1 First record of Trichinella in Leopardus guigna (Carnivora,

2 Felidae) and Galictis cuja (Carnivora, Mustelidae): New

3 hosts in Chile

4

- 5 Diana M. Echeverry¹, AnaLía Henríquez², Pablo Oyarzún-Ruiz¹, María C. Silva-de la Fuente³,
- 6 René Ortega¹, Daniel Sandoval¹, Carlos Landaeta-Aqueveque¹

7

- 8 ¹ Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.
- 9 ² Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
- 10 ³ Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.

11

- 12 Corresponding Author:
- 13 Carlos Landaeta-Aqueveque¹
- 14 Vicente Méndez 595, Chillán, Zip code 38121, Chile.
- 15 Email address: clandaeta@udec.cl

Abstract

17

- 18 **Background.** Trichinellosis is a zoonotic disease with a worldwide distribution. It is caused by
- several species of nematodes in the genus *Trichinella*. *Trichinella* spp. are transmitted through
- 20 predation or carrion consumption and occur in domestic and sylvatic cycles. In humans
- 21 trichinellosis occurs due to the consumption of raw or undercooked, infected meat and is mainly
- associated with the household slaughter of pigs or the consumption of game animals without
- veterinary inspection, a cultural practice that is difficult to resolve. Therefore, knowledge of this
- 24 parasite's reservoir is relevant for better implementing public health strategies. The aim of this
- 25 study was to assess the presence of *Trichinella* sp. in several carnivore and omnivore vertebrates
- 26 in central-southern Chile.
- 27 **Methods.** We collected muscle tissue from a total of 53 animals from 15 species and were
- digested to detect *Trichinella* larvae which were further identified to species level using
- 29 molecular techniques.
- 30 **Results.** We detected *Trichinella* larvae in *Leopardus guigna* (Felidae) and *Galictis cuja*
- 31 (Mustelidae). We identified the larvae collected from L. guigna as Trichinella spiralis, but we
- were unable to molecularly characterize the larvae from G. cuja. This is the first record of
- 33 *Trichinella* in a native mustelid of South America and the first record of *T. spiralis* in *L. guigna*.
- 34 This study identified two novel hosts; however, further work is needed to identify the role that
- 35 these and other hosts play in the cycle of *Trichinella* in Chile.

Introduction

- 38 Trichinellosis is a disease that is distributed worldwide and is caused by nematodes in the genus
- 39 Trichinella (Korhonen et al., 2016). It is considered neglected and emerging in some regions
- 40 (Dupouy-Camet, 1999; Murrell & Pozio, 2000; Bruschi, 2012; Boutsini et al., 2014). Trichinella
- 41 nematodes are transmitted from animals to humans by the ingestion of raw or undercooked
- 42 infected meat.

- 43 *Trichinella* is transmitted among non-human animals via predation and carrion consumption;
- 44 therefore, it circulates among carnivorous and omnivorous vertebrates. Two cycles have been
- described: the domestic (encompassing mainly pigs, rats, dogs, and cats) and the sylvatic
- 46 (encompassing free-range vertebrates) cycles (*Pozio, 2000; Pozio, 2007; Loutfy et al., 1999*).
- 47 These cycles can be connected and fed back by invasive rats and other synanthropic animals
- 48 (*Pozio*, 2000). The domestic cycle was the primary cause of human infections; however,
- 49 improvements in pork production have reduced outbreaks globally (*Devleesschauwer et al.*,
- 50 2015; Murrell, 2016). The improvements to pork production changed the epidemiology of
- 51 trichinellosis in human populations. *Trichinella* infections now primarily occur during the
- 52 consumption of meat from unregulated sources, mainly backyard pork production and the
- 53 consumption of game animals (Pozio, 2014; Tryland et al., 2014; Fichi et al., 2015; Kärssin et
- 54 *al.*, 2017).
- At present, there are 10 recognized species of *Trichinella* around the world and three additional
- genotypes that have not yet been identified as distinct species (Korhonen et al., 2016; Sharma et

- 57 al., 2020). Most species infect only mammals (Klun et al., 2019; Bilska-Zajac et al., 2020),
- 58 including marine mammals (Tryland et al., 2014; Pasqualetti et al., 2018). However, Trichinella
- 59 pseudospiralis Garkavi, 1972 also infects birds, and Trichinella zimbabwensis Pozio et al., 2002
- and Trichinella papuae Pozio et al., 1999 infect reptile hosts (Korhonen et al., 2016). Thus,
- obtaining ecological and epidemiological knowledge of the transmission cycle is relevant for
- 62 reducing the incidence of this parasite.
- 63 In South America, *Trichinella* spp. infections have been detected in Argentina, Bolivia, Chile
- 64 (larvae isolation), Brazil, and Ecuador (antibody detection) with most studies focusing on the
- domestic cycle (*Bjorland et al., 1993; Ribicich et al., 2020*). Four species have been reported:
- 66 Trichinella spiralis Owen, 1835, Trichinella patagoniensis Krivokapich et al. 2012, Trichinella
- 67 britovi Pozio et al. 1992, and T. pseudospiralis (Krivokapich et al., 2006; Krivokapich et al.,
- 68 2012; Krivokapich et al., 2015; Krivokapich et al., 2019). Additionally, Trichinella infections
- have been documented from eight species: cougar (*Puma concolor* Linnaeus, 1771), wild boar
- 70 (Sus scrofa Linnaeus, 1758), fox (Lycalopex gymnocercus gracilis Fischer, 1814), opossum
- 71 (Didelphis albiventris Lund, 1840), sea lion (Otaria flavescens Shaw, 1800), pecarí (Tayassu
- 72 tajacu Palmer, 1897), armadillo (Chaetophractus villosus Desmerest, 1804), and pericote
- 73 (Graomys centralis Thomas, 1902) (Minoprio, Abdon & Abdon, 1967; Ribicich et al., 2020;
- 74 *Soria et al., 2010*).

83 84

- 75 In Chile, the domestic cycle is fairly well-studied (Alcaino & Arenas, 1981; Schenone et al.,
- 76 2002), but the sylvatic cycle is largely unknown. *Trichinella spiralis* is the sole species that has
- been reported in Chile (Schenone et al., 2002; Landaeta-Aqueveque et al., 2015; Hidalgo et al.,
- 78 2019). In the sylvatic cycle, cougars and wild boar are the only wild/feral hosts with documented
- 79 infections (Landaeta-Aqueveque et al., 2015; Hidalgo et al., 2019). In addition to those reports,
- other studies have not found infected animals (Alvarez et al., 1970; González-Acuña et al., 2010;
- 81 Ramirez-Pizarro et al., 2019). Therefore, the objective of this study was to assess the presence of
- 82 *Trichinella* sp. in carnivorous and omnivorous wild vertebrates from south-central Chile.

Materials & Methods

- 85 The study area includes four administrative regions of Chile: the O'Higgins, Maule, Nuble, and
- 86 Biobío regions (Figure 1). These regions feature a transitional climate that falls somewhere
- between the classifications of warm Mediterranean (Csb, after Köpen classification) and wet
- 88 temperate oceanic (Cfb, after Köpen classification). These regions lie within the limits between
- 89 central and southern Chile.
- 90 This study considered animals that were found dead, mainly run over by a vehicle, or that died in
- 91 wild animal rescue/rehabilitation centers (Fauna Rehabilitation Center of the Universidad de
- 92 Concepción; Wild Fauna Rehabilitation Center of the Universidad San Sebastián) from 2013 to
- 93 2020. We examined at least 1 g of muscle (10 g, when possible) of these animals to determine
- 94 the presence of *Trichinella* spp. larvae. We then selected the following muscles for
- 95 parasitological examination: the diaphragm, masseter, tongue, quadriceps (in mammals), pectoral
- 96 (in birds), and intercostals (in all animals).

- 97 We performed artificial digestion of the muscles following the method described by Gajadhar et
- 98 al. (2019) and preserved the larvae in 96% ethanol. For molecular identification, we extracted
- 99 DNA from a pool of 10 *Trichinella* larvae isolated from each positive animal using the DNeasy
- Blood & Tissue Kit (Qiagen, Hilden, Germany) and used 10 ng of DNA for identification at the
- species level by nested polymerase chain reaction (PCR), following a modification of the
- protocol of Zarlenga et al. (1999). We performed the reactions at a final volume of 25 μ L. We
- used the following primers: Ne forward (5'-TCTTGGTGGTAGTAGC-3') and reverse (5'-
- 104 GCGATTGAGTTGAACGC-3') in the first PCR (0.5 μM of each primer), and 12.5 μL of
- 105 GoTaq Green Master Mix (Promega Corporation, Madison, WI, USA). We amplified the DNA
- in a thermocycler (MultiGeneTM OptiMax Thermal Cycler; Labnet International, Inc., Edison,
- NJ, USA) under the following cycling conditions: 95°C × 1 minute for initial denaturation,
- followed by 40 cycles of 95°C × 30 sec; 56°C × 1 minute, and 72°C × 1 minute; and a final
- extension of 72°C × 2 minutes. Then, we used 0.5 μ M of each Primers I forward (5'-
- 110 GTTCCATGTGAACAGCAG-3') and reverse (5'- CGAAAACATACGACAACTGC-3') in a
- second PCR under same conditions with an annealing temperature of 55°C. The PCR products
- were subjected to electrophoresis in 2% agarose gel. We used master mix without the DNA as
- the negative control, and *T. spiralis* larvae obtained from a previous study (*Landaeta-Aqueveque*
- 114 et al., 2015) as a positive control of the PCR.
- Bioethical considerations: This study met the International Guiding Principles for Biomedical
- 116 Research Involving Animals. The Comité de Ética of the Facultad de Ciencias Veterinarias of
- the Universidad de Concepción approved the study (CBE-47-2017).

Results

118119

128129

- We collected samples from 53 animals. The sample was composed of 28 mammals, 24 birds and
- one reptile (Table 1). The weight of the examined muscle samples were at least 10 g with the
- exception of *D. bozinovici* and *P. chamissonis* with samples sizes of 3 g and 1 g, respectively.
- 123 *Trichinella* larvae were isolated only from one *Leopardus guigna* Molina, 1782 (güiña; 52 larvae
- per gram of muscle) and one *Galictis cuja* Molina, 1782 (lesser grison; 0.3 larvae per gram of
- muscle), both from the Nuble region (Figure 1). We were unable to amplify DNA from the
- larvae isolated from the grison. However, we were able to amplify a PCR product of 173 bp from
- the güiña which is consistent with our *T. spiralis* positive control (Figure 2).

Discussion

- Detecting *Trichinella* infection is a challenge in wild fauna of Chile because most carnivore
- vertebrates are protected by law (SAG, 2012). This protection is due to conservation concerns or
- because these animals aid in pest control. Therefore, only invasive animals can be hunted to
- assess *Trichinella* infection. This has resulted in few studies that have assessed the presence of
- 134 *Trichinella* infection in native wildlife in Chile. Although these studies sampled a broad range of
- mammalian species including güiñas and lesser grisons, they did not detect *Trichinella* spp.
- 136 (Alvarez et al. 1970 González-Acuña et al. 2010).

- Studies in Argentina examined another wild felid Geoffroy's cat (*Leopardus geoffroyi* D'
- Orbigny and Gervais, 1844) and the lesser grison with negative results (*Ribicich et al., 2010*;
- Winter et al., 2018). Thus, this is the first record of *Trichinella* spp. larvae in a native mustelid in
- South America, and the first record of *T. spiralis* in the güiña. The güiña is the second reported
- 141 South American felid host for this species.
- Previously, other mustelids have been reported to host *Trichinella* infections. American mink
- (Neovison vison Schreber, 1777) infected with T. spiralis, T. britovi, and T. pseudospiralis in
- Poland (*Hurníková et al., 2016*) and the European badger (*Meles meles* Linnaeus, 1758) infected
- with T. britovi in Romania (Boros et al., 2020). Similarly, other felids have reportedly harbored
- 146 Trichinella infections. Trichinella infections have been reported in cougars across most of their
- range including with T. spiralis in Chile (Landaeta-Aqueveque et al., 2015), T. patagoniensis in
- 148 Argentina (Krivokapich et al., 2012), T. spiralis and T. pseudospiralis in the United States
- (Reichard et al., 2015), Trichinella nativa Britov and Boev, 1972, T. pseudospiralis, Trichinella
- 150 murrelli Pozio and La Rosa, 2000, and Trichinella T6 in Canada (Gajadhar & Forbes, 2010).
- Additionally, infections have been reported in Canadian lynx (*Lynx canadensis* Kerr, 1792) with
- 152 Trichinella T6 in Canada (Gajadhar & Forbes, 2010), Eurasian lynx (Lynx lynx Schreber, 1777)
- with T. britovi, and the European wildcat (Felis silvestris Schreber, 1777) with T. britovi and T.
- 154 *spiralis* (*Pozio et al., 2009*).
- The güiña is one of the smallest felids in the world. It is distributed across Chile and Argentina
- between latitudes of 33° S and 48° S (*Napolitano et al., 2014*). This felid consumes
- micromammals such as rodents as primary prey (Delibes-Mateos et al., 2014; Figueroa, Corales
- \$\lambda \& Rau, 2018\right); consequently, rodents could be the source of infection. Rodents have been
- recognized as hosts of *T. spiralis*, mainly in the domestic environment in Chile (*Schenone et al.*,
- 160 1967; Schenone et al., 2002). This record is in accordance with the fact that güiñas have been
- frequently infected by pathogens from free-roaming domestic animals (*Ortega et al., 2020*;
- 162 Sacristán et al., 2020); although T. spiralis is not an important pathogen for the health of non-
- human animals, its presence in the güiña highlights the need for pathogen surveillance in the
- 164 rural–sylvatic interphase.
- The lesser grison is a neotropical mustelid that inhabits an area spanning southern Peru,
- 166 Uruguay, and Paraguay to southern Chile and Argentina, encompassing several environments
- 167 (Prevosti & Travaini, 2005). It is a generalist predator and rodents comprise an important part of
- its diet (Ebensperger, Mella & Simonetti, 1991; Zapata et al., 2005). Given that, and considering
- how other pathogens have spilled from domestic animals (Megid et al., 2013; Pedrassani et al.,
- 170 2018), this species might most likely be infected in domestic environments. However,
- identification of the *Trichinella* species harbored by the lesser grison helps to better understand
- the source of infection, given that not all *Trichinella* species identified in South America have
- been reported in the domestic cycle. For instance, *T. patagoniensis* has been reported only in
- 174 cougars (Krivokapich et al., 2008; Krivokapich et al., 2012).
- To the best of our knowledge, there are no reports of the güiña as prey of larger predators,
- whereas the lesser horned owl (*Bubo magellanicus*) is the sole predator to be reported for the

177 lesser grison (Prevosti & Travaini, 2005). In that respect, T. pseudospiralis, also zoonotic, is the 178 only species of the genus that has reportedly infected birds, and this may be the only species of 179 *Trichinella* that could be transmitted from the grison to the owl. However, this species has not 180 been reported in Chile and one record of a single pig from Argentina represents the only report in 181 South America (Krivokapich et al., 2015). Therefore, it is unlikely that this owl could play a role 182 in the sylvatic cycle of *Trichinella* in Chile. Hence, whether güiña and lesser grison participate in the reservoir or constitute dead-end hosts is unknown, and the most likely way for Trichinella 183 184 larvae to be transmitted from these hosts seems to be their consumption by carrion-consuming 185 mammals. Furthermore, human trichinellosis resulting from the direct consumption of a wild 186 mammal has also been reported worldwide (García et al., 2005; Fichi et al., 2015); however, 187 neither güiñas nor grisons are typical prey for hunters to eat, nor is their hunting permitted by 188 law in Chile (SAG, 2012). However, further studies are needed to evaluate these hypotheses. 189 It is worth noting that the two types of mammal host species reported herein had the largest 190 sample sizes, suggesting that larger samples of other mammals could represent new hosts for 191 Trichinella. In contrast, the lack of findings identified by Alvarez et al. (1970) may have been 192 due to the real absence of larvae in their samples, as well as to the parasitological technique 193 (trichinoscopy) used, which is of lower sensitivity (Forbes, Parker & Scandrett, 2003).

Conclusions

194 195

196197

198199

200

201202

203

204

205

206207

208209

210

211

212

213214

215

216

This is the first record of *Trichinella* larvae in a native mustelid, *G. cuja*, in South America, as well as the first record of *T. spiralis* in *L. guigna*. Thus, this study increased the number of mammals infected with *Trichinella* larvae in the neotropics, enhancing the need to identify the role played by neotropical animals in the reservoir for humans. This underlies how studying the rural–sylvatic interphase is of utmost importance.

Acknowledgements

In memoriam: The authors dedicate this article to Daniel González-Acuña, who died during the writing of this manuscript prior to submission, and who made significant contributions to this study.

References

Alcaíno HA, and Arenas X. 1981. Antecedentes sobre triquinosis en Chile. *Monografías de Medicina Veterinaria* 3. https://revistas.uchile.cl/index.php/MMV/article/view/4847/
Alvarez V, Rivera G, Neghme A, and Schenone H. 1970. Triquinosis en animales de Chile.

Boletín Chileno de Parasitología 25:83-86.
Bilska-Zajac F. Różycki M. Gradziel-Krukowska K.

Bilska-Zając E, Różycki M, Grądziel-Krukowska K, Bełcik A, Mizak I, Karamon J, Sroka J, Zdybel J, and Cencek T. 2020. Diversity of *Trichinella* species in relation to the host species and geographical location. *Veterinary Parasitology* 279:109052. 10.1016/j.vetpar.2020.109052

- Bjorland J, Brown D, Ray Gamble H, and McAuley JB. 1993. *Trichinella spiralis* infection in pigs in the Bolivian Altiplano. *Veterinary Parasitology* 47:349-354. DOI: 10.1016/0304-4017(93)90036-M
- Boros Z, Ionică AM, Deak G, Mihalca AD, Chisamera GB, Györke A, Gherman CM, and
 Cozma V. 2020. The European badger, *Meles meles*, as a new host for *Trichinella britovi* in Romania. *Veterinary Parasitology* 288:109301. 10.1016/j.vetpar.2020.109301
- Boutsini S, Papatsiros VG, Stougiou D, Marucci G, Liandris E, Athanasiou LV, Papadoudis A,
 Karagiozopoulos E, Bisias A, and Pozio E. 2014. Emerging *Trichinella britovi* infections
 in free ranging pigs of Greece. *Veterinary Parasitology* 199:278-282.
 10.1016/j.vetpar.2013.10.007
- Bruschi F. 2012. Trichinellosis in developing countries: is it neglected? *The Journal of Infection* in Developing Countries 6:216-222. 10.3855/jidc.2478

- Delibes-Mateos M, Díaz-Ruiz F, Caro J, and Ferreras P. 2014. Activity patterns of the vulnerable guiña (*Leopardus guigna*) and its main prey in the Valdivian rainforest of southern Chile. *Mammalian Biology* 79:393-397. 10.1016/j.mambio.2014.04.006
- Devleesschauwer B, Praet N, Speybroeck N, Torgerson PR, Haagsma JA, De Smet K, Murrell KD, Pozio E, and Dorny P. 2015. The low global burden of trichinellosis: evidence and implications. *International Journal for Parasitology* 45:95-99. 10.1016/j.ijpara.2014.05.006
- Dupouy-Camet J. 1999. Is human trichinellosis an emerging zoonosis in the European community? *Helminthologia* 36:201-204.
- Ebensperger LA, Mella JE, and Simonetti JA. 1991. Trophic-Niche Relationships among *Galictis cuja, Dusicyon culpaeus,* and *Tyto alba* in Central Chile. *Journal of Mammalogy* 72:820-823. 10.2307/1381849
- Fichi G, Stefanelli S, Pagani A, Luchi S, De Gennaro M, Gómez-Morales MA, Selmi M, Rovai D, Mari M, Fischetti R, and Pozio E. 2015. Trichinellosis outbreak caused by meat from a wild boar hunted in an Italian region considered to be at negligible risk for *Trichinella*. *Zoonoses and Public Health* 62:285-291. 10.1111/zph.12148
- Figueroa RA, Corales ES, and Rau JR. 2018. Prey of the güiña (*Leopardus guigna*) in an Andean mixed southern beech forest, southern Chile. *Studies on Neotropical Fauna and Environment* 53:211-218. 10.1080/01650521.2018.1477032
- Forbes LB, Parker S, and Scandrett WB. 2003. Comparison of a modified digestion assay with trichinoscopy for the detection of *Trichinella larvae* in pork. *Journal of Food Protection* 66:1043-1046. 10.4315/0362-028x-66.6.1043
- Gajadhar AA, and Forbes LB. 2010. A 10-year wildlife survey of 15 species of Canadian carnivores identifies new hosts or geographic locations for *Trichinella* genotypes T2, T4, T5, and T6. *Veterinary Parasitology* 168:78-83. 10.1016/j.vetpar.2009.10.012
- Gajadhar AA, Noeckler K, Boireau P, Rossi P, Scandrett B, and Gamble HR. 2019. International Commission on Trichinellosis: Recommendations for quality assurance in digestion testing programs for *Trichinella*. *Food and Waterborne Parasitology* 16:e00059. 10.1016/j.fawpar.2019.e00059
- García E, Mora L, Torres P, Jercic MI, and Mercado R. 2005. First record of human trichinosis in Chile associated with consumption of wild boar (*Sus scrofa*). *Memórias do Instituto Oswaldo Cruz* 100:17-18. 10.1590/S0074-02762005000100003

261 González-Acuña D, Moreno L, Ardiles K, Flores M, Duclos M, and Kinsella M. 2010. 262 Endoparasites of the kodkod, Oncifelis guigna (Carnivora, Felidae) in Chile. Revista 263 Chilena de Historia Natural 83:619-622. 10.4067/s0716-078x2010000400015

264

265

266

267

268

269

270

271 272

273

274

275

276

277

278 279

280

281

282

283

284

285 286

287

288

289

290

291 292

293

294

295

296

297

298

299

300 301

- Hidalgo A, Villanueva J, Becerra V, Soriano C, Melo A, and Fonseca-Salamanca F. 2019. Trichinella spiralis Infecting Wild Boars in Southern Chile: Evidence of an Underrated Risk. Vector-Borne and Zoonotic Diseases 19:625-629. 10.1089/vbz.2018.2384
- Hurníková Z, Kołodziei-Sobocińska M, Dvorožňáková E, Niemczynowicz A, and Zalewski A. 2016. An invasive species as an additional parasite reservoir: Trichinella in introduced American mink (Neovison vison). Veterinary Parasitology 231:106-109. 10.1016/j.vetpar.2016.06.010
- Kärssin A, Häkkinen L, Niin E, Peik K, Vilem A, Jokelainen P, and Lassen B. 2017. Trichinella spp. biomass has increased in raccoon dogs (Nyctereutes procyonoides) and red foxes (Vulpes vulpes) in Estonia. Parasites & Vectors 10. 10.1186/s13071-017-2571-0
- Klun I, Ćosić N, Ćirović D, Vasilev D, Teodorović V, and Djurković-Djaković O. 2019. Trichinella spp. in wild mesocarnivores in an endemic setting. Acta Veterinaria Hungarica 67:34-39. 10.1556/004.2019.004
- Korhonen PK, Pozio E, La Rosa G, Chang BCH, Koehler AV, Hoberg EP, Boag PR, Tan P, Jex AR, Hofmann A, Sternberg PW, Young ND, and Gasser RB. 2016. Phylogenomic and biogeographic reconstruction of the *Trichinella* complex. *Nature Communications* 7:10513. 10.1038/ncomms10513
- Krivokapich SJ, Gatti GM, Prous CLG, Degese MF, Arbusti PA, Ayesa GE, Bello GV, and Salomon MC. 2019. Detection of *Trichinella britovi* in pork sausage suspected to be implicated in a human outbreak in Mendoza, Argentina. Parasitology International 71:53-55. 10.1016/j.parint.2019.03.010
- Krivokapich SJ, Gonzalez Prous CL, Gatti GM, and Saldia L. 2015. First finding of Trichinella pseudospiralis in the Neotropical region. Veterinary Parasitology 208:268-271. 10.1016/j.vetpar.2015.01.001
- Krivokapich SJ, Molina V, Bergagna HFJ, and Guarnera EA. 2006. Epidemiological survey of Trichinella infection in domestic, synanthropic and sylvatic animals from Argentina. Journal of Helminthology 80:267-269. 10.1079/JOH2006338
- Krivokapich SJ, Pozio E, Gatti GM, Gonzalez Prous CL, Ribicich M, Marucci G, La Rosa G, and Confalonieri V. 2012. Trichinella patagoniensis n. sp. (Nematoda), a new encapsulated species infecting carnivorous mammals in South America. International Journal for Parasitology 42:903-910. 10.4067/S0716-078X2012000200009
- Krivokapich SJ, Prous CLG, Gatti GM, Confalonieri V, Molina V, Matarasso H, and Guarnera E. 2008. Molecular evidence for a novel encapsulated genotype of *Trichinella* from Patagonia, Argentina. Veterinary Parasitology 156:234-240. 10.1016/j.vetpar.2008.06.003
- Landaeta-Aqueveque C, Krivokapich S, Gatti GM, Prous CG, Rivera-Buckle V, Martin N, Gonzalez-Acuna D, and Sandoval D. 2015. Trichinella spiralis parasitizing Puma concolor: first record in wildlife in Chile. Helminthologia 52:360-363. 10.1515/helmin-2015-0057
- 303 Loutfy NF, Awad OM, El-Masry AG and Kandil GM. 1999. Study on rodents infestation in 304 Alexandria and prevalence of *Trichinella spiralis* infection among them. *Journal of the* 305 Egyptian Society of Parasitology 29(3):897-909.
- 306 https://europepmc.org/article/med/12561929

- Megid J, Teixeira CR, Cortez A, Heinemann MB, Antunes JMAP, Fornazari F, Rassy FB, and
 Richtzenhain LJ. 2013. Canine distemper virus infection in a lesser grison (*Galictis cuja*):
 first report and virus phylogeny. *Pesquisa Veterinária Brasileira* 33:247-250.
 10.1590/s0100-736x2013000200018
- Minoprio JL, Abdon H, and Abdon D. 1967. Factores epidemiológicos que determinan la trichiniasis silvestre en el oeste de San Luis y en el este de Mendoza. *Anales de la Sociedad Científica Argentina* 183:19-30.
 https://ia801302.us.archive.org/20/items/analesdelaso183121967soci/analesdelaso183121
 967soci.pdf
 - Murrell KD. 2016. The dynamics of *Trichinella spiralis* epidemiology: Out to pasture? *Veterinary Parasitology* 231:92-96. 10.1016/j.vetpar.2016.03.020

- Murrell KD, and Pozio E. 2000. Trichinellosis: the zoonosis that won't go quietly. *International Journal for Parasitology* 30:1339-1349. 10.1016/S0020-7519(00)00132-6
 - Napolitano C, Johnson WE, Sanderson J, O'Brien SJ, Rus Hoelzel A, Freer R, Dunstone N, Ritland K, Ritland CE, and Poulin E. 2014. Phylogeography and population history of Leopardus guigna, the smallest American felid. *Conservation Genetics* 15:631-653. 10.1007/s10592-014-0566-3
- Ortega R, Mena J, Grecco S, Pérez R, Panzera Y, Napolitano C, Zegpi NA, Sandoval A,
 Sandoval D, González-Acuña D, Cofré S, Neira V, and Castillo-Aliaga C. 2020.

 Domestic dog origin of Carnivore Protoparvovirus 1 infection in a rescued free-ranging guiña (*Leopardus guigna*) in Chile. *Transboundary and Emerging Diseases*.

 10.1111/tbed.13807
 - Pasqualetti MI, Fariña FA, Krivokapich SJ, Gatti GM, Daneri GA, Varela EA, Lucero S, Ercole ME, Bessi C, Winter M, and Ribicich MM. 2018. *Trichinella spiralis* in a South American sea lion (Otaria flavescens) from Patagonia, Argentina. *Parasitology Research* 117:4033-4036. 10.1007/s00436-018-6116-z
 - Pedrassani D, Worm M, Drechmer J, and Santos MCI. 2018. Lesser Grison (*Galictis cuja* Molina, 1782) as host of *Dioctophyme renale* Goeze, 1782. *Arquivos do Instituto Biológico* 84:e0312016. 10.1590/1808-1657000312016
 - Pozio E. 2000. Factors affecting the flow among domestic, synanthropic and sylvatic cycles of *Trichinella. Veterinary Parasitology* 93:241-262. 10.1016/S0304-4017(00)00344-7
 - Pozio E. 2007. World distribution of *Trichinella* spp. infections in animals and humans. *Veterinary parasitology* 149(1-2), 3-21. 10.1016/j.vetpar.2007.07.002
 - Pozio E. 2014. Searching for *Trichinella*: not all pigs are created equal. *Trends in Parasitology* 30:4-11. 10.1016/j.pt.2013.11.001
 - Pozio E, Rinaldi L, Marucci G, Musella V, Galati F, Cringoli G, Boireau P, and La Rosa G. 2009. Hosts and habitats of *Trichinella spiralis* and *Trichinella britovi* in Europe. *International Journal for Parasitology* 39:71-79. 10.1016/j.ijpara.2008.06.006
 - Pozio E, and Zarlenga D. 2019. International Commission on Trichinellosis: Recommendations for genotyping Trichinella muscle stage larvae. *Food and Waterborne Parasitology* 15:e00033. 10.1016/j.fawpar.2018.e00033
 - Prevosti FJ, and Travaini A. 2005. New records of *Galictis cuja* (Molina, 1782) (Carnivora, Mustelidae) in Southern Patagonia. *Mammalian Biology* 70:317-320. 10.1016/j.mambio.2005.03.004
- Ramirez-Pizarro F, Silva-de la Fuente C, Hernandez-Orellana C, Lopez J, Madrid V, Fernandez I, Martin N, Gonzalez-Acuna D, Sandoval D, Ortega R, and Landaeta-Aqueveque C.

2019. Zoonotic Pathogens in the American Mink in Its Southernmost Distribution.
 Vector-Borne and Zoonotic Diseases 19:908-914. 10.1089/vbz.2019.2445

- Reichard MV, Criffield M, Thomas JE, Paritte JM, Cunningham M, Onorato D, Logan K,
 Interisano M, Marucci G, and Pozio E. 2015. High prevalence of *Trichinella pseudospiralis* in Florida panthers (*Puma concolor coryi*). *Parasites & Vectors* 8:67.
 10.1186/s13071-015-0674-z
 - Ribicich M, Gamble HR, Bolpe J, Scialfa E, Krivokapich S, Cardillo N, Betti A, Cambiaggi Holzmann M, Pasqualetti M, Fariña F, and Rosa A. 2010. *Trichinella* infection in wild animals from endemic regions of Argentina. *Parasitology Research* 107:377-380. DOI: 10.1007/s00436-010-1873-3
 - Ribicich MM, Fariña FA, Aronowicz T, Ercole ME, Bessi C, Winter M, and Pasqualetti MI. 2020. A review on *Trichinella* infection in South America. *Veterinary Parasitology* 285:109234. 10.1016/j.vetpar.2020.109234
 - Sacristán I, Esperón F, Pérez R, Acuña F, Aguilar E, García S, López MJ, Neves E, Cabello J, Hidalgo-Hermoso E, Terio KA, Millán J, Poulin E, and Napolitano C. 2020. Epidemiology and molecular characterization of Carnivore protoparvovirus-1 infection in the wild felid Leopardus guigna in Chile. *Transboundary and Emerging Diseases*. 10.1111/tbed.13937
 - SAG. 2012. Ley de Caza y su Reglamento. *Available at*http://www.sag.cl/sites/default/files/ley-caza-edicion2012.pdf (accessed Dec 30 2014).
 - Schenone H, Jacob C, Rojas A, and Villarrel F. 1967. Infección por *Trichinella spiralis* en *Rattus norvegicus* capturados en el Matadero Municipal de Santiago. *Boletín Chileno de Parasitología* 22:176.
 - Schenone H, Olea A, Schenone H, Contreras M, Mercado R, Sandoval L, and Pavletic C. 2002. Situación epidemiológica actual de la triquinosis en Chile. 1991-2000. *Revista médica de Chile* 130:281-285. DOI: 10.4067/S0034-98872002000300006
 - Sharma R, Thompson PC, Hoberg EP, Brad Scandrett W, Konecsni K, Harms NJ, Kukka PM, Jung TS, Elkin B, Mulders R, Larter NC, Branigan M, Pongracz J, Wagner B, Kafle P, Lobanov VA, Rosenthal BM, and Jenkins EJ. 2020. Hiding in plain sight: discovery and phylogeography of a cryptic species of *Trichinella* (Nematoda: Trichinellidae) in wolverine (Gulo gulo). *International Journal for Parasitology* 50:277-287. 10.1016/j.ijpara.2020.01.003
 - Soria C, Mozo G, Camaño C, Saldaño B, López E, Malandrini J and Soria J. 2010. Isolation of *Trichinella* spp. larvae in peccary (*Tayassu tajacu*) of Icaño, Departament La Paz, Catamarca. *Revista Electrónica Iberoamericana de Educación en Ciencias y Tecnología* 2(1):153-163.
 - http://www.exactas.unca.edu.ar/riecyt/VOL%202%20NUM%201/Archivos%20Digitales/Doc%20RIECyT%20V2-1-9.pdf
 - Tryland M, Nesbakken T, Robertson L, Grahek-Ogden D, and Lunestad BT. 2014. Human pathogens in marine mammal meat A Northern perspective. *Zoonoses and Public Health* 61:377-394. 10.1111/zph.12080
- Winter M, Pasqualetti M, Fariña F, Ercole M, Failla M, Perello M, Birochio D, Abate S, Soricetti
 M, and Ribicich M. 2018. Trichinellosis surveillance in wildlife in northeastern argentine
 patagonia. Veterinary Parasitology: Regional Studies and Reports 11:32-35.
 10.1016/j.vprsr.2017.11.009

398	Zapata SC, Travaini A, Delibes M, and Martínez-Peck R. 2005. Annual food habits of the lesser
399	grison (Galictis cuja) at the southern limit of its range. Mammalia 69.
400	10.1515/mamm.2005.008
401	Zarlenga DS, Chute MB, Martin A, and Kapel CMO. 1999. A multiplex PCR for unequivocal
402	differentiation of all encapsulated and non-encapsulated genotypes of Trichinella.
403	International Journal for Parasitology 29:1859-1867. 10.1016/S0020-7519(99)00107-1
404	
404	