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ABSTRACT
Background. Glutamate excitotoxicity can cause DNA damage and is linked to many
retinal and neurological disorders. In mammals, the visual signal from the eyes to the
brain is conducted only by retinal ganglion cells (RGCs), which can be damaged by
overstimulation of glutamate receptors.
Methodology. We examined the protective effects of Moringa oleifera seed extract
against glutamate-induced DNA damage in RGCs. RGCs cells were treated with 5, 10,
50, or 100 µg/ml ofM. oleifera seed extract and glutamate separately and then assessed
for DNA damage using the comet assay. We also evaluated the viability of the RGCs
after both treatments using the MTT test. Additionally, RGCs were pretreated withM.
oleifera seed extract (50 or 100µg/ml) for 2 h before glutamate treatment (100µg/ml) to
determine the potential protective effects ofM. oleifera. We performed a phytochemical
analysis of theM. oleifera seed extract using standard reactions.
Results. The M. oleifera seed extract was found to be rich in many phytochemicals.
We observed a significant dose-dependent elevation in all comet assay variables in
glutamate-treated RGCs, whereasM. oleifera seed extract treatments did not show any
significant change in DNA integrity.
Conclusion. M. oleifera seed extract demonstrates neuroprotective effects, which
suggests it may help to prevent the development of many neurodegenerative disorders.

Subjects Biochemistry, Cell Biology
Keywords Moringa oleifera , Glutamate, Retinal Ganglion Cel, Comet assay, DNA damage

INTRODUCTION
Glutamate is the major excitatory neurotransmitter in the mammalian brain (Zhou &
Danbolt, 2014). More than 50% of neurons in the central nervous system use glutamate
as their primary neurotransmitter and almost all thalamocortical, corticocortical, and
corticofugal neurotransmission are mediated by glutamate (Nieuwenhuys, 1994; Fendt &
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Verstreken, 2017). Neuronal depolarization at presynaptic terminals releases glutamate,
which is then recycled by excitatory amino acid transporters present in neurons and
glia (Amara & Fontana, 2002; Javitt, 2004). Nearly 60% of brain energy metabolism is
consumed in the reuptake and recycling of glutamate. This occurs through the conversion
of glutamate to glutamine in glia, and the conversion back to glutamate via the action of
neuronal glutaminase (Shulman, Hyder & Rothman, 2002; Massucci et al., 2013; Aldana et
al., 2020). Although, glutamate plays a major role in neural development, differentiation,
and plasticity, excess glutamate concentration can lead to excitotoxicity resulting in
uncontrolled depolarization of neurons, finally leading to neuronal death (Mattson, 2003;
Mattson, 2008; Hazell, 2007).

Glutamate plays a significant role in the visual system of retinal ganglion cells (RGCs) as
it is the main excitatory neurotransmitter in these neurons (Massey & Miller, 1987;Massey
& Miller, 1990; Thoreson & Witkovsky, 1999; Finlayson & Iezzi, 2010). Visual information
captured by the eye is sent to the brain only through the optic nerve, which contains
approximately 1.2 million RGC axons (Vrabec & Levin, 2007). RGCs are the meeting
point for retinal information processing (D’Souza & Lang, 2020). Glutamate receptors are
expressed by all types of retinal RGCs and N-Methyl-D-aspartate (NMDA) excitotoxicity
is believed to result in RGC death in many retinal pathologies (Zhang & Diamond, 2009;
Evangelho et al., 2017).

Preprocessed visual information is transmitted in the brain through RGC axons in
sequences of action potentials. Mammalian RGCs expressmany neurotransmitter receptors
and are able to receive excitatory and inhibitory input through chemical synapses; however,
glutamate can damage RGCs through the overstimulation of glutamate receptors, namely,
NMDA receptors (Lucas & Newhouse, 1957; Olney, 1982; Sisk & Kuwabara, 1985; Vorwerk
et al., 1996). In mammals, many retinal diseases are linked to glutamate excitotoxicity since
the visual signal from the eyes to the brain is only conducted by RGCs (Bringmann et al.,
2013). Additionally, RGCs are unable to revive their axon if the optic nerve is damaged,
which can result in optic neuropathies with complete visual loss (Bessero & Clarke, 2010).
Therapeutic strategies to protect RGCs could provide a favorable effect to maintain the
functions of these cells.

The products derived from various herbs and plants, being a rich source of bioactive
compounds and multifunctional curing agents, are considered as relatively safe for the
consumption. According to the Food andAgricultureOrganization (FAO), around 70–80%
of world’s population, particularly in developing countries, counts on herbal medicines
for the cure and prevention of many diseases (Ekor, 2014). Moringa oleifera Lam. (Family
Moringaceae), also known as drumkstick or horseradish tree, is considered as one of
the most valued plant in the folk traditional medicine. It is an economical and easily
available source of major essential nutrients and nutraceuticals, and has a remarkable
ability to eradicate the malnutrition. The Moringa is often regarded as famous famine
food due to its extreme resistance to arid and drought conditions owing to their tuberous
roots (Saini, Sivanesan & Keum, 2016). Almost each part of this plant has been used for
the preparation of useful medicine, nuteraceuticals, functional food, water purification
and production of biodiesel (Kou et al., 2018). Various biological studies conducted on
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different extracts of M. oleifera have claimed that this plant has enormous potential to
exhibit antioxidant, antimicrobial, anti-inflammatory (Gaafar et al., 2016), anticancer
(Khor et al., 2018), hepatoprotective, antidiabetic (Muzumbukilwa, Nlooto & Owira, 2019),
analgesic, antipyretic, immunomodulatory (Anudeep et al., 2016), gastroprotective, anti-
ulcer (Adugba et al., 2018) cardiovascular, anti-obesity (Mabrouki et al., 2020), nootropic,
diuretic, antiepileptic, anthelmintic, antiasthmatic, anti-allergic, anti-urolithiatic, local
anesthetic, antidiarrhealand wound healing properties due to the presence of high amount
of micronutrients and health-promoting phytochemicals (Bhattacharya et al., 2018).
However, little is known about its neuroprotective effects against glutamate excitotoxicity
(Iqbal & Bhanger, 2006; Igado et al., 2018).

Keeping in consideration the extensive chemical and pharmacological profile, we
designed the present study to investigate the neuro-protective effect of M. oleifera
seed extract in ameliorating the genotoxic and cytotoxic effects of glutamate-induced
excitotoxicity in a primary RGC line through the use of COMET assay and cell viability
techniques respectively.

MATERIALS & METHOD
Plant material
The seeds of the Moringa oleifera were purchased from the local market of the Riyadh,
Saudi Arabia. Sample material was identified and authenticated by Prof. Dr. Mohamed
Yousef of the Pharmacognosy Department, College of Pharmacy at King Saud University,
Saudi Arabia. A voucher specimen (MO-5302) has been kept in the herbarium of the same
department. Seeds were cleaned of dirt, washed and dried at room temperature. The dried
seeds were finely powdered by using domestic blender, collected in plastic bags and placed
in cold place at 4 ◦C, prior to use.

Extraction of plant samples
The powdered seeds (1 kg) of M. oleifera were soaked in methanol (3 L) with continuous
shaking at 2 h intervals for 78 h at room temperature to obtain maximum extraction of
bioactive constituents (Do et al., 2014; Dhawan & Gupta, 2017). The obtained extract was
filtered through Whatman No. 1 filter paper and centrifuged to remove the suspended
material. The extraction process was repeated thrice under the similar conditions. All the
organic extracts were pooled and freed from organic solvent on rotaevaporator at 40 ◦C
under reduced pressure to yield a dark brown residue (69.8 g). The dried residues were
transferred to glass tubes, tightly stoppered, and stored at 5 ◦C until further use.

Phytochemical screening M.olifera seed extract
Chemical tests were performed for the phytochemical analysis of compounds present in the
extract. These tests include Borntrager’s test for anthraquinones, Shinoda test for phenols,
Ferric chloride test for flavonoids, Libermann–Burchard test for steroids–triterpenoids,
lead acetate test for tannins, Dragendorff’s test for alkaloids, Rosenthaler test for saponins,
and Keller–Killiani test for cardiac glycoside (Brain & Turner, 1975;Harborne, 1998; Samejo
et al., 2013).
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Quantitative analysis of M.olifera seed extract
Spectrophotometric assay was used to perform the phytochemical analysis of methanolic
extract of M.olifera seed by obeying Onwukeame et al. method with little modifications
(Onwukeame, Ikuegbvweha & Asonye, 2007). The total phenolic composition in M.olifera
extract was calculated by plotting a graph of gallic acid standard as previously mentioned
(Luximon-Ramma et al., 2002). Briefly, 0.120 mL of seed extract was mixed with 0.5 mL
of distilled water, followed by the slow addition of 0.12 mL of Folin–Ciocalteu reagent
and incubated at ambient temperature for 5 min. Afterwards, 7% of sodium bicarbonate
solution (1.20 mL) was added to the reaction mixture and volume made up two mL
with distilled water and incubated for 1 h at ambient temperature. After 1 h incubation,
the absorbance was recorded at 760 nm. The results were calculated as µg of gallic acid
equivalents/mg of the seed extract (GAEs). However, the measurement of flavonoid
content in the seed extract ofM.olifera was performed by using a quercetin reference curve
as previously described by Ghosh et al. (Ghosh et al., 2012). Briefly, one mL of seed extract
ofM.olifera was mixed with one mL of 2% aluminum chloride and incubated for 30 min at
room temperature. After 30 min incubation, the absorbance was measured at 368 nm. The
results were calculated as µg of quercetin equivalents (QEs)/mg of seed extract. Flavonols
content in the seed extract was estimated by using rutin as a reference. The method is
based on the complex formation displaying absorption at 440 nm (Grubesic et al., 2005).
The results were determined as µg of rutin equivalents/mg of seed extract. The content
of tannin in M.olifera seed extract was determined by applying Folin-Denis procedure
(Oyaizu, 1986). The method is based on the formation of a precipitate upon treatment
with casein showing absorption at 720 nm. The results were calculated as µg of tannic acid
equivalents/mg of seed extract.

Antioxidant activity of methanol extract of M.oleifera
Two diverse radical scavenging assays, DPPH (1, 1-diphenyl- 2-picrylhydrazyl) and ABTS
(2, 20-azino-bis [3-ethylbenzothiazoline-6-sulphonic acid]) free radical scavenging were
applied to examine the antioxidant potential of methanol seed extract ofM.oleifera.

DPPH free radical scavenging activity
The DPPH free radical scavenging activity of the seed extract of M.oleifera and butylated
hydroxytoluene (BHT) (Sigma-Aldrich, St. Louis,Missouri, USA) as the reference standard,
was determined by obeying standard procedure (Mensor et al., 2001). Briefly, 0.1 mM
DPPH reagent (Sigma-Aldrich, St. Louis, Missouri, USA) in methanol and three different
concentrations (25, 50, 100 µgmL−1) of M.oleifera extract or BHT in methanol were
prepared prior to the experiment. The reaction mixture was initiated by adding 50 µL of
DPPH solution and varied concentration of M.oleifera extract and BHT to each well of
96-well microplate. The whole reaction mixture was subjected to continuous shaking using
orbital shaker for 30 min under dark conditions. After 1 h incubation, the absorbance
of the reaction mixture was measured at 593 nm using a UV-vis spectrophotometer
(Multiskan GO; Thermo Scientific, Waltham, MA, USA), with methanol as a blank. All
the measurements were performed in triplicates. The scavenging abilities ofM.oleifera seed
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extract and BHT on DPPH free radicals was calculated by applying the following equation:

DPPH free radical scavenging(%)=
Cr−Tr

Ct
×100 (1)

Where Cr and Tr is the absorbance of control and the test samples, respectively

ABTS free radical scavenging activity
A standard method described by Re et al. (1999) was followed to evaluate the ABTS free
radical scavenging potential of the seed extract of M.oleifera and BHT taken as a reference
standard. Briefly, two stock solutions of 7.4 mM ABTS and 2.6 mM potassium persulfate
(Sigma-Aldrich, St. Louis, Missouri, USA) were prepared in methanol individually. To
prepare the working solution of ABTS, equivalent amounts of stock solutions were mixed
and kept undisturbed for 16 h under dark conditions at room temperature. In a 96-well
microplate, 135 µL of the ABTS working solution and different concentration (25, 50, 100
µgmL−1) ofM.oleifera extract and BHT to each well. The reaction was mixed and allowed
to stand in dark for 2 h at ambient temperature. The UV–Vis spectrophotometer was used
to record the absorbance of the reaction mixture at 743 nm, with methanol as a control. All
the measurements were carried out in triplicates. The scavenging abilities ofM.oleifera seed
extract and BHT on DPPH free radicals was calculated by applying the following Eq. (1).

Isolation and purification of RGCs
The Retinal cells were obtained with the help of expert in Animal Reproduction Research
Institute (ARRI)-Kafr Nassar, Al Haram, Giza Governorate, Egypt. Six four-day- old
Sprague-Dawley rats were used to isolate RGCs. The rats were kept in standard housing
conditions with 12 h light/dark cycle in a temperature-controlled room with free access
to food and water. Rats were euthanized by using CO2 inhalation followed by cervical
dislocation. Eyes were dissected out, and excess muscle and connective tissue were removed
in ice cold phosphate-buffered saline (PBS). RGCs were purified and stored in isotonic
buffer solution containing inorganic salts, glucose, papain, and DNase I for half an hour.
Papain activity was stopped using ovomucoid solution. A 40 µm mesh filter was used
to obtain the single-cell suspensions using a filtering process. Negative and positive cell
selection was performed using rabbit anti-rat macrophage/Thy-1 antibody-coated Petri
dishes. Panning plates were incubated overnight at 4 ◦C and rinsed 3 times with balanced
salt solution . Poly-D-Lysine solution was added and cells were incubated overnight at
room temperature. Dried cells were incubated with Mouse laminin for 120 min at 37 ◦C.
Finally RGCs were seeded on PDL- and laminin-coated coverslips in RGC growth medium
at 37 ◦C in a 5% CO2 incubator. Half quantity of medium was replaced on the third day.
The protocol of this work was approved by ethical committee, King Saud University with
approval number EC Ref No.: 4/67/352670.

Cell treatment
Pure RGCs were divided into three groups depending upon the treatment: control (without
treatment); M. oleifera treatment (5, 10, 50, or 100 µg/ml of seed extract); glutamate
treatment (5, 10, 50, or 100 µM glutamate for 48 h). Finally, cells individually pretreated
with extracts (50, or 100 µg/ml) were exposed to 100 µM glutamate for 48 h.
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Comet assay
The method described by Singh et al. (1988) was uperformed for the comet assay. Cells
were treated with test material for 24 h in Petri dishes. Cells were trypsinized (0.1% for
4 min), suspended, and centrifuged for 10 min at 800 rpm. Afterward, 600 µl of 0.8%
low-melting agarose was added to the cell suspension and relocated to pre-coated agarose
slides. The coated slides were dipped in lysis buffer (0.045 M TBE, pH 8.4, having 2.5%
SDS) for 20 min. The slides were placed on a gel electrophoresis and covered with ice-cold
alkaline solution (300 mM NaOH and 1mM Na2 EDTA, pH 13) in the dark at 0 ◦C for 20
min, before the electrophoretic run. The electrophoresis settings were 2 V/cm for 20 min
and 100 milliampere (mA). Ethidium bromide (20 µg/ml at 4 ◦C) was used for staining.
DNA fragment migration patterns of 100 cells for each dose level were evaluated with a
fluorescence microscope. DNA damage was measured as tail length (TL= distance of DNA
migration from the center of the body of the nuclear core) and tail intensity of DNA (TI=
% of genomic DNA that migrated during the electrophoresis from the nuclear core to the
tail).

Determination of cell viability
The MTT test was used to measure cell viability. Absorbance was recorded at 490 nm using
a microplate reader. The results are presented as a percentage of control (untreated cells)
or as a percentage of glutamate excitotoxicity.

Statistical analysis
Data were analyzed using the Statistical Package for the Social Sciences (SPSS, Chicago, IL,
USA). Results are presented as mean ± standard error (SEM). All statistical comparisons
among groups used one-way analysis of variance complemented with Dunnett’s test for
multiple comparisons. Significance was considered as p < 0.05.

RESULTS
Phytochemical description of the extracts
The phytochemicals present in the crude extract of M. oleifera seeds are listed in Table 1.
The methanol seed extract of M.olifera showed the presence of a variety of bioactive
constituents, including phenolics, flavonoids, flavonols, tannins, and steroids. These
bioactive components were qualitatively screened by phytochemical analysis and might
be responsible for the neuroprotective effects. The content of secondary metabolites such
as phenols, flavonoids, flavonols and tannins in the methanol seed extract of M.olifera
was summarized in Table 2. The estimation of phenolics, flavonoid, flavonol and tannin
content in the M.olifera seed extract was determined by using gallic acid, quercetin, rutin
and tannic acid respectively, as standards. The obtained results revealed that the seed extract
ofM.olifera contains total phenolic, flavonoid, flavonol and tannin content in the range of
78.59 ± 0.98 µg mL−1, 112.23 ± 1.1 µg mL−1, 4.98 ± 0.56 µg mL−1 and 23.73 ± 0.65 µg
mL−1, respectively.
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Table 1 Phytochemical screening of crude methanol extracts ofM. oleifera seeds.

Identified phytoconstituents M. oleifera

Phenolics +++
Flavonoids +++
Tannins ++
Triterpenoids +++
Coumarins ++
Cardiac glycosides ++
Anthraquinones +
Alkaloids +

Notes.
-, absent; +, low intensity; ++, medium intensity; +++, strong intensity.

Table 2 Phytochemical estimation of phenolic, flavonoids, flavonol, tannins content in methanol ex-
tract ofM.olifera seed extract.

S.No Phytochemical components M.olifera seed extract
Absorbance (nm) Content (µg mL−1)

1 Total phenolic 0.224± 0.65 78.59± 0.98
2 Total flavonoids 0.446± 0.02 112.23± 1.1
3 Total flavonols 0.124± 0.14 4.98± 0.56
4 Total tannins 0.014± 0.002 23.73± 0.65

Antioxidant activity of methanol extract of M.oleifera
The antioxidant potential M.oleifera seed extract was investigated according to assays
performed in various radical scavenging studies, i.e., the DPPH free radical scavenging and
ABTS free radical scavenging assays. DPPH and ABTS•+ cation radicals are reactive against
most of the antioxidants and their decolorization indicates the abilities of antioxidants
to donate hydrogen atoms or electrons to inactivate the radical species. The IC50 values
of the extract for both DPPH radical scavenging and ABTS•+ cation radical scavenging
are presented in Table 3. The obtained results revealed that the M.oleifera seed extract
showed similar activity trend towards both the assays. M.oleifera seed extract displayed
the lowest IC50 values for both DPPH (18.68 ± 5.54) and ABTS•+ (21.25 ± 2.22) radical
scavenging assays and hence exhibited the highest radical scavenging potential. There was
no significant difference (p≥ 0.05) in the scavenging effect of DPPH and ABTS. The strong
DPPH and ABTS•+ radical scavenging effects of seed extract ofM.oleiferamay be credited
to the presence high phenolic and flavonoid contents in extract.

Comet assay
Protective effect of M. oleifera seed extract against glutamate-induced DNA damage in a
primary RGC was evalvated by results of Comet assay. Assessment of the genotoxic activity
of glutamate and antigenotoxic activities M. oleifera seed extract were estimated by the
parameter related to percentage of tailed DNA in treated cells as compared to control.
Table 4 presents the comet assay measured variables of cells in all groups. Glutamate was
found to be significantly toxic in a dose-dependent manner for RGCs as compared to
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Table 3 The IC50 values for the DPPH and ABTS·+ radical scavenging activities of the seed extract of
M. olifera.

Sample Concentration
(µgmL−1)

DPPH radical
scavenging
IC50 (µg/ml)

ABTS radical
scavenging
IC50 (µg/ml)

M.oleifera seed extract 25 42.03± 0.65 45.42± 2.2
50 34.13± 1.02 38.12± 0.98
100 18.68± 5.54 21.25± 2.22

BHT 100 10.65± 0.65 13.98± 1.01

Table 4 Comet assay-measured variables inM. oleifera seed extract-treated and glutamate-treated
retinal cells.

COMET
assay
variables

Treatment Concentration

5 ug/ml 10 ug/ml 50 ug/ml 100 ug/ml

Control 1.23± 0.09 1.23± 0.09 1.23± 0.09a 1.23± 0.09
Glutamate 1.57± 0.13a 2.03± 0.22a# 3.36± 0.32a# 4.62± 0.41a#

Tail
length
(µm) M. olifera 1.11± 0.06 1.22± 0.06 1.26± 0.07# 1.30± 0.08a

Control 1.24± 0.16 1.24± 0.16 1.24± 0.16 1.24± 0.16
Glutamate 1.83± 0.12a 2.03± 0.11a# 3.06± 0.15a# 3.85± 0.58a#

Tail
DNA
(%) M. olifera 1.22± 0.05 1.23± 0.03 1.26± 0.05 1.39± 0.03#

Control 1.51± 0.10 1.51± 0.10# 1.51± 0.10# 1.51± 0.10
Glutamate 2.88± 0.41a# 4.12± 0.44a# 10.32± 1.49a# 17.96± 4.09a#

Tail
Moment
(Unit) M. olifera 1.36± 0.11 1.49± 0.07# 1.58± 0.08# 1.82± 0.14#

Notes.
ap< 0.001, value between each group and the control group.
#p< 0.001 value between all groups.
All groups were compared using one-way ANOVA with Dunnett test (Multiple Comparisons) to compare each group with
the control group Kruskal-Wallis test was used to compare all groups using parametric data. Mann–Whitney test was used to
compare each group with the control group for non-parametric data.

control untreated RGCs.Glutamate-induced DNA damage in RGCs is shown in Figs. 1 and
2. We noticed negligible damage with M. oleifera seed extract as compared with glutamate
(Figs. 1–2).

Cell viability
Protective effect of M. oleifera seed extract against glutamate-induced neurotoxicity in
a primary RGC was done by calculate cell viability and proliferation through MTT
assay. In this assay metabolic reduction of the soluble 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) salt to insoluble colored formazan product by
mitochondria dehydrogenase of live RGC cells was measured spectrophotometrically
at 480 nm. The amount of formazan dye formed in cells treated with glutamate and
M. oleifera seed extract was directly correlates to the number of viable cells. Results of
cytotoxic effects on RGC proliferation after treatment are presented in Table 5 and Fig. 3.
M. oleifera seed extract showed negligible toxicity compared to glutamate and showed a
dose-dependent reduction in cell viability. The inhibition of cell proliferation was most
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Figure 1 Measurements of glutamate-induced DNA damage by comet assay in control, glutamate-
treated, andM. oleifera-treated RGCs.

Full-size DOI: 10.7717/peerj.11569/fig-1

obvious at the 100 µMconcentration, which suggests dose-dependency. Cell viability of the
seed extract-treated RGCs was significantly different compared to glutamate intoxicated
cells. Cyto-protective effects of the seed extract were evaluated by pretreating cells with the
extract before exposing the RGCs to glutamate. These results are shown in Table 6. RGCs
were pretreated with 50 and 100 µg/ml of the seed extract for 2 h before exposing the cells
to 50 µM and 100 µM of glutamate. We observed a remarkable increase in cell viability
(Table 6 and Fig. 4).

DISCUSSION
The seed extract was found rich in flavonoid and phenolic components due to the
presence of free hydroxyl (OH) and carboxyl (CO) groups in their structure. Recently, the
implications of excitotoxicity as an agent of human diseases have been highlighted and
given special attention as etiological mechanisms of many diseases reveals a critical need
for developing anti-excitotoxic neuroprotective strategies (Wu & Tymianski, 2018; Fern
& Matute, 2019; Hardingham, 2019; Ge et al., 2020). The present study demonstrates the
protective potential of M. oleifera seed extract against glutamate-induced DNA damage
in RGCs. To evaluate possible DNA damage induced by glutamate in RGCs, we used the
comet assay as this technique has been successfully applied in cell cultures and neurons
to explore toxicity (Chao et al., 1999; Lamarche et al., 2003; Signorini-Allibe et al., 2005).
We observed a significant increase in DNA damage in cells treated with glutamate. This
result was expected since DNA damage in neurons is an early sign of excitotoxicity
(Didier et al., 1996; Gwag et al., 1997). Many severe ocular diseases occur due to increased
glutamate levels causing retinal neurodegeneration and RGC death (Bringmann et al.,
2013; Fernandez-Sanchez et al., 2017; Xia & Rizzolo, 2017; Blanco et al., 2017). Neurons
tend to show reversible nuclear oxidative DNA damage in response to glutamate receptor
activation (Yang et al., 2010).
In the present study, the genotoxic potential of glutamate was clearly demonstrated by the
dose-dependent elevation in the comet variables, indicating the extent of DNA damage
in the neuronal cell culture (Table 4). The RGCs were exposed to 5, 10, 50, or 100 µg/ml
glutamate and all doses caused significant DNA damage with higher concentrations
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Figure 2 Percentage change in comet assay variables ofM. oleifera-treated RGCs with control un-
treated cells and glutamate excitotoxic cells.

Full-size DOI: 10.7717/peerj.11569/fig-2

showing greater damage. Many previous studies have described toxic concentrations of
glutamate with a similar trend (Mattson, Dou & Kater, 1988; Choi, 1992; Mattson, 2003;
Balazs, 2006). A high level of glutamate in cells can prompt DNA damage and cell death in
rat primary cerebral cortical cultures (Yang et al., 2011). High glutamate levels can induce
mitochondrial Ca2+ uptake with raised mitochondrial respiration, which can increase
superoxide and other genotoxic free radicals and trigger DNA damage and neuronal
death (Sengpiel et al., 1998; Chinopoulos et al., 2000; Kruman et al., 2000; Culmsee et al.,
2001). More recent studies have indicated that in response to glutamate excitotoxic level,
Ca2+ and oxidative flows can interact in endoplasmic reticulum-mitochondrial signaling
and trigger mitochondrial membrane permeabilization followed by the activation of
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Table 5 Comparison with control group (Viability); glutamate group (Viability).

Treatment Concentration

5 ug/ml 10 ug/ml 50 ug/ml 100 ug/ml

Control 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
Glutamate 0.94± 0.02 0.85± 0.02 0.76± 0.01 0.58± 0.03
M. olifera 1.00± 0.00# 0.97± 0.02a# 0.93± 0.02a# 0.91± 0.04a#

Notes.
aSignificant difference compared with the control group at 0.05 level.
#Significant difference compared with the glutamate group at 0.05 level and 0.01 level.
All groups were compared using one-way ANOVA test with Dunnett test (Multiple Comparisons) to compare each group with
the control group. For parametric data, Kruskal-Wallis test was used to compare all groups. For non-parametric data, Mann–
Whitney test was used to compare each group with the control group.

Figure 3 Percentage change of cell viability with variousM. olifera concentrations compared to the
control and glutamate groups.

Full-size DOI: 10.7717/peerj.11569/fig-3

Table 6 Comparison with glutamate group (Viability).

Parameters Extracts Mean± S.D

Glutamate 0.76± 0.01
Extract (50) + Glut (100)

M. olifera 0.65± 0.01#

Glutamate 0.58± 0.03
Extract (100) + Glut (100)

M. olifera 0.71± 0.02#

Notes.
#Significant difference compared with the glutamate group at 0.01 level.
One-way ANOVA test with multiple comparisons (Dunnett test) was used.

caspase-dependent or caspase-independent apoptosis signaling (Tajeddine, 2016; Hempel
& Trebak, 2017; Humeau et al., 2018).

After exposing neurons with the same concentration (5, 10, 50, or 100 µg/ml) of M.
oleifera seed extract, DNA damage values were slightly different from controls even at the
higher concentration, which suggests low toxicity of the extract. Triterpenoids, cardiac
glycosides, anthraquinones, and flavonoids that are present in the seed extract are known
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Figure 4 Percentage change inM. oleifera-treated cells (EXT) compared to glutamate on cell viability.
Full-size DOI: 10.7717/peerj.11569/fig-4

for antioxidant and free radical scavenging potential (Table 1). The presence of such
phytochemicals suggests that the extract should be evaluated for its health-protective
potential. Studies by Jahan et al. (2018) have also shown strong antioxidant and free radical
scavenging activities of M. oleifera seed extract. Glutamate caused a marked decrease
in the viability of RGCs, especially at higher concentrations, whereas M. oleifera seed
extract showed almost negligible effects even at higher concentrations (Table 5). Many
studies show healing effects of M. oleifera seed extracts through their antioxidant and
detoxification mechanisms (Pakade, Cukrowska & Chimuka, 2013; Jahan et al., 2018).
M. oleifera has a long history in Ayurveda medicine of treating many central nervous
system diseases (Hannan et al., 2014). M. oleifera extract has been found to increase
neuronal cell viability with minimal cellular injury. It can also extend branches in neurons,
can modulate axonal development, and promote synaptogenesis (Hannan et al., 2014).
We observed neuroprotective effects of M. oleifera when cells were pretreated with 50
and 100 µg/ml of M. oleifera seed extract before glutamate treatment (Table 6, Fig. 3).
These results suggest that M. oleifera seeds could be further explored for the treatment of
neurodegenerative disorders. M. oleifera seed, being rich in phytochemicals (Table 1) can
be linked to its ameliorating effect against glutamate excitotoxicity in RGCs as oxidative
stress and detoxification mechanisms are considered among the main etiological factors in
neurological disorders.

CONCLUSIONS
Under the conditions employed in the current study, M. oleifera extract demonstrated
chemoprotection against the genotoxic and cytotoxic effects of glutamate on RGC.
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