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Light alters the impacts of nitrogen and foliar pathogens on
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Light limitation is a major driver of succession and an important determinant of the
performance of shade intolerant trees. This shade intolerant habit may result from a
resource allocation strategy characterized by rapid growth and high metabolic costs, which
may make shade intolerant species particularly sensitive to nutrient limitation and
pathogen pressure. In this study, we evaluated the degree to which nitrogen availability
and fungal pathogen pressure interact to influence plant performance across different light
environments. To test this, we manipulated nitrogen availability (high, low) and access by
foliar fungal pathogens (sprayed with fungicide, unsprayed) to seedlings of the shade
intolerant tree, Liquidambar styraciflua, growing for approximately three months across a
gradient in light availability, from forest understory to adjacent old field. Foliar fungal
damage varied with light and nitrogen availability; in low light, increasing nitrogen
availability tripled foliar damage, suggesting that increased nutrient availability in low light
makes plants more susceptible to disease. Despite higher foliar damage under low light,
spraying fungicide to exclude pathogens promoted 14% greater plant height only under
high light conditions. Thus, although nitrogen availability and pathogen pressure each
influenced aspects of plant performance, these effects were context dependent and
overwhelmed by light limitation. This suggests that regardless of environmental context,
the spread of shade-intolerant species can be limited by light alone.
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1 ABSTRACT

2 Light limitation is a major driver of succession and an important determinant of the 

3 performance of shade intolerant trees. This shade intolerant habit may result from a resource 

4 allocation strategy characterized by rapid growth and high metabolic costs, which may make 

5 shade intolerant species particularly sensitive to nutrient limitation and pathogen pressure. In this 

6 study, we evaluated the degree to which nitrogen availability and fungal pathogen pressure 

7 interact to influence plant performance across different light environments. To test this, we 

8 manipulated nitrogen availability (high, low) and access by foliar fungal pathogens (sprayed with 

9 fungicide, unsprayed) to seedlings of the shade intolerant tree, Liquidambar styraciflua, growing 

10 for approximately three months across a gradient in light availability, from forest understory to 

11 adjacent old field. Foliar fungal damage varied with light and nitrogen availability; in low light, 

12 increasing nitrogen availability tripled foliar damage, suggesting that increased nutrient 

13 availability in low light makes plants more susceptible to disease. Despite higher foliar damage 

14 under low light, spraying fungicide to exclude pathogens promoted 14% greater plant height only 

15 under high light conditions. Thus, although nitrogen availability and pathogen pressure each 

16 influenced aspects of plant performance, these effects were context dependent and overwhelmed 

17 by light limitation. This suggests that regardless of environmental context, the spread of shade-

18 intolerant species can be limited by light alone. 

19

20 INTRODUCTION

21 Shade intolerant species are, by definition, unable to persist in low-light environments. 

22 This may result from fundamental trade-offs, where shade intolerant species in high-light, early 

23 successional environments tend to allocate resources toward rapid growth (Walters and Reich 
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24 1999, Myers and Kitajima 2007, Valladares and Niinemets 2008). This rapid growth strategy, 

25 however,  becomes disadvantageous in low-light, later successional environments, where high 

26 metabolic costs reduce the ability to tolerate light limitation and other stressors (Wright et al. 

27 2003). This rapid growth strategy also may depend critically on factors like soil nutrients and 

28 pathogen pressure (Augspurger 1984, Coley et al. 1985, Myers and Kitajima 2007, Pasquini et 

29 al. 2015, Griffin et al. 2016), that can alter plant performance in different light environments. In 

30 this way, shade intolerance may drive succession from herbaceous to forest communities (Loach 

31 1967).

32 Shade intolerant and tolerant species exhibit different resource strategies, which are 

33 driven by a trade-off between resource acquisition in high resource environments and resource 

34 conservation in low resource environments (Wright et al. 2004, Reich 2014). In high resource 

35 environments (e.g., high light), the acquisitive strategy prioritizes growth of new tissue to 

36 acquire resources rapidly, resulting in plants with thin, high nutrient leaves that photosynthesize 

37 and respire rapidly (Wright et al. 2004). In low resource environments (e.g., low light), the 

38 conservative strategy prioritizes increased tissue longevity, resulting in plants with tough, low 

39 nutrient leaves that photosynthesize and respire slowly. This acquisitive, shade-intolerant 

40 strategy may also hinder growth under low nutrient conditions and increase susceptibility to 

41 pathogens and herbivores (Coley et al. 1985, Fine et al. 2004, Hahn and Maron 2016). 

42 Pathogens are critical drivers of dynamics in plant communities (Mordecai 2011). 

43 Throughout forest and grassland systems, pathogens can limit seedling survival (Hersh et al. 

44 2012) and ecosystem productivity (Mitchell 2003, Maron et al. 2011), promote diversity (Bever 

45 et al. 2015, LaManna et al. 2017), and limit species’ ranges (Spear et al. 2015, Bruns et al. 2019). 

46 Pathogens can alter community composition through negative density dependent seedling 
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47 survival (Comita et al. 2014, Bayandala et al. 2017), benefiting more resistant species (Welsh et 

48 al. 2016), and those that have escaped their specialist herbivores and pathogens (Heckman et al. 

49 2016). Because pathogen impacts can also change with light and nutrient availability (e.g., 

50 Dordas 2009, Veresoglou et al. 2013, Heckman et al. 2016, Ballaré and Pierik 2017, Liu et al. 

51 2017, Agrawal 2020), shade-intolerant species, which occupy habitats ranging from open fields 

52 to closed-canopy forests, may experience large differences in pathogen impacts throughout their 

53 range

54 The inability to persist in the shade may depend on the combined effects of light and 

55 other environmental factors, including soil nutrients and pathogen pressure (Augspurger 1984, 

56 Coley et al. 1985, Myers and Kitajima 2007, Pasquini et al. 2015, Griffin et al. 2016). In 

57 temperate forests, nitrogen is often a limiting nutrient (Baltzer and Thomas 2007, LeBauer and 

58 Treseder 2008). Nutrient limitation may be especially detrimental for species that exhibit rapid 

59 growth, like shade intolerant trees, because it can drastically reduce their ability to build 

60 photosynthetic machinery and some defensive compounds (Coley et al. 1985, Stamp 2003). 

61 When unable to defend against consumers, shade intolerant plants in low nitrogen habitats may 

62 lose more tissue to disease (Fine et al. 2004). Additionally, reduced photosynthetic capacity 

63 could reduce disease tolerance more when light and nutrients simultaneously limit growth 

64 (Baltzer and Thomas 2007, Myers and Kitajima 2007). Thus, susceptibility to pathogens among 

65 shade intolerant species may be particularly high when light and nutrients are limiting (Kitajima 

66 and Poorter 2010, Griffin et al. 2016, Griffin et al. 2017). 

67 In this study, we simultaneously tested how light and nutrient limitation influenced the 

68 susceptibility of an early successional tree species to pathogens and how pathogens impacted 

69 plant performance. We evaluate this using an important pioneer species of old fields and early 
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70 successional forests, Liquidambar styraciflua (Oosting 1942, Wright and Fridley 2010, Fridley 

71 and Wright 2018). In these early successional environments, L. styraciflua can experience severe 

72 foliar disease (McElrone et al. 2010) as well as varied nutrient and light conditions, making the 

73 interaction between pathogens and resource limitation important for understanding successional 

74 dynamics. To date, this interaction has been addressed in only a few studies (e.g., Griffin et al. 

75 2016, Griffin et al. 2017). We predicted that:

76 1) Fungal disease will be highest when light and nitrogen are both limiting.

77 2) Pathogen impacts on plant performance will be highest when light and nitrogen are both 

78 limiting. 

79

80 METHODS

81 Study system

82 Liquidambar styraciflua, or American sweetgum, is common throughout the 

83 Southeastern US, where it is a shade intolerant, early successional deciduous tree and a key 

84 transitional species during succession, competing well in early successional systems but 

85 becoming less common when its seedlings are shaded out as succession proceeds (Clark et al. 

86 2004, Wright and Fridley 2010, Hersh et al. 2012, Addington et al. 2015, Brown et al. 2020). 

87 We examined the impact of resource limitation and pathogen pressure in Duke Forest 

88 Teaching and Research Laboratory, (Orange Co., NC) in an old field and adjacent forest. Since 

89 1996, herbaceous dominance of the old field has been maintained through annual mowing. 

90 Throughout the old field, sweetgum occurs as seedlings and small saplings, which become larger 

91 and more abundant toward the forest edge. This 40 year-old forest is dominated by early 

92 successional trees such as loblolly pine (Pinus taeda), tulip poplar (Liriodendron tulipifera) and 

PeerJ reviewing PDF | (2020:05:49499:0:1:NEW 13 Jul 2020)

Manuscript to be reviewed

Bhadouria
Sticky Note
Add
Study site description including environmental data



93 American sweetgum. Later successional species like Acer rubrum and Quercus spp. also occur 

94 throughout the forest.

95 Experimental manipulations

96 We conducted the study from July through mid-October 2014 using a split-plot design. 

97 At the whole plot level we manipulated light availability (high light, low light, three intermediate 

98 light levels), and at the subplot level we manipulated nitrogen availability (high, low) and fungal 

99 pressure (sprayed, unsprayed). Each subplot was a single sweetgum seedling grown in its own 

100 pot; each whole plot was a cluster of four pots surrounded with a wire cage to exclude deer. 

101 These treatments were replicated 10× in the high light treatment, 10× in the low light treatment, 

102 and 4× at each of the 3 light levels along the light transect for a total of 128 subplots (i.e., pots) 

103 within 32 whole plots. 

104 Light availability

105 At the whole plot level, we randomly assigned seedlings to levels of light (high, low, or a 

106 position along a light transect). Seedlings in the high light treatment were placed in the open 

107 field; seedlings in the low light treatment were placed under the forest canopy. Each light 

108 transect ran between the high light treatment and the low light treatment, with seedlings at one of 

109 three points along the gradient from high to low light availability: ~10m from the forest edge, 

110 ~5m from the forest edge, or at the forest edge. 

111 To quantify differences in light availability between light treatments, in early October we 

112 attached one Onset HOBO pendant light logger (Onset Computer Corporation, Bourne, MA) to 

113 each whole plot replicate. The loggers measured and recorded light availability every 5 minutes 

114 for 10 days. At this time, overstory trees had not yet begun to noticeably senesce and no 

115 disturbances (e.g., tree falls) had occurred that would have substantially altered the light 
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116 availability from what these plants would have experienced earlier in the growing season. Thus, 

117 we expect the differences in light availability between treatments in October to reflect 

118 differences in the relative, although not absolute, light availability throughout the duration of the 

119 experiment.

120 Nitrogen availability and fungal pressure

121 At the subplot level, seedlings growing in separate pots were grouped into replicated 2 × 

122 2 factorial manipulations of nitrogen (high or low) and enemy damage (high or low) treatments. 

123 Within each light treatment, replicates of the four nitrogen × enemy damage treatment 

124 combinations (i.e., each whole plot replicate) were spaced ~5m apart. 

125 Seedlings in each nitrogen treatment received five applications of aqueous ammonium 

126 nitrate solution (NH4
+NO3

-) over the course of ten weeks, from July 24, before being moved to 

127 the field, to September 18, three weeks before the end of the study. Seedlings in the high 

128 nitrogen treatment received 2 g N m-2 application-1 (10 g N m-2 total), which corresponded to 92 

129 mg NH4
+NO3- plant-1 application-1, and seedlings in the low nitrogen treatment received 0.2 g N 

130 m-2  application-1 (1 g m-2 total), which corresponded to 9.2 mg NH4
+NO3

- plant-1 application-1. 

131 This application rate was intended to alleviate N limitation in old fields and other grass-

132 dominated communities (Borer et al. 2014, Fay et al. 2015) and substantially increased 

133 experimental soil N above baseline levels at this site (Stevens et al. 2015). 

134 Seedlings in the sprayed treatment were sprayed biweekly with a foliar fungicide, 

135 Mancozeb (Dithane DF, Dow AgroSciences, Indianapolis, IN), for the duration of the field 

136 study, while seedlings in the unsprayed treatment were not. Mancozeb is commonly used in 

137 ecological studies (e.g., Mitchell 2003, Parker and Gilbert 2007, Heckman et al. 2016, Heckman 

138 et al. 2017); it is a broad-spectrum non-systemic fungicide that has no known direct effects on 
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139 photosynthesis, leaf longevity, shoot growth, or root growth (Lorenz and Cothren 1989, Kope 

140 and Trotter 1998, Parker and Gilbert 2007), nor does it affect mycorrhizal fungi when applied at 

141 recommended rates (Parker and Gilbert 2007). In the greenhouse, fungicide application reduced 

142 total biomass by ~ 10%, but this effect was only marginally significant (P = 0.084; Table S1a; 

143 Fig. S1a, Supplementary Methods 1). 

144 Seedling propagation

145 We grew seeds purchased from Sheffield’s Seed Co. (Locke, NY) in flats in the 

146 greenhouse at the University of North Carolina at Chapel Hill for 10 days, then transplanted 

147 individual seedlings into 2.84L pots filled with 3:1 mix of potting medium (Fafard 3B; Sun Gro) 

148 and sterilized sand. To ensure that other soil nutrients would not limit seedling growth, we added 

149 to the potting medium 10 g P m-2 as triple super phosphate, 10 g K m-2 as potassium sulfate, and 

150 100 g m-2 micronutrients (Scotts Micromax, Marysville, OH), corresponding to 1 g triple super 

151 phosphate plant -1, 0.45 g potash plant -1, and 2 g micronutrients plant -1 (Borer et al. 2014, Fay et 

152 al 2015; soil N from site: Stevens et al. 2015). 

153 Measurements

154 In this study, we measured two responses—foliar damage and plant height—to determine 

155 whether light and nitrogen availability alter pathogen impacts on plants. Foliar damage by 

156 pathogens was quantified visually by referring to digitized images of known damage severity 

157 (James 1971, Mitchell et al. 2002, Mitchell et al. 2003). We measured foliar damage as the 

158 percent of leaf area visibly damaged on October 3, 2014 on five leaves per plant, including the 

159 youngest and oldest leaves as well as three leaves evenly spaced in age (e.g., on a seedling with 

160 10 leaves, we selected leaves 1,3,6,8, and 10). For seedlings with five or fewer leaves, we 

161 measured damage on every leaf. Surveying leaves of different ages should best describe the 
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162 mean level of damage across the entire plant, because damage typically increases with leaf age 

163 (Hatcher et al. 1995, Halliday et al. 2017, Heckman et al. 2019). 

164 Plant height was measured every two weeks from July 25, 2014, one week after placing 

165 seedlings in the field, until October 3, 2014 (6 observations). Each time, we measured seedling 

166 height from the base of the stem through the end of the petiole of the highest leaf, which reflects 

167 the highest point at which the seedling can photosynthesize. Here, we report the accumulation of 

168 height in these plants by calculating the area under the curve of these biweekly height 

169 measurements using the ‘auc’ function in the MESS package in R (Ekstrøm 2016). Height 

170 accumulation accounts for the non-linear nature of plant growth trajectories, allowing us to avoid 

171 post hoc selection of dates for analysis. 

172 Data Analysis

173 We analyzed these data with linear mixed effects models in the nlme package (Pinheiro et 

174 al. 2016) in R version 3.5.3 (R Foundation for Statistical Computing, Vienna 2019). Light was a 

175 categorical whole plot effect, while nitrogen and spraying treatments were categorical subplot 

176 effects. Because both maximal and total daily light availability were similar in transect and high 

177 light subplots (P = 0.18; Fig. S2), and because there were no significant differences in height 

178 between the transect and high light treatments, we combined transect subplots with high light 

179 subplots for all analyses. To meet the normality assumption for linear models, foliar fungal 

180 damage was cubed-root transformed. This transformation provided the best means of meeting the 

181 normality assumption because it is more strongly normalizing than the square root 

182 transformation, but less so than the log transformation. To reduce heteroscedasticity of residuals 

183 in the height analysis, we used the varIdent function in ‘lme’ to allow variances to differ between 

184 light treatments (Zuur et al. 2009, Pinheiro et al. 2016). 
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185

186 RESULTS

187 Impacts of light and nitrogen on efficacy of spraying

188 Light and nitrogen availability jointly altered the effect of spraying on visible foliar 

189 fungal damage (Light × Nitrogen × Spraying; P = 0.03; Table S2): in high light, fungal damage 

190 was unaffected by spraying or nitrogen treatment; in low light, fungal damage was near zero for 

191 all sprayed plants in both nitrogen treatments (Tukey HSD: P = 0.48), but fungal damage was 3× 

192 greater for unsprayed plants in the high nitrogen treatment than the low nitrogen treatment 

193 (Tukey HSD: P = 0.04). Averaged across all light and nitrogen treatments, spraying reduced 

194 fungal damage by 83% (Spraying, P < 0.001; Fig. S3).

195 Impacts of light and nitrogen on foliar fungal damage

196 Among only unsprayed plants, light availability altered the effect of nitrogen on foliar 

197 fungal damage (Nitrogen × Light, P = 0.01; Table S3; Fig. 1): in high light, fungal damage did 

198 not differ between nitrogen treatments (Tukey HSD: P = 0.078); in low light, however, fungal 

199 damage was over 3× higher on high nitrogen than low nitrogen plants (Tukey HSD: P = 0.039). 

200 This is contrary to our prediction that damage would be highest under low light and low 

201 nitrogen.

202 Impacts of light, nitrogen, and pathogens on plant height 

203 Light availability altered the effect of spraying on plant height (Damage × Light, P = 

204 0.002; Table S4; Fig. 2): in high light, sprayed plants grew 14% taller than unsprayed plants, but 

205 did not differ in low light (High light, Tukey HSD: P = 0.002; Low light, Tukey HSD: P = 0.22). 

206 This suggests that spraying reduced the deleterious effects of fungal disease on plant 

207 performance, even though it did not significantly reduce visible damage. Light availability also 
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208 altered the effect of nitrogen on height (Light × Nitrogen, P = 0.004; Table S4). In high light, 

209 plants grew 17% taller in the high nitrogen treatment than the low nitrogen treatment (Tukey 

210 HSD: P < 0.001). Height did not differ across nitrogen treatments in low light (Tukey HSD: P = 

211 0.62). Contrary to expectation, light and nitrogen did not interact with spraying to influence plant 

212 height (P = 0.72; Table S4).  

213

214 DISCUSSION

215 Light, nitrogen, and pathogens additively and interactively influenced foliar damage and 

216 plant height. Foliar fungal damage unexpectedly increased with increasing nitrogen availability 

217 only in low light, suggesting that increased nitrogen availability under low light makes plants 

218 more susceptible to enemies (Dordas 2009, Zhou et al. 2015, Ballaré and Pierik 2017). Despite 

219 the fact that damage was lower under high light, plant height was more heavily impacted by 

220 pathogens under high light conditions. This is contrary to other studies showing either greater 

221 impacts of pathogens and herbivores in low light or no difference in impacts between light 

222 environments (e.g., Augspurger 1983, Myers and Kitajima 2007, Bayandala et al. 2017). 

223 Together, these results demonstrate the importance of light and nitrogen for modulating pathogen 

224 impacts on plant performance. 

225 Increasing nitrogen availability increased pathogen damage in the shade, but not in the 

226 sun. Although this result could be attributable to differences in fungal inoculum between light 

227 environments, it is unlikely that differences in inoculum were solely responsible for variation in 

228 damage. First, this effect was mediated by nitrogen (Veresoglou et al. 2013). If inoculum load 

229 had differed systematically between high and low light, a strong main effect of light would be 

230 likely. Second, there is a biologically plausible mechanism specifically relating nitrogen and 
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231 light availability to enemy damage: plants in the shade may have lacked energy to synthesize 

232 defense compounds, leaving their nitrogen-rich leaves more susceptible to pathogen infection 

233 (Stamp 2003, Zhou et al. 2015). Additionally, shade intolerant species often downregulate the 

234 jasmonic acid pathway in low light, reducing their ability to resist pathogens (Ballaré and Pierik 

235 2017). Moreover, seedlings in low light may resist shedding their leaves, even when heavily 

236 damaged, because abscission would lead to greater carbon loss than pathogen damage (Russo 

237 and Kitajima 2016). These results also highlight potential influences of soil nutrients on 

238 consumer pressure across different stages of succession (Griffin et al. 2016, Griffin et al. 2017): 

239 high nitrogen supply may reinforce the dominance of shade intolerant species in early stages of 

240 succession (i.e., high light environments) by contributing to growth without increasing damage, 

241 but may undermine performance of shade intolerant species in later successional stages by 

242 increasing damage without increasing growth (Reinhart et al. 2010).

243 Interactive effects of light and nutrients on seedling disease may help explain patterns of 

244 species occurrence in forests. For instance, in the forest understory, seedlings of shade intolerant 

245 species like L. styraciflua do not aggregate as often as shade tolerant species, indicating 

246 conspecific negative density dependence (Clark et al. 2004, Brown et al. 2020), which may result 

247 from foliar disease (Hersh et al. 2012). This may prevent shade intolerant species from 

248 maintaining large enough seedling and sapling populations to exploit infrequent tree falls and 

249 result in their exclusion from forest understories (O’Hanlon-Manners and Kotanen 2004, 

250 Wulantuya et al. 2020). Thus, pathogens may provide important regulation of species in lower 

251 light environments. This may be especially true of shade-intolerant species, which typically 

252 exhibit acquisitive strategies characterized by rapid growth and little defense investment 

253 (Kitajima and Poorter 2010, Brown et al. 2020).  
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254 Increasing both light and nitrogen availability considerably increased plant height, a key 

255 measure of seedling performance. However, the effect of nitrogen depended on light availability: 

256 nitrogen addition had no effect on seedling height in low light, while nitrogen addition increased 

257 plant height in high light. This indicates that light was more limiting than nitrogen to growth in 

258 the understory, but that nitrogen was more limiting than light in the open field. Despite 

259 interactions between light and nitrogen on plant height, these resources did not simultaneously 

260 interact with pathogen pressure. Instead, spraying increased plant height only in high light, which 

261 was contrary to our prediction that pathogen impacts on plant performance would be higher 

262 under low light (Augspurger 1983, Stamp 2003, Myers and Kitajima 2007). This effect indicates 

263 that fungal pathogens were negatively impacting plant performance in high light, even without 

264 visible differences in fungal damage. This may have occurred because visible fungal damage 

265 symptoms include both the actual effect of the pathogen and the plant’s immune response to the 

266 pathogen (Agrios 2005). If leaf damage caused by pathogens had larger negative impacts on 

267 plant growth than damage caused by plant immune responses, then visible damage symptoms 

268 may not correspond one-to-one to impacts on fitness (Aldea et al. 2006) and spraying still could 

269 have reduced the deleterious effects of fungal pathogens on plant performance. Additionally, 

270 fungal pathogens may not have impacted plant height in low light because seedling growth was 

271 severely light-limited regardless of damage. 

272 Although this study demonstrates important impacts of light, nutrients, and pathogens on 

273 L. styraciflua performance, there are several limitations. First, this study was short. This short 

274 duration highlights a critical life history stage, survival and growth of establishing tree seedlings 

275 (De Steven 1991, Fridley and Wright 2018), but we cannot account for differences in overwinter 

276 survival or impacts of light, nutrients, and pathogens beyond this critical window. Second, by 
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277 growing seedlings alone in pots, we eliminated interspecific competition, which may have been 

278 more important in herbaceous-dominated old fields (Flory and Clay 2010, Fridley and Wright 

279 2012) than in the more sparsely vegetated forest understory. Thus, growing plants in pots versus 

280 directly into field soil may have had a larger impact on the results in herbaceous-dominated 

281 fields than in the forest understory. Third, the fungicide could have had different impacts in the 

282 field and greenhouse, which may have resulted from environmental differences between the 

283 greenhouse and the field. Under field conditions, ultraviolet radiation degrades fungicide and 

284 rainfall washes fungicide off leaves, necessitating frequent spraying to exclude pathogens 

285 (Parker and Gilbert 2007, Heckman et al. 2016). Using this spraying frequency in the 

286 greenhouse, where fungicide may not degrade as rapidly, may have exposed these plants to 

287 higher fungicide concentrations. But, if the fungicide treatment had also had direct negative 

288 effects on plant performance in the field, the positive effects of spraying on plant height would 

289 indicate an even stronger indirect positive effects of fungicide on plant performance (e.g., growth 

290 facilitated by reduced pathogen infection).

291 These results have important implications for the longer-term survival of seedlings across 

292 light environments. If seedlings in low light use belowground carbon stores to compensate for 

293 immediate damage rather than overwinter survival (Piper et al. 2015), it could reduce longer-

294 term survival and reproduction in ways that cannot be captured in a single-season study. 

295 Seedlings growing under high nitrogen already often allocate less biomass to root growth than 

296 leaf and stem growth because aboveground tissue can acquire the new limiting resource, light 

297 (Walters and Reich 1999, Shipley and Meziane 2002). However, this resource allocation strategy 

298 may leave fewer resources available for recovery from damage later in the growing season when 

299 deciduous trees increase carbon stores in preparation for large carbon expenditures the following 
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300 spring (Klein et al. 2016). Under these conditions, plants growing in low light are faced with the 

301 possibility of compensating for current tissue loss or maintaining carbon stores for the following 

302 spring. 

303 Establishment and growth of shade-intolerant species in old fields is an important stage 

304 of secondary succession (Meiners et al. 2015). The rapid rate of succession in southern US old 

305 fields relative to northern old fields is primarily driven by temperature (Fridley and Wright 

306 2018), but within regions, succession can also be driven by nutrients and consumers (Wright and 

307 Fridley 2010, Fridley and Wright 2012, Meiners et al. 2015). Here, foliar disease reduced the 

308 performance of L. styraciflua under high light conditions, suggesting that pathogens may be able 

309 to modestly slow the early stages of succession from fields to forests. Thus, herbaceous 

310 dominance of communities may last longer when L. styraciflua, one of the primary early 

311 successional trees of the region, experiences strong consumer pressure (Gill and Marks 1991). 

312 High disease on L. styraciflua may also explain why Pinus taeda, the other major pioneer 

313 species, is often the fastest growing tree in these old fields (R.W. Heckman, unpublished data). 

314 However, once young forests establish a closed canopy, increased nitrogen availability can 

315 increase foliar disease, but this effect appears too small to impact sweetgum regeneration in the 

316 understory—light limitation is too severe, even when pathogen pressure and nitrogen limitation 

317 are alleviated, to allow rapid seedling growth. 

318 In conclusion, we found that nitrogen and light interact to impact fungal damage, with the 

319 highest levels of damage at high nitrogen and low light. Despite this, spraying had larger impacts 

320 on plant height under high light, indicating that pathogen pressure was higher when light was 

321 abundant and that fungal pathogens exerted negative impacts on plant performance beyond what 

322 was visible on leaves. Overall, though, light limitation had the largest influence on plant 
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323 performance, overwhelming both nitrogen limitation and pathogen pressure. Given this, it 

324 appears that the shade intolerant species L. styraciflua can be excluded from later successional 

325 habitats solely through reduced light availability—high pathogen pressure and nitrogen 

326 limitation may exacerbate this, but are not required.  

327
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513 FIGURE LEGENDS

514 Fig. 1 Effects of nitrogen and light availability on mean foliar fungal damage for plants not 

515 sprayed with fungicide, calculated using linear mixed models and back transformed from a cubed 

516 root transformation. Dashed lines represent plants growing in low light and solid lines represent 

517 plants growing in high light. Error bars represent 95% confidence intervals (N = 32 whole plots; 

518 N = 64 subplots).

519

520 Fig. 2 Effects of nitrogen and light availability, and damage treatment on height accumulation in 

521 the field from 8 days after beginning the field experiment (73 days), calculated using linear 

522 mixed models. Dashed lines represent plants growing in low light and solid lines represent plants 

523 growing in high light. Error bars represent 95% confidence intervals (N = 32 whole plots; N = 

524 128 subplots).
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Figure 1
Effects of nitrogen and light availability on mean foliar fungal damage

Effects of nitrogen and light availability on mean foliar fungal damage for plants not sprayed
with fungicide, calculated using linear mixed models and back transformed from a cubed root
transformation. Dashed lines represent plants growing in low light and solid lines represent
plants growing in high light. Error bars represent 95% confidence intervals (N = 32 whole
plots; N = 64 subplots).
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Figure 2
Effects of nitrogen and light availability, and damage treatment on height accumulation
in the field

Effects of nitrogen and light availability, and damage treatment on height accumulation in
the field from 8 days after beginning the field experiment (73 days), calculated using linear
mixed models. Dashed lines represent plants growing in low light and solid lines represent
plants growing in high light. Error bars represent 95% confidence intervals (N = 32 whole
plots; N = 128 subplots).
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