to perform ontogenetic migrations to the surface (Arellano
427	et al., 2014; Larsson et al., 2014) which does not seem likely for D. aff. meteor, based on the
428	characteristics described herein. Nevertheless, the dispersal capacities of these species
429	corroborate with their distributions, with L. pertusa and B. childressi displaying strong dispersal
430	potential which is consistent with their wide distributions, and D. aff. meteor displaying lower
431	dispersal capacities, eorroborating with its narrow regional distribution in the Mid-Atlantic
432	Ridge.
433	Temperature is considered one of the main factors affecting larvae biology, with higher
434	temperatures usually resulting in higher developmental rates (Hoegh-Guldberg and Pearse,
435	1995). Our results were consistent with this premise, with larvae reaching the planula stage 24
436	hours earlier under 15°C when compared to 13 °C. These results also corroborate with studies on
437	other deep-sea species, such as L. pertusa (Stromberg and Larsson, 2017) and B. childressi
438	(Arellano and Young, 2009) which displayed faster development with increased temperature.
439	However, both studies tested larger temperature differences and concern species which perform
440	long vertical migrations to the surface and therefore display high tolerance to different
441	temperature and salinity (Arellano and Young, 2011; Stromberg and Larsson, 2017). The higher
442	developmental rate observed under 15 °C is expected to be accompanied by earlier competency,

443	shorter pelagic duration, and higher settlement rates (O'Connor et al., 2007; Heyward and Negri,
444	2010), with further consequences for larval transport and dispersal (Metaxas and Saunders, 2009).
445	However, under higher temperature, larvae of D. aff. meteor displayed lower settlement rate and
446	higher proportion of deformed larvae, Faster developmental rates, accompanied by decreased
447	settlement under increased temperature (+ 3°C) has been reported for the tropical octocoral
448	Heliopora coerulea (Conaco et al., 2020), while abnormal metamorphosis and lower survival has
449	been recorded in larvae of the temperate octocoral P. clavata that were transferred to higher
450	temperature (+ 5°C) after reaching the planula stage (Kipson et al., 2012). It is possible that these
451	results are related to temperature-induced changes in aspects that were not evaluated in our
452	study, including developmental and physiological mechanisms. For example, it is possible that
453	faster development under higher temperature was accompanied by faster metabolic rates
454	(O'Connor et al., 2007), and resulted in faster consumption of reserves, leading to high mortality
455	under the absence of proper settlement cues. Ontogeny depends on certain developmental
456	processes and their timing, and while developmental rate can be plastic, changes in timing are
457	likely to have consequences on structure and function, ultimately affecting individual
458	performance (Kováč, 2002)
459	Since the two temperature regimes used in this study are likely to be experienced by embryos of
460	the target species during spawning, our results highlight how small changes in temperature can
461	affect an array of larval characteristics with substantial effects on larval behaviour, dispersal and
462	ultimately, success. Similar results have been reported for tropical scleractinian species (e.g.
463	Randall and Szmant, 2009; Heyward and Negri, 2010). In the deep-sea, refined embryo and
464	larval responses under a narrow temperature range (2-3°C) have even allowed species to disperse
465	in specific water masses and expand their range to greater depths, e.g. the Antarctic echinoderm

Sterechinus neumayeri (Tyler et al., 2000). Larvae dispersal and success are important features not only from an ecological but also from an evolutionary perspective, as they can define the selection of reproductive strategies, including reproductive timing. Reproductive timing can be the result of complex mechanisms that are difficult to unravel. In deep-sea corals it has been discussed in relation to adult physiology and its seasonal constraints, or to environmental cues that induce gametogenesis and spawning (e.g. Orejas et al., 2002; Waller et al., 2014). However, the adaptive significance of reproductive timing can also be defined by processes that affect larval survival and success (Olive, 1992). The connection between the optimal time of spawning and larval success has been addressed in other ectotherms such as fish (Asoh and Yoshikawa, 2002), crustaceans (Morgan and Christy, 1995) and tropical scleractinian corals (Crowder et al. 2014; Fan et al., 2017), however, these aspects have not been addressed yet for deep-sea corals. Further studies on the effect of temperature on larval development, physiology, and behaviour are therefore essential to obtain a holistic view of reproductive timing and the potential impacts of climate change on deep-sea corals.

Conclusions

In our study, we provided a detailed description of embryo and larval characteristics of the species D. aff. meteor. Our results suggest that D. aff. meteor larvae are lecithotrophic with development similar to other octocorals and low dispersal capacity compared to other deep-sea species. This eorroborates with its limited geographical distribution. Temperature changes did not affect survival, however, significant effects were detected on the rate of embryo development and swimming speed, which in the field can potentially alter larval dispersal and ultimately success. Deep-sea octocorals are receiving increasing attention as a growing number of studies focus on the habitat requirements and environmental conditions shaping deep-sea communities

489	(Radice et al., 2016; Barbosa et al., 2020; Morato et al., 2020). However, species distribution is a
490	result of complex interactions between factors in various ecological levels, with early life history
491	biology and dispersal playing a key role in the successful occupation of available suitable habitat
492	(Schurr et al., 2007; Robinson et al., 2011). As biophysical dispersal modelling attempts are
493	increasing in the deep-sea (Hilario et al., 2015; Ross et al., 2016), further research on embryo
494	and larval biology are essential to obtain a better understanding of deep-sea ecosystems.
495	
496	Acknowledgements
497	We are very grateful to Cristina Gutiérrez-Zárate and the scientists and crew of R/V Arquipelago
498	for specimen and data collection, as well as to Gonçalo Graça and Robert Priester for compiling
499	the database of the environmental data used in this study.
	·
500	References
	References Arellano SM, Van Gaest AL, Johnson SB, Vrijenhoek RC, Young CM. 2014. Larvae from deepsea methane seeps disperse in surface waters. <i>Proceedings of the Royal Society B: Biological Sciences</i> 281:20133276. DOI: 10.1098/rspb.2013.3276.
500 501 502	Arellano SM, Van Gaest AL, Johnson SB, Vrijenhoek RC, Young CM. 2014. Larvae from deepsea methane seeps disperse in surface waters. <i>Proceedings of the Royal Society B:</i>
500 501 502 503 504 505	 Arellano SM, Van Gaest AL, Johnson SB, Vrijenhoek RC, Young CM. 2014. Larvae from deepsea methane seeps disperse in surface waters. <i>Proceedings of the Royal Society B: Biological Sciences</i> 281:20133276. DOI: 10.1098/rspb.2013.3276. Arellano SM, Young CM. 2011. Temperature and salinity tolerances of embryos and larvae of the deep-sea mytilid mussel <i>Bathymodiolus childressi</i>. <i>Marine Biology</i> 158:2481–2493.
500 501 502 503 504 505 506	 Arellano SM, Van Gaest AL, Johnson SB, Vrijenhoek RC, Young CM. 2014. Larvae from deepsea methane seeps disperse in surface waters. <i>Proceedings of the Royal Society B: Biological Sciences</i> 281:20133276. DOI: 10.1098/rspb.2013.3276. Arellano SM, Young CM. 2011. Temperature and salinity tolerances of embryos and larvae of the deep-sea mytilid mussel <i>Bathymodiolus childressi</i>. <i>Marine Biology</i> 158:2481–2493. DOI: 10.1007/s00227-011-1749-9. Arellano SM, Young CM. 2009. Spawning, development, and the duration of larval life in a deep-sea cold-seep mussel. <i>The Biological Bulletin</i> 216:149–162. DOI:

515 516	Research Part I: Oceanographic Research Papers 155:103147. DOI: 10.1016/J.DSR.2019.103147.
517 518 519	Benayahu Y, Loya Y. 1983. Surface brooding in the Red Sea soft coral <i>Parerythropodium</i> fulvum fulvum (Forkal, 1775). <i>The Biological bulletin</i> 165:353–369. DOI: 10.2307/1541201.
520 521 522 523	Bishop CD, Huggett MJ, Heyland A, Hodin J, Brandhorst BP. 2006. Interspecific variation in metamorphic competence in marine invertebrates: The significance for comparative investigations into the timing of metamorphosis. In: <i>Integrative and Comparative Biology</i> . Oxford Academic, 662–682. DOI: 10.1093/icb/icl043.
524 525 526	Braga-Henriques A, Porteiro FM, Ribeiro P a., De Matos V, Sampaio Í, Ocaña O, Santos RS. 2013. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic). <i>Biogeosciences</i> 10:4009–4036. DOI: 10.5194/bg-10-4009-2013.
527 528 529 530	Brooke SD, Watts MW, Heil AD, Rhode M, Mienis F, Duineveld GCA, Davies AJ, Ross SW. 2017. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA. <i>Deep Sea Research Part II: Topical Studies in Oceanography</i> 137:131–147. DOI: 10.1016/J.DSR2.2016.05.008.
531 532 533	Bryan TL, Metaxas A. 2006. Distribution of deep-water corals along the North American continental margins: Relationships with environmental factors. <i>Deep Sea Research Part I: Oceanographic Research Papers</i> 53:1865–1879. DOI: 10.1016/J.DSR.2006.09.006.
534 535 536	Byrne M. 2012. Global change ecotoxicology: identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. <i>Marine environmental research</i> 76: 3-15.
537 538 539	Conaco C, Cabaitan PC. 2020. Influence of salinity and temperature on the survival and settlement of <i>Heliopora coerulea</i> larvae. <i>Marine Pollution Bulletin</i> 150:110703. DOI: 10.1016/j.marpolbul.2019.110703.
540 541 542	Cordes EE, Nybakken JW, VanDykhuizen G. 2001. Reproduction and growth of <i>Anthomastus ritteri</i> (Octocorallia: Alcyonacea) from Monterey Bay, California, USA. <i>Marine Biology</i> 138:491–501. DOI: 10.1007/s002270000470.
543 544	Cowen RK, Gawarkiewicz G, Pineda J, Thorrold SR, Werner FE. 2007. Population connectivity in marine systems: An overview. <i>Oceanography</i> 20:14–21. DOI: 10.2307/24860093.
545 546	Cowen RK, Sponaugle S. 2009. Larval dispersal and marine population connectivity. <i>Annual review of marine science</i> 1:443–66. DOI: 10.1146/annurev.marine.010908.163757.
547 548	Crowder C, Liang W, Weis V, Fan T. 2014. Elevated temperature alters the lunar timing of planulation in the brooding coral <i>Pocillopora damicornis</i> . <i>PLoS ONE</i> 9:e107906.

549 550 551	Coelho M, Lasker H. 2016. Larval behavior and settlement dynamics of a ubiquitous Caribbean octocoral and its implications for dispersal. <i>Marine Ecology Progress Series</i> 561:109–121. DOI: 10.3354/meps11941.
552 553	Dahan M, Benayahu Y. 1997. Clonal propagation by the azooxanthellate octocoral <i>Dendronepththya hemprichi. Coral Reefs</i> 16:5–12. DOI: 10.1007/s003380050053.
554 555 556	Elkin C, Marshall D. 2007. Desperate larvae: influence of deferred costs and habitat requirements on habitat selection. <i>Marine Ecology Progress Series</i> 335:143–153. DOI: 10.3354/meps335143.
557 558 559	Fan T, Hsieh Y, Lin K, Kuo F, Soong K, McRae C, Edmunds P, Fang L. 2017. Plasticity in lunar timing of larval release of two brooding pocilloporid corals in an internal tide-induced upwelling reef. <i>Marine Ecology Progress Series</i> 569:117–127. DOI: 10.3354/meps12071.
560 561 562	Figueiredo J, Baird AH, Harii S, Connolly SR. 2014. Increased local retention of reef coral larvae as a result of ocean warming. <i>Nature Climate Change</i> 4:498–502. DOI: 10.1038/nclimate2210.
563 564 565	Freire I, Gutner-Hoch E, Muras A, Benayahu Y, Otero A. 2019. The effect of bacteria on planula-larvae settlement and metamorphosis in the octocoral <i>Rhytisma fulvum fulvum</i> . <i>PLOS ONE</i> 14:e0223214. DOI: 10.1371/journal.pone.0223214.
566 567 568	Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U. 2007. Early development and axis specification in the sea anemone <i>Nematostella vectensis</i> . <i>Developmental Biology</i> 310:264–279. DOI: 10.1016/J.YDBIO.2007.07.029.
569 570	Gary S, Fox A, Biastoch A, Roberts JM. 2020. Larval behaviour, dispersal and population connectivity in the deep sea. <i>Scientific Reports</i> 10:1–12.
571 572 573 574	Gibson G. 1995. Why be choosy? Temporal changes in larval sensitivity to several naturally-occurring metamorphic inducers in the opisthobranch <i>Haminaea callidegenita</i> . <i>Journal of Experimental Marine Biology and Ecology</i> 194:9–24. DOI: 10.1016/0022-0981(95)00075-5.
575 576	Graham EM, Baird AH, Connolly SR. 2008. Survival dynamics of scleractinian coral larvae and implications for dispersal. <i>Coral Reefs</i> 27:529–539. DOI: 10.1007/s00338-008-0361-z.
577 578 579	Harrison PL, Wallace C. 1990. Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinksy Z ed. <i>Ecosystems of the World, 25. Coral Reefs</i> . Amsterdam: Elsevier Science 133–207.
580 581 582	Heyward AJ, Negri AP. 2010. Plasticity of larval pre-competency in response to temperature: Observations on multiple broadcast spawning coral species. <i>Coral Reefs</i> 29:631–636. DOI: 10.1007/s00338-009-0578-5.

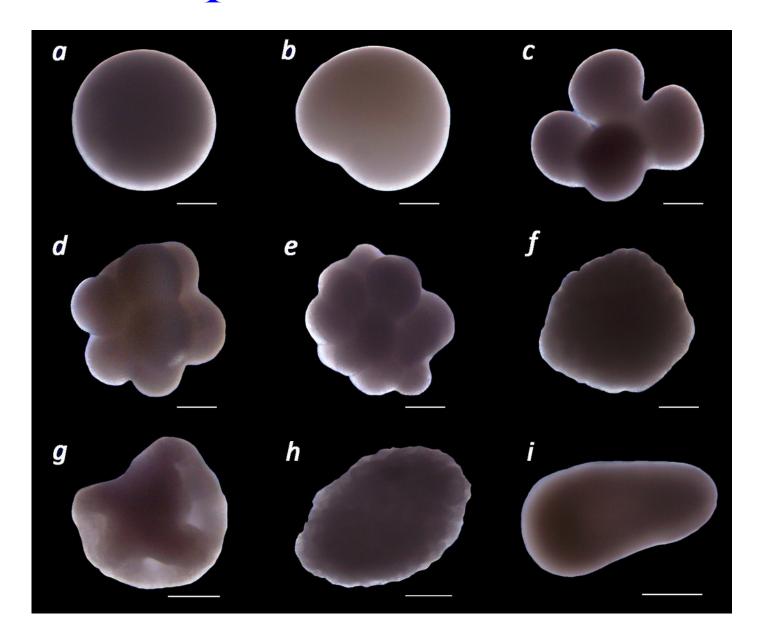
583 584 585 586	Hilário A, Metaxas A, Gaudron SM, Howell KL, Mercier A, Mestre NC, Ross RE, Thurnherr AM, Young C. 2015. Estimating dispersal distance in the deep sea: Challenges and applications to marine reserves. <i>Frontiers in Marine Science</i> 2:6. DOI: 10.3389/fmars.2015.00006.
587 588	Hoegh-Guldberg O, Pearse JS. 1995. Temperature, Food Availability, and the Development of Marine Invertebrate Larvae. <i>American Zoologist</i> 35:415–425. DOI: 10.1093/icb/35.4.415.
589 590	Kassambara A, Kosinski M, Biecek P. 2019. survminer: Drawing Survival Curves using 'ggplot2'. R package version 0.4.6. https://CRAN.R-project.org/package=survminer
591 592	Kahng SE, Benayahu Y, Wagner D, Rothe N. 2008. Sexual reproduction in the invasive octocoral <i>Carijoa riisei in</i> Hawaii. Bulletin of Marine Science 82(1):1-7.
593 594 595 596	Kipson S, Linares C, Čižmek H, Cebrián E, Ballesteros E, Bakran-Petricioli T, Garrabou J. 2015. Population structure and conservation status of the red gorgonian <i>Paramuricea clavata</i> (Risso, 1826) in the Eastern Adriatic Sea. <i>Marine Ecology</i> 36:982–993. DOI: 10.1111/maec.12195.
597 598	Kováč V. 2002. Synchrony and heterochrony in ontogeny (of fish). <i>Journal of Theoretical Biology</i> 217:499–507. DOI: 10.1006/jtbi.2002.3043.
599 600	Larsson AI, Järnegren J, Strömberg SM, Dahl M, Lundälv T, Brooke S. 2014. Embryogenesis and larval biology of the cold-water coral <i>Lophelia pertusa</i> . <i>PLoS ONE</i> 9.7:e102222.
601 602 603	Lasker HR, Kim K. 1996. Larval development and settlement behavior of the gorgonian coral <i>Plexaura kuna</i> (Lasker, Kim and Coffroth). <i>Journal of Experimental Marine Biology and Ecology</i> 207:161–175. DOI: 10.1016/S0022-0981(96)02625-1.
604 605 606 607 608 609 610	Levin LA, Bett BJ, Gates AR, Heimbach P, Howe BM, Janssen F, McCurdy A, Ruhl HA, Snelgrove P, Stocks KI, Bailey D, Baumann-Pickering S, Beaverson C, Benfield MC, Booth DJ, Carreiro-Silva M, Colaço A, Eblé MC, Fowler AM, Gjerde KM, Jones DOB, Katsumata K, Kelley D, Le Bris N, Leonardi AP, Lejzerowicz F, Macreadie PI, McLean D, Meitz F, Morato T, Netburn A, Pawlowski J, Smith CR, Sun S, Uchida H, Vardaro MF, Venkatesan R, Weller RA. 2019. Global Observing Needs in the Deep Ocean. <i>Frontiers in Marine Science</i> 6:241. DOI: 10.3389/fmars.2019.00241.
611 612 613	Levitan DR, Terhorst CP, Fogarty ND. 2007. The risk of polyspermy in three congeneric sea urchins and its implications for gametic incompatibility and reproductive isolation. <i>Evolution</i> 61:2007–2014. DOI: 10.1111/j.1558-5646.2007.00150.x.
614 615 616	Linares C, Coma R, Mariani S, Díaz D, Hereu B, Zabala M. 2008. Early life history of the Mediterranean gorgonian <i>Paramuricea clavata</i> : implications for population dynamics. <i>Invertebrate Biology</i> 127:1–11. DOI: 10.1111/j.1744-7410.2007.00109.x.

617 618 619 620	Mandelberg-Aharon Y, Benayahu Y. 2015. Reproductive features of the Red Sea octocoral <i>Sarcophyton auritum</i> (Verseveldt & Benayahu, 1978) are uniform within generic boundaries across wide biogeographical regions. <i>Hydrobiologia</i> 759:119–132. DOI: 10.1007/s10750-015-2225-1.
621 622 623	Marshall D, Keough M. 2003. Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. <i>Marine Ecology Progress Series</i> 255:145–153. DOI: 10.3354/meps255145.
624 625	Marshall DJ, Morgan SG. 2011. Ecological and evolutionary consequences of linked life-history stages in the sea. <i>Current Biology</i> 21:718–725. DOI: 10.1016/j.cub.2011.08.022.
626 627 628	Martínez-Quintana A, Bramanti L, Viladrich N, Rossi S, Guizien K. 2014. Quantification of larval traits driving connectivity: the case of <i>Corallium rubrum</i> (L. 1758). <i>Marine Biology</i> 162:309–318. DOI: 10.1007/s00227-014-2599-z.
629 630 631 632	Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner H-O. 2009. Physiological basis for high CO ₂ tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? <i>Biogeosciences</i> 6:2313–2331. DOI 10.5194/bg-6-2313-2009.
633 634 635	Mercier A, Hamel J-F. 2011. Contrasting reproductive strategies in three deep-sea octocorals from eastern Canada: <i>Primnoa resedaeformis</i> , <i>Keratoisis ornata</i> and <i>Anthomastus grandiflorus</i> . <i>Coral Reefs</i> 30:337–350. DOI: 10.1007/s00338-011-0724-8.
636 637 638	Metaxas A, Saunders M. 2009. Quantifying the "Bio-" components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. <i>Biological Bulletin</i> 216:257–272. DOI: 10.2307/25548159.
639 640 641	Miller KJ, Gunasekera RM. 2017. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. <i>Scientific Reports</i> 7:46103. DOI: 10.1038/srep46103.
642 643 644	Mizrahi D, Navarrete SA, Flores AA V. 2014. Groups travel further: pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. <i>Coral Reefs</i> 33:443–448. DOI: 10.1007/s00338-014-1135-4.
645 646 647 648	Morato T, González-Irusta J, Dominguez-Carrió C, Wei C, Davies A, Sweetman AK, Taranto GH, Beazley L, García-Alegre A, Grehan A, Laffargue P, Murillo FJ, Sacau M, Vaz S, Kenchington E, Arnaud-Haond S, Callery O, Chimienti G, Cordes E, Egilsdottir H, Freiwald A, Gasbarro R, Gutiérrez-Zárate C, Gianni M, Gilkinson K, Wareham Hayes VE,
649 650 651 652	Hebbeln D, Hedges K, Henry L, Johnson D, Koen-Alonso M, Lirette C, Mastrototaro F, Menot L, Molodtsova T, Durán Muñoz P, Orejas C, Pennino MG, Puerta P, Ragnarsson SÁ Ramiro-Sánchez B, Rice J, Rivera J, Roberts JM, Ross SW, Rueda JL, Sampaio Í, Snelgrove P, Stirling D, Treble MA, Urra J, Vad J, Oevelen D, Watling L, Walkusz W,
653	Wienberg C. Woillez M. Levin L.A. Carreiro-Silva M. 2020. Climate-induced changes in

the suitable habitat of cold-water corals and commercially important deep-sea fishes in the 654 North Atlantic. Global Change Biology 26:2181–2202. DOI: 10.1111/gcb.14996. 655 Morgan SG, Christy JH. 1995. Adaptive significance of the timing of larval release by crabs. The 656 American Naturalist 145:457–479. DOI: 10.1086/285749. 657 Nishikawa A, Katoh M, Sakai K. 2003. Larval settlement rates and gene flow of broadcast-658 spawning (Acropora tenuis) and planula-brooding (Stylophora pistillata) corals. Marine 659 Ecology Progress Series 256:87–97. DOI: 10.3354/meps256087. 660 O'Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM. 2007. 661 Temperature control of larval dispersal and the implications for marine ecology, evolution, 662 and conservation. Proceedings of the National Academy of Sciences of the United States of 663 America 104:1266–1271. DOI: 10.1073/pnas.0603422104. 664 Orejas C, Gili JM, Teixidó N, Gutt J, Arntz WE, Meeresforschung AP-. 2002. Distribution and 665 reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticum in the Weddell 666 Sea. Marine Ecology Progress Series 231:101–114. 667 Orejas C, Taviani M, Ambroso S, Andreou V, Bilan M, Bo M, Brooke S, Buhl-Mortensen P, 668 669 Cordes E, Dominguez-Carrió C, Ferrier-Pagès C, Godinho A, Gori A, Grinyó J, Gutiérrez-Zárate C, Hennige S, Jiménez C, Larsson AI, Lartaud F, Lunden J, Maier C, Maier SR, 670 Movilla J, Murray F, Peru E, Purser A, Rakka M, Reynaud S, Roberts JM, Siles P, 671 Strömberg SM, Thomsen L, van Oevelen D, Veiga A, Carreiro-Silva M. 2019. Cold-water 672 coral in aquaria: Advances and challenges. A Focus on the Mediterranean. In: Springer, 673 Cham, 435–471. DOI: 10.1007/978-3-319-91608-8 38. 674 Pakes MJ, Woollacott RM. 2008. Reproduction of the gorgonian *Plexaura flexuosa* in Bermuda. 675 Journal of Experimental Marine Biology and Ecology 357:121–127. DOI: 676 10.1016/j.jembe.2008.01.003. 677 Przeslawski R, Byrne M, Mellin C. 2015. A review and meta-analysis of the effects of multiple 678 abiotic stressors on marine embryos and larvae. Global Change Biology 21:2122–2140. 679 680 DOI: 10.1111/gcb.12833. Radice VZ, Quattrini AM, Wareham VE, Edinger EN, Cordes EE. 2016. Vertical water mass 681 structure in the North Atlantic influences the bathymetric distribution of species in the deep-682 sea coral genus Paramuricea. Deep Sea Research Part I: Oceanographic Research Papers 683 116:253-263. DOI: 10.1016/J.DSR.2016.08.014. 684 Randall CJ, Szmant AM. 2009. Elevated temperature reduces survivorship and settlement of the 685 larvae of the Caribbean scleractinian coral, Favia fragum (Esper). Coral Reefs 28:537–545. 686 DOI: 10.1007/s00338-009-0482-z. 687 Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE, Possingham HP, Richardson AJ. 688 2011. Pushing the limits in marine species distribution modelling: lessons from the land 689

present challenges and opportunities. Global Ecology and Biogeography 20:789–802. DOI: 690 10.1111/j.1466-8238.2010.00636.x. 691 Ross RE, Nimmo-Smith WAM, Howell KL. 2016. Increasing the depth of current 692 understanding: Sensitivity testing of deep-sea larval dispersal models for ecologists. *PloS* 693 one 11:e0161220. DOI: 10.1371/journal.pone.0161220. 694 695 Sampaio Í, Freiwald A, Porteiro F, Menezes G, Carreiro-Silva M. 2019. Census of Octocorallia (Cnidaria: Anthozoa) of the Azores (NE Atlantic) with a nomenclature update. Zootaxa 696 4550:451. DOI: 10.11646/zootaxa.4550.4.1. 697 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, 698 Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, 699 700 Tomancak P, Cardona A. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9:676–682. DOI: 10.1038/nmeth.2019. 701 Schurr FM, Midgley GF, Rebelo AG, Reeves G, Poschlod P, Higgins SI. 2007. Colonization and 702 persistence ability explain the extent to which plant species fill their potential range. Global 703 *Ecology and Biogeography* 16:449–459. DOI: 10.1111/j.1466-8238.2006.00293.x. 704 705 Scriba M. 2015. Atlas of comparative invertebrate embryology. The Archicoelomata theory. Volume 1. Porifera, Cnidaria, Ctenophora. 706 707 Sun Z, Hamel J, Mercier A. 2010. Planulation periodicity, settlement preferences and growth of two deep-sea octocorals from the northwest Atlantic. Marine Ecology Progress Series 708 410:71–87. DOI: 10.3354/meps08637. 709 Sun Z, Hamel J-F, Mercier A. 2011. Planulation, larval biology, and early growth of the deep-sea 710 soft corals Gersemia fruticosa and Duva florida (Octocorallia: Alcyonacea). Invertebrate 711 Biology 130:91–99. DOI: 10.1111/j.1744-7410.2011.00229.x. 712 Taylor ML, Yesson C, Agnew DJ, Mitchell RE, Rogers AD. 2013. Using fisheries by-catch data 713 to predict octocoral habitat suitability around South Georgia. Journal of Biogeography 714 715 40:1688–1701. DOI: 10.1111/jbi.12122. Tempera F, Giacomello E, Mitchell NC, Campos AS, Braga Henriques A, Bashmachnikov I, 716 Martins A, Mendonça A, Morato T, Colaço A, Porteiro FM, Catarino D, Gonçalves J, Pinho 717 MR, Isidro EJ, Santos RS, Menezes G. 2012. Mapping Condor Seamount Seafloor 718 Environment and Associated Biological Assemblages (Azores, NE Atlantic). Seafloor 719 Geomorphology as Benthic Habitat:807–818. DOI: 10.1016/B978-0-12-385140-6.00059-1. 720 Therneau TM, Grambsch PM. Modeling survival data: extending the Cox model. 721 722 Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW. 2017. TrackMate: An open and extensible platform for single-723 particle tracking. *Methods* 115:80–90. DOI: 10.1016/j.ymeth.2016.09.016. 724

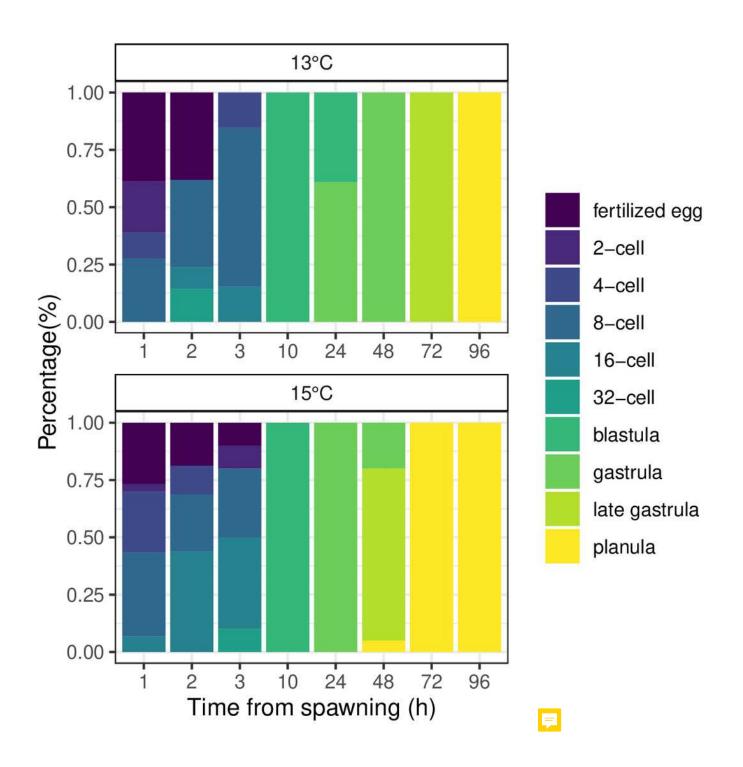
- 725 Tong R, Purser A, Unnithan V, Guinan J. 2012. Multivariate statistical analysis of distribution of
- deep-water gorgonian corals in relation to seabed topography on the Norwegian margin.
- 727 *PLoS ONE* 7:e43534. DOI: 10.1371/journal.pone.0043534.
- 728 Treml EA, Ford JR, Black KP, Swearer SE. 2015. Identifying the key biophysical drivers,
- connectivity outcomes, and metapopulation consequences of larval dispersal in the sea.
- 730 *Movement Ecology* 3:1–16. DOI: 10.1186/s40462-015-0045-6.
- 731 Tyler P, Young C, Clarke A. 2000. Temperature and pressure tolerances of embryos and larvae
- of the Antarctic sea urchin *Sterechinus neumayeri* (Echinodermata: Echinoidea):potential for
- deep-sea invasion from high latitudes. *Marine Ecology Progress Series* 192:173–180. DOI:
- 734 10.3354/meps192173.
- 735 Vermeij MJA. 2009. Floating corallites: A new ecophenotype in scleractinian corals. *Coral Reefs*
- 736 28:987–987. DOI: 10.1007/s00338-009-0535-3.
- Watling L, France SC, Pante E, Simpson A. 2011. *Biology of Deep-Water Octocorals*. DOI:
- 738 10.1016/B978-0-12-385529-9.00002-0.
- Waller RG, Stone RP, Johnstone J, Mondragon J. 2014. Sexual reproduction and seasonality of
- the Alaskan red tree coral, *Primnoa pacifica*. *PLoS ONE* 9. DOI:
- 741 10.1371/journal.pone.0090893.
- 742 Weinberg S, Weinberg F. 1979. The life cycle of a gorgonian: *Eunicella singularis* (Esper,
- 743 1794). *Bijdragen tot de Dierkunde* 48:127–140.
- 744 Wells C, Tonra K, Lasker HR. 2020. Embryogenesis, polyembryony and settlement in the
- 745 gorgonian *Plexaura homomalla*. bioRxiv.
- Wendt DE. 2000. Energetics of larval swimming and metamorphosis in four species of Bugula
- 747 (Bryozoa). *Biological Bulletin* 198:346–356. DOI: 10.2307/1542690.
- Yesson C, Taylor ML, Tittensor DP, Davies AJ, Guinotte J, Baco A, Black J, Hall-Spencer JM,
- Rogers AD. 2012. Global habitat suitability of cold-water octocorals. *Journal of*
- 750 *Biogeography* 39:1278–1292. DOI: 10.1111/j.1365-2699.2011.02681.x.
- 751 Young CM, He R, Emlet RB, Li Y, Qian H, Arellano SM, Van Gaest A, Bennett KC, Wolf M,
- Smart TI, Rice ME. 2012. Dispersal of Deep-Sea Larvae from the Intra-American Seas:
- 753 Simulations of Trajectories using Ocean Models. *Integrative and Comparative Biology*
- 754 52:483–496. DOI: 10.1093/icb/ics090.
- 755 Young CM, Devin MG, Jaeckle WB, Ekara Tne SUK, George SB. 1996. OCEANOLOGICA
- 756 *ACTA-VOL. 19-W 3-4* ~ The potential for ontogenetic vertical migration by larvae of
- 757 bathyal echinoderms Larva Deep-sea Vertical migration Larval nutrition Echinoderm
- 758 Larve Fond marin Migration verticale Nutrition larvaire Echinoderme ABSTRACT
- 759 *RÉSUMÉ*. Gauthier-Villars.



760 761	Zaslow B, Benayahu Y. 1998. Competence and longevity in planulae of several species of soft corals. <i>Marine Ecology Progress Series</i> 163:235–243. DOI: 10.3354/meps163235.
762 763 764	Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. <i>Methods in Ecology and Evolution</i> 1:3–14. DOI: 10.1111/j.2041-210X.2009.00001.x.

Figure 1

Stages of embryo development of the octocoral species Dentomuricea aff. meteor


- (a) fertilized oocyte, (b) 2-cell, (c) 4-cell, (d) 8-cell, (e) 16-cell, (f) 64-cell, (g) hollow blastula,
- (g) gastrula, (i) planula.

Early development of embryos of the octocoral species Dentomuricea aff. meteor reared under 13°C and 15 °C.

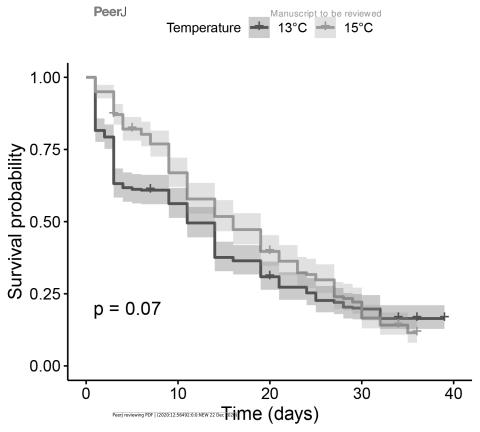
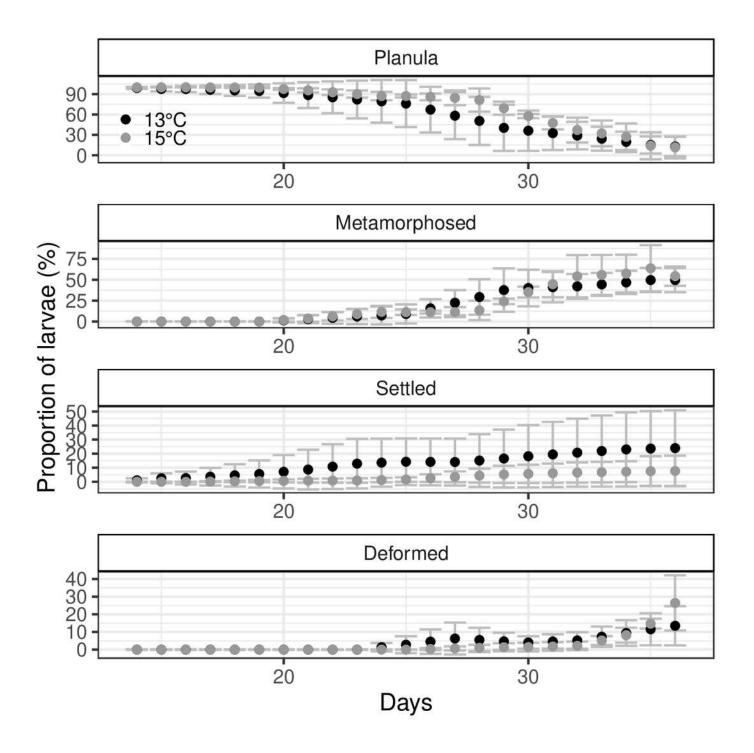
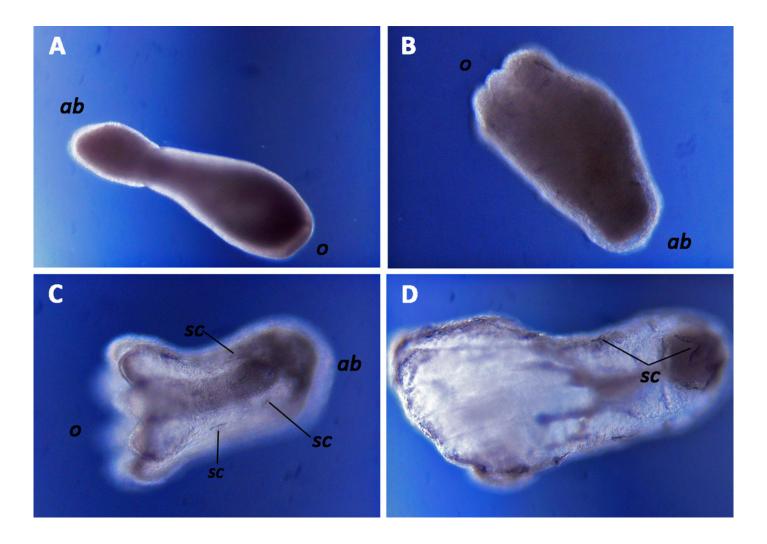
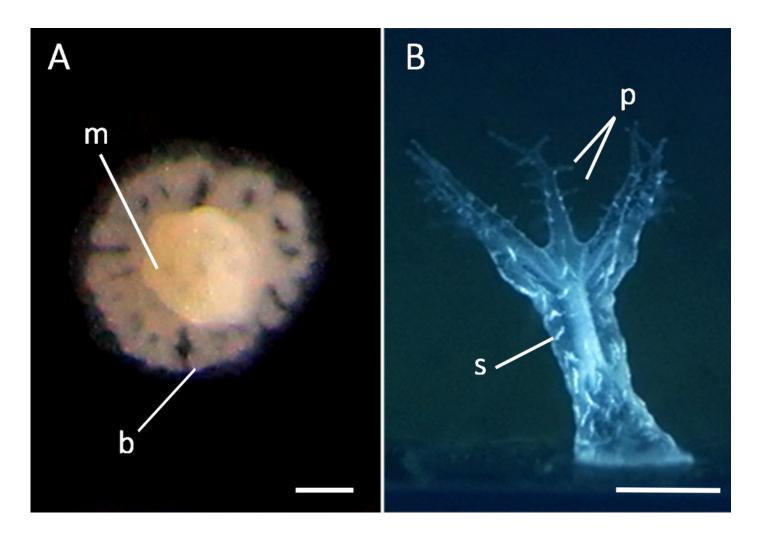

Bars display the proportion of embryos in each developmental stage over a course of 96 hours after spawning.

Figure 3(on next page)


Comparison of Kaplan-Meier estimates of larvae survival of the species Dentomuricea aff. meteor under two temperature regimes.


Larval stages of the octocoral species Dentomuricea aff. meteor.

The graph displays the proportion of larvae in different developmental stages (planula, metamorphosed but not settled, settled, deformed) under two experimental rearing temperatures.


Pelagic metamorphosis of larvae of the octocoral species Dentomuricea aff. meteor.

A: pear shaped larva with formed mouth in the oral side (o) and closed aboral side (ab); B: tentacle formation on the oral side; C: Fully formed tentacles, mesenteries and sclerites (sc); D: deformed larva with abnormal mesentery and tentacle formation.

Formation of primary polyps from planula larvae of the octocoral *Dentomuricea* aff. *meteor*.

A: Recently settled primary polyp with a polyp base (b) and formation of eight mesenteries (m); B: final primary polyp with sclerites (s), tentacles and tentacle pinnules (p). Scale bar: 500 µm

Table 1(on next page)

Model selection results.

The results of Maximum Likelihood Ratio (MLR) tests, reveal significant effects of the independent variables in question. Selected models are highlighted in grey.

- 1 Table 1: Results of Maximum Likelihood Ratio (MLR) tests, revealing significant effects of the
- 2 independent variables in question. Selected models are highlighted in grey.

Dependent	Model	Model	AIC	X ²	df	p
variable	type					
Size	LM	Null	-186.35			
		Stage	-725.87	8.63	13	2.20 x 10 ⁻¹⁶
		Stage + Temperature	-724.69	0.004	12	0.37
		Stage x Temperature	-708.56	0.03	11	0.90
Length/width	LM	Null	184.68			
ratio		Stage	-132.57	21.66	13	2.20 x 10 ⁻¹⁶
		Stage + Temperature	-130.58	0.0004	12	0.91
		Stage x Temperature	-159.44	1.66	11	4.78 x 10 ⁻⁷
Proportion of	Binomial	Null	2770.58		31	
planula	GLM	Time	633.32	2137.27	30	2.20 x 10 ⁻¹⁶
		Time + Temperature	567.36	67.95	29	2.20 x 10 ⁻¹⁶
		Time x Temperature	558.94	10.42	28	0.0012
Proportion of	Binomial	Null	1676.96		31	
metamorphosed	GLM	Time	482.96	1196.60	30	2.20 x 10 ⁻¹⁶
		Time + Temperature	484.12	0.19	29	0.65
		Time x Temperature	475.91	10.22	28	0.001
Proportion of	Binomial	Null	744.30		31	
settled	GLM	Time	484.34	261.90	30	2.20 x 10 ⁻¹⁶
		Time + Temperature	398.76	87.57	29	2.20 x 10 ⁻¹⁶
		Time x Temperature	387.71	13.05	28	0.0003
Proportion of	Binomial	Null	466.04		31	
deformed	GLM	Time	201.97	266	30	2.20 x 10 ⁻¹⁶
		Time + Temperature	203.65	0.32	29	0.56
		Time x	160.93	44.7	28	2.27 x

		Temperature				10-11
Swimming	LM	Null	-141.32			
speed (13°C)		Time	-170.05	1.24	1	1.95 x 10 ⁻⁸
		Time + Direction	-168.18	0.005	1	0.71
		Time x Direction	-166.18	0.00001	1	0.99
Swimming	LM	Null	77.12			
speed (15°C)		Time	63.7	1.02	1	7.91 x 10 ⁻⁵
		Time + Direction	64.11	0.10	1	0.20
		Time x Direction	65.75	0.23	1	0.54
Swimming	LM	Null	42.04			
speed		Time	-24.12	4.00	1	2.20 x 10 ⁻¹⁶
		Time + Temperature	-79.80	3.17	1	1.41 x 10 ⁻¹⁴
		Time x Temperature	-77.89	0.04	1	0.767
Swimming	LM	Null	80.31			
direction		Time	82.31	0	1	1
(13°C)		Time + Direction	84.15	5.35	1	0.70
		Time x Direction	82.90	95.15	1	0.11
Swimming	LM	Null	89.65			
direction		Time	91.65	0.00	1	1
(15°C)		Time + Direction	92.38	88.60	1	0.34
		Time x Direction	94.38	0.09	1	0.97

Table 2(on next page)

Summary of embryo and larval characteristics of the deep-sea octocoral species Dentomuricea aff. meteor reared under two temperature regimes.

Data include estimated (average ± mean) survival time, survival rate, Pelagic Larval Duration (PLD), and swimming speed. The min and max values correspond to minimum and maximum estimates observed in individual batches, whereas median takes into account all batches pooled together. Swimming speed data were collected on day 4 and day 14.

- 1 Table 2: Summary of embryo and larval characteristics of the deep-sea octocoral species
- 2 Dentomuricea aff. meteor reared under two temperature regimes, including estimated (average
- $3 \pm mean$ survival time, survival rate, Pelagic Larval Duration (PLD) and swimming speed. The
- 4 min and max values correspond to minimum and maximum estimates observed in individual
- 5 batches, whereas median takes into account all batches pooled together. Swimming speed was
- 6 calculated on day 4 and day 14.

	13 °C		15 °C				
	Survival time (days)	Survival rate after 30 days (%)	PLD	Median survival time (days)	Survival rate after 30 days (%)	PLD	
Min	5	17.1 ± 4.5	1	6	0	1	
Max	28	34 ± 6.91	35	23	21 ± 3.47	35	
Median	11	16.4 ± 2.07	24	16	11.5 ± 2.09	27	
Swimming speed _{day4} (mm s ⁻¹)	0.24 ± 0.16			0.36 ± 0.21			
Swimming speed _{day14} (mm s ⁻¹)	0.4 ± 0.24			0.44 ± 0.23			

7