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Mammalian predations show a higher degree of prey bone utilization relative to theropods
dinosaurs, with this major ecological difference reflected in the frequency and morphology
of tooth marks in modern and Cenozoic assemblage relative to Mesozoic ones. As such,
prey bone utilization (i.e., gnawing, bone-breaking, osteophagy) may represent a key
ecological strategy repeatedly exploited by mammalian carnivores but rarely in theropod
dinosaurs. Here we described an isolated adult-sized hadrosaurid pedal ungual (lll-4) from
the Dinosaur Park Formation (Campanian) of southern Alberta which shows a unique
pattern of bite marks from a small- to medium-sized theropod dinosaur. Thirteen distinct
tooth marks occur in a restricted area of the ungual, and the pattern suggests up to six
repeated, high-power bites delivered to the bone. The tracemaker cannot be definitively
identified, but was likely a dromaeosaurid or very young tyrannosaurid. Tooth marks on at
least four other Dinosaur Park Formation hadrosaur pedal unguals are reported, but the
overall frequency of occurrence in unguals (< 1%) is much lower than that reported for
other bones. The pattern of tooth marks on this specimen deviates from most described
theropods tooth marks, and given the low volume of meat associated with the ungual, may
represent theropod prey bone utilization as part of late-stage carcass consumption, and a
behavior similar to mammalian gnawing.
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Abstract

Mammalian predations show a higher degree of prey bone utilization relative to
theropods dinosaurs, with this major ecological difference reflected in the frequency and
morphology of tooth marks in modern and Cenozoic assemblage relative to Mesozoic ones. As
such, prey bone utilization (i.e., gnawing, bone-breaking, osteophagy) may represent a key
ecological strategy repeatedly exploited by mammalian carnivores but rarely in theropod
dinosaurs. Here we described an isolated adult-sized hadrosaurid pedal ungual (I1I-4) from the
Dinosaur Park Formation (Campanian) of southern Alberta which shows a unique pattern of bite
marks from a small- to medium-sized theropod dinosaur. Thirteen distinct tooth marks occur in a
restricted area of the ungual, and the pattern suggests up to six repeated, high-power bites
delivered to the bone. The tracemaker cannot be definitively identified, but was likely a
dromaeosaurid or very young tyrannosaurid. Tooth marks on at least four other Dinosaur Park
Formation hadrosaur pedal unguals are reported, but the overall frequency of occurrence in
unguals (< 1%) is much lower than that reported for other bones. The pattern of tooth marks on
this specimen deviates from most described theropods tooth marks, and given the low volume of
meat associated with the ungual, may represent theropod prey bone utilization as part of late-
stage carcass consumption, and a behavior similar to mammalian gnawing.

Introduction

A major ecological and feeding behavior distinction between the Mesozoic theropods
dinosaur and modern and Cenozoic mammalian predations is the difference in utilization of prey
bones as a food source (Fiorillo 1991). Both modern and fossil carnivorous mammalian species
have been shown to make extensive use of prey bones as a dietary source (Kruuk 1972; Haynes
1980; Van Valkenburgh 1996). This is often characterized by repeated, high-power bites to bone
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extremities by premolars and molars, often for the purpose of exposing the lipid and nutrient rich
marrow (Van Valkenburgh 1996; Van Valkenburgh 2007). This behavior may be considered
‘gnawing’, in that it follows the definition ‘to bite or chew something repeatedly, usually making
a hole in it or gradually destroying it’ (Cambridge 2016). This gnawing behavior is also often
taxon and season specific, allowing for ecological inference based of gnawing damage (Haynes
1980; Haynes 1983). Indeed, bone-cracking as a specialized ecological strategy that has evolved
several times within Carnivora (Van Valkenburgh 2007; Tseng 2013). While this gnawing
behavior is most well-established in mammals, most commonly orders Carnivora and Rodentia,
this behavior may be present in other taxa as well.

In contrast to the pattern in Recent and Cenozoic mammals, most research on Mesozoic
theropod dinosaurs has suggested that prey bone utilization in theropods is limited, with little
direct evidence in the way of gnawing behavior (Fiorillo 1991; Chure et al. 1998; Jacobsen 1998;
Hone & Rauhut 2010). Patterns of tooth mark occurrence within Mesozoic assemblages support
this interpretation in multiple ways. Firstly, relative to Recent and Cenozoic bone assemblages,
there is a distinctly lower frequency of tooth marks in Mesozoic systems (Fiorillo 1991; Hone &
Rauhut 2010). Additionally, these tooth-marked bone assemblage are dominated by
scratch/scrape marks that do not penetrate the bone cortex, relative to puncture marks, suggesting
these tooth-bone contacts are incidentally delivered while feeding on the surrounding soft tissue
(Hone & Rauhut 2010). Finally, documented instances of theropod tooth marks can generally be
characterized by a single bite, inflicting either scratches or punctures to the bone, but not
repeated bites in a restricted area (Chure et al. 1998; Hone & Rauhut 2010). This suggests that
prey bone utilization (i.e., gnawing, bone-breaking, osteophagy) is a key ecological strategy that
was, and is, repeatedly exploited by mammalian carnivores, but not theropod dinosaurs (Hone &
Rauhut 2010).

A possible exception of this pattern is in the Tyrannosauridae where osteophagy may
have been possible due to a combination of a strong bite and large, robust teeth (Hurum & Currie
2000; Hone & Rauhut 2010; Gignac & Erickson 2017). Despite this, direct evidence consistent
with repeated biting on bones is rare (Erickson & Olson 1996; Hone & Watabe 2010; Dalman &
Lucas 2021), with the isolated, raking, and likely incidental marks dominating the tyrannosaur
toothmark record. Putative tyrannosaur coprolites have demonstrated a high volume of consumed
bone on occasion (Chin et al. 1998; Chin et al. 2003), though this may be more consistent with
ingestion of intact portions of smaller prey animals.

Here we report an isolated hadrosaurid pedal ungual that shows strong evidence for repeated,
powerful, and localized biting behavior in a small to medium-sized theropod dinosaur. The
pattern of tooth marks is inconsistent with incidental contact, and rather, is a rare case of
gnawing or ‘gnawing-like’ behavior in theropod dinosaurs.

Materials & Methods
The specimen, Royal Tyrrell Museum of Palaeontology (TMP) 2018.012.0123, is an
isolated hadrosaurid pedal ungual, collected from Bonebed 50 (specifically, Bonebed 50 east) in
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the core area of Dinosaur Provincial Park, Alberta. The specimen was found as part of the Queen
Mary University of London — Royal Tyrrell Museum of Palaeontology field school in 2018, and

collected under Research and Collection Permit 18-510 (Alberta Tourism, Parks and Recreation)
and permit to Excavate Palaeontological Resources 18-019 (Alberta Culture and Tourism).

Bonebed 50 is a mixed (macrofossil-microfossil) multitaxa bonebed in the lower to
middle portion of the Dinosaur Park Formation, ~19 m above the contact the underlying Oldman
Formation. This site consists of a series of stacked palacochannel sandstones, the basal lags of
each hosting a high diversity and abundance of microvertebrate fossil, as well as disarticulated to
partially articulated adult hadrosaur skeletons, including the type of Corythosaurus excavatus
(Tanke & Russell 2012; Bramble et al. 2017), and isolated hatchling-to-nestling sized hadrosaur
elements (Tanke & Brett-Surman 2001; Eberth & Evans 2011). Although at least three
associated to articulated adult hadrosaur skeletons are known from this site, the ungual cannot be
confidently associated with any of these, and likely represent an isolated specimen within the
macrovertebrate component of the bonebed.

The ungual was almost completely encrusted with a soft to medium-hardness iron-rich
siltstone. An airscribe on a low setting was gently used to remove most of this and a scalpel was
used to remove the rest. The rock separated cleanly from the bone. An air abrasive on low air
pressure and powder (sodium bicarbonate) flow settings was used as a final cleaning, followed
by water and toothbrush. No adhesive, consolidant, or surface coat were applied.

Specimen photography was performed with a Canon EOS 6D (50 mm [1:1.4) and 24-
105mm [1:4] lenses). Ammonium chloride pewer, coating was used with photography to enhance
the surface texture while homogenizing bone colour. Ammonium chloride was applied using the
“dry method” sensu Parsley and colleagues (2018). All measurements were taken with digital
calipers (150 cm) to the nearest tenth of a millimeter. Figures were prepared using Adobe
[lustrator (V. 15.1.0) and Adobe Photoshop (V. 12.1). Statistical test we performed in the R
programing language (Team 2009) using the functions ks.zest (stats), and chisq.test (stats), while
the histograms were created using the function Aist (graphics), /ines (graphics) and density
(stats).

Results

Description - The specimen is complete, missing only abraded portions of the cortical
bone along its extremities -largely the rim of the articular facet (Fig. 1A). It is unclear how much
of this abrasion is recent as opposed to Cretaceous, but this may suggest limited transport of the
specimen prior to deposition, or discovery. The ungual measures 105 mm in proximodistal
length, 99 mm in maximum transverse width, and 49 mm it maximum height. The saddle shaped
proximal articular face is 49 mm tall and 79 mm wide. The morphology and symmetry of the
ungual indicates that it derives from digit three (i.e., [[I-4), the central and largest of the pedal
digits, and the largest ungual (Fig. 2A). Given that the specimen is equivalent in size, or larger
than, specimens regarded as adults of contemporaneous hadrosaurid species (i.e., Gryposaurus,
Corythosaurus), is-it likely pertained to an adult-sized individual (Parks 1920).
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A series of prominent tooth marks (observed in the field prior to collection) are present
on the ventral (plantar) surface of the ungual, but no marks are seen of the dorsal or articular
surface (Fig. 1A, B). A restricted area, ~30x20 mm, on one-half of the ventral surface adjacent to
the articular facet bears 13 distinct tooth marks (Fig. 2B). The largest tooth mark is 10.5 mm
long, and 3.3 m wide, while the smallest is 2.7 mm long and 1.6 mm wide (Table 1). The
majority of the tooth marks are approximately three times longer than wide, but the smallest are
more equidimensional. The morphology of the tooth marks is somewhat intermediate between
the elongate v-cross section furrows, and the circular to ovoid pits that have previously been
described for theropod tooth marks (Erickson & Olson 1996; Jacobsen 1998). Although
prominent, the marks are shallow, with the deepest marks around 1 mm in depth. The marks
penetrate the smooth surface of the cortical bone, and exposed the underling anteroposteriorly
oriented fibers. Individual marks are numbered using Arabic numerals (Fig. 2C).

Relative to each other, the marks are not random in orientation or position. The long axis
of all tooth marks is parallel, running ~20° to the transverse axis of the digit (Fig. 1A, 2B).
Further, the marks are positioned in an approximate grid pattern, being aligned in two nearly
perpendicular axes (Fig. 2C). The long axes of marks are nearly aligned with one of these grid
axes (oriented distomedially) term rows (labeled with roman numerals), and lie nearly
perpendicular to the other (oriented distolaterally) termed columns (labeled with lowercase
letters) (Fig. 2C). All tooth mark with the exception of mark number 11 fit this discrete grid-like
pattern. There are three columns (a-c) and at least four, but pessible up to six rows (i-vi). Tooth
mark spacing (based on midpoints) between successive marks within rows varies from 4.9 to 8.8
mm, with a mean of 7.0 mm, while spacing between successive marks in columns is smaller,
from 4.0 to 7.4 mm with a mean of 5.3 mm (Table 2). The bone surface on which the marks are
located is slightly convex in transverse curvature, with the proximodistal surface is strongly
concave at the distolateral extreme.

Frequency of tooth marks on unguals - Despite the apparent oddity of bite marks to a
hadrosaur ungual, TMP 2018.012.0123 is not an isolated occurrence. A second hadrosaur pedal
ungual from the Dinosaur Park Formation, UALVP55092, appears to shows a cluster of three
distinct tooth marks on the ventral (plantar) portion of the ungual, oriented at ~45° to the long
axis of the ungual (Fig. 3A). In this second case, the marks appear to be a series of three parallel
shallow furrows consistent with a single bite, and more in line with other described theropod
feeding traces.

Given that two Dinosaur Park Formation hadrosaur unguals show unexpected bitemarks,
a survey was undertaken to determine if this is a more common, but previously unrecognized,
pattern. A total of 425 isolated hadrosaurid unguals (pedal and manual) from the Dinosaur Park
and Oldman formations, were specifically examine for tooth marks (Supplemental Table S1).
Only two cases of definitive tooth marks were found within this sample (Fig. 3B, C), suggesting
the frequency of tooth marks on hadrosaur unguals is very low (< 1%). This is significantly
lower than the reported frequency of tooth marks on both overall hadrosaurid bones, 14%

Peer] reviewing PDF | (2021:02:57752:0:0:NEW 4 Feb 2021)


pbell23
Inserted Text
s

pbell23
Cross-Out

pbell23
Cross-Out

pbell23
Inserted Text
termed

pbell23
Cross-Out

pbell23
Inserted Text
possibly

pbell23
Highlight
wording needs fixing.

pbell23
Inserted Text
d


PeerJ

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

(47/339), and metapodials, 13% (16/120), from this formation (chi-square = 54.152 and 44.535,
p = 1.856e-13 and 2.499e-11, respectively) (Jacobsen 1998).

These two other tooth marked unguals are smaller than TMP 2018.012.0123, and, as with
UALVP55092, the marks are clusters of parallel (or nearly parallel) elongate furrows oriented at
~45° to the long axis of the ungual. The first of these specimens, TMP 1979.008.0769 (11-3?), is
59 mm wide and 74 mm long, and preserves four tooth marks (11.0, 23.4, 25.1, and 10.9 mm in
length) on the dorsolateral surface with intramark spacing of around 3.5 mm (Fig. 3B). The
second specimen, TMP 1980.016.1215 (IlI-4), is 59 mm wide and 64 mm long (est.), and also
preserves four tooth marks (9.4, 7.5, 26.7, 8.1 mm in length) on the dorsal surface with intramark
spacing of around 5.2 mm (Fig. 3C). In all four cases, marks are seen one on side of the ungual
and not the other.

The frequency of tooth marks in non-ungual phalanges may be higher than for unguals, as
several cases are known and have been reported for both hadrosaurid - TMP 1966.011.0022
(Jacobsen 1998), TMP 1981.023.0011 (Jacobsen 1998), TMP 1993.110.0003, TMP
2016.012.0096, TMP 2019.014.0004, UCMP 140601, (Erickson & Olson 1996) - and
tyrannosaurid - UCMP 137538, MOR 1126 elements (Longrich et al. 2010). An allosaur pedal
ungual with allosaur toothmarks has also been recently reported (Drumheller et al. 2020).

Discussion

Pattern of toothmarks - In total 13 distinct tooth marks are preserved, but their alignment in a
grid-like pattern suggests these where the result of a combination of successive teeth in the
toothrow making contact with the bone surface, and the tooth row moving laterally relative to the
ungual between successive bites.

Given the alignment of the mark long axes, the relatively consistent within-row mark
spacing, and the saddle shaped bone surface, it is likely that the rows (e.g., 1, ii, iii etc.) represent
individual bites, with successive teeth in the tooth row making aligned marks (Fig. 2C). The
multiple rows represent the bone being moved laterally relative to the tooth row (or vice versa)
between successive bites. The columns (e.g., a, b, ¢) therefore swould-be the same tooth making
contact with the bone surface multiple times as the bone slid laterally relative to the tooth row
between bites. Under this hypothesis there are up to three successive teeth in the tooth row that
make contact with the bone, and a minimum of four, and possibly up to six, distinct bites. The
relative equidistance between the successive bites (i.e., rows i-iv) indicate that the relative
change in the position of the bone to the teeth differed by consistent distance between each
successive bite, ~5 mm. Under this hypothesis, the average distance between successive teeth is
the toothrow is 7.0 mm. A slightly different hypothesis is illustrated if the long axis of the marks,
rather than the position of the marks, are used as the primary alignments (Fig. 2D). Here lines
illustrating possible tooth marks aligned in the toothrow are indicated. For this hypothesis, marks
caused by successive teeth, and therefore the spacing between them, are less obvious to establish,
but are roughly similar to that of the scenario above.
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It is possible, though in our mind less likely, that the interpretation of these axes may be
swapped. In this case, the columns (e.g., a, b, etc.) represent successive teeth in the toothrow
making contact in a single bite, while the rows (e.g., 1, ii, etc.) represent repositioning and lateral
movement of the bone between successive bites. Under this hypothesis there are up to five
successive teeth (with a potential ene-tooth gap) in the tooth row that make contact with the
bone, and only three distinct bites. Under this hypothesis, the average distance between
successive teeth in the toothrow is much smaller at 5.3 mm. Movement of the teeth across the
bone surface during the bite in this hypothesis would be nearly orthogonal to the cross-sectional
long axis of the tooth.

Several lines of evidence support the former interpretation relative to the later. The
relative size and shape of the marks is more consistent within columns (e.g., marks 1, 4, 7) than
within rows (e.g., marks 3, 4, 5). The spacing between successive marks is more consistent
within rows, than within columns. The movement orthogonal to the cross-sectional long axis of
the tooth would also increase the chance of tooth damage (see Hone & Chure 2018). Finally, the
bone surface transected by the rows (i.e., 1, 11) is gently convex, with the bites located at the high
point of the transect. Conversely the bone surface transected by the columns (i.e., a, b) has a
higher amplitude topography, is broadly concave, and bounded proximally and distally by bone
surfaces that are above the level of the tooth marks, but that are not marked.

Regardless of which of these biting scenarios is correct, a series of closely spaced
powerful bites were delivered to the ungual with the element repositioned relative to the tooth
row between successive bites.

Tracemaker - The tracemaker responsible for the toothmarks can be narrowed down to a
relatively small number of candidates. The various non-dinosaurian carnivores present in the
Dinosaur Park Formation assemblage, including mammals, crocodylians and squamates, can be
ruled out - see similar discussion in (Hone et al. 2018). Gnawing marks thought to derive from
mammalian trace makers have been described from the Belly River Group, and these broadly
resemble gnaw marks of modern rodents (Longrich & Ryan 2010). The bite marks of both
modern and Cretaceous crocodylians leave characteristic deep, circular to sub-circular punctures
(Njau & Blumenschine 2006; Noto et al. 2012; Boyd et al. 2013; Botfalvai et al. 2014;
Drumbheller & Brochu 2014) distinct from those seen on TMP 2018.012.0123. Finally, the tooth
marks left by modern large squamates are dominated by thin arcing scours, with rare pits and no
crushing observed (D'Amore & Blumenschine 2009).

Within Dinosauria, several clades of carnivorous (and potentially omnivorous) theropods
represent potential tracemaker, including Tyrannosauridae, Dromacosauridae, and Troodontidae.
Of these potential tracemakers, Tyrannosauridae has the most comparative material for bite
traces both in terms of described material and absolute number of marks. Tooth marks thought to
have been delivered by tyrannosaurs are dominated by v-shaped furrows and scours (both
(sub)parallel and isolated), as well as distinct puncture-and-drag marks, punctures, and fine
parallel striae resulting from denticle scrapes (Jacobsen 1995; Erickson & Olson 1996; Chin et

Peer] reviewing PDF | (2021:02:57752:0:0:NEW 4 Feb 2021)


pbell23
Cross-Out

pbell23
Inserted Text
one-tooth

pbell23
Highlight
Perhaps end this paragraph with a summing up statement e.g. "none of these features were observed on TMP2018..." or something like that.

pbell23
Inserted Text
s


PeerJ

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

al. 1997; Jacobsen 1998; Fowler & Sullivan 2006; Hone & Watabe 2010; Bell et al. 2012;
Rivera-Sylva et al. 2012; Robinson et al. 2016).

Dromaeosaurid tooth marks reported include those of Saurornitholestes, on the tibia a
large azdarchid pterosaur; (Currie & Jacobsen 1995), those of a velociraptorine; on
Protoceratops bones; (Hone et al. 2010), and those thought to pertain to Deinonychus
antirrhopus; on the skeleton of Tenontosaurus; (Gignac et al. 2010). In the former two cases the
marks are shallow grooves or scours, while the latter case these are deeper V-shaped furrows. In
addition to the scours and furrows, deeper, semi-circular ‘bite and drag’ marks are noted in by
the velociraptorine (Hone et al. 2010), while deep punctures are described for Deinonychus
(Gignac et al. 2010).

To our knowledge no suspected or definitive teedentid tooth marks have been described.
Given their close relationship and general similarity to dromaeosaurs, they might however, have
left similar traces if they bit into bones.

Given the lack of evidence of denticle spacing present on bite marks, and that both
Tyrannosauridae and Dromaeosauridae were capable tg delivering deep furrows and pits to the
bone surface, the relative size and shape of the tooth marks, and the spacing between these marks
may help do determine which is a more likely tracemaker. As noted by Hone and Chure (2018),
drawing direct correlation between spacing of (presumed) serial tooth marks and tooth spacing in
potential trace makers may be problematic. Factors such as curved bone surfaces, bite angle, and
missing or misaligned teeth may add additional variation to the resultant tooth mark spacing and
may make elimination of potential trace makers more challenging (Hone & Chure 2018).
However, when a relatively consistent pattern of spacing between aligned tooth marks is
observed, a most parsimonious first assumption in that this spacing is a least coarsely
comparable to the spacing of teeth in the trace making individual. Comparisons between the
spacing between the tooth marks on the ungual, and the potential theropod trace makes (see
above) is show, in Fig. 3. The teeth (or alveoli) of the exemplar dentaries of the troodonid
Stenonychosaurus inequalis average 2.7 or 3.4 mm apart, significan more closely spaced that the
tooth marks in TMP 2018.012.0123 (Table 4, Fig. 4C, D).

For the two dromaeosaurid taxa, both Saurornitholestes langstoni and Dromaeosaurus
albertensis are known from specimen, that overlap the size range of the tooth mark on TMP
2018.012.0123. The Saurornitholestes dentary TMP 1988.121.0039 (mean spacing = 5.2 mm) is
not statistically different from the within column tooth mark spacing (Table 4, Fig. 4E), while a
larger specimen, TMP 1991.036.0112, (mean spacing = 7.6 mm) is not statistically different
from the within row tooth mark spacing (Table 4, Fig. 3F). Similarly, the best specimen of
Dromaeosaurus, AMNH 5356 (cast = TMP 1984.008.0001) shows spacing (mean = 7.7 mm)
that is not statistically different from the within row tooth mark spacing (Table 4, Fig. 4G).

Relative to both Troodontidae and Dromaeosauridae, Tyrannosauridae is much better
sampled from the Belly River Group, with a nearly complete ontogenetic series of jaws, missing
only the smallest size classes. Given the small size and spacing the tooth marks only very small,
immature, tyrannosaur individuals could represent potential trace makers. The two smallest
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tyrannosaurid jaws from the Dinosaur Park Formation, the dentaries TMP 1990.081.0006 (mean
spacing = 10.8) and TMP 1994.012.0155 (mean spacing = 12.0 mm), both show tooth spacing
that is significantly greater than the spacing observed in TMP 2018.012.0123 (Table 4, Fig. 4H,
I). While both these specimens are young juveniles (tooth row length of 2018.012.0123 = 165
mm) they do not represent the youngest/smallest extreme of tyrannosaurid ontogeny. It is
possible that a younger/smaller tyrannosaur may have made the marks on TMP 2018.012.0123,
but this would have to be a very immature individual smaller than that of any jaw currently know
from the Belly River Group — with a tooth row length <165 mm.

Given these data, it is not possible to confidently determine the taxonomy (or ontogeny)
of the trace maker, but it can likely be narrowed down to either and adult-sized dromaeosaurid,
or a very young tyrannosaurid. Regardless, these tooth marks suggest a potentially novel bone
utilization, and may expand the evidence for bone utilization in Tyrannosauridae and/or
Dromaeosauridae.

Behavioral hypotheses

Several possible behavior explanations may be put forward to explain the concurrence of
such distinct tooth marks on the ungual.

Incidental contact while feeding - Regardless of whether the ungual was articulated with,
or isolated from, the body, it would have had little meat in close association. While hadrosaur
footprints indicated fleshy pads under the pedal phalanges (Langston Jr 1960; Currie et al. 1991),
these would not have extended to the ungual, which would have largely been covered in a
ketatinous hoof. While a keratinous hoof on the ungual would have had a very high protein
content, keratin is resistant to vertebrate digestion, as was likely not a high value food item
(Bragulla & Homberger 2009). Indeed, there are few bones in a hadrosaur skeleton that would be
either less desirable for consumption, or further from areas of high consumption priority.
Actualistic taphonomic studies of carcass utilization by modern mammalian carnivores
consistency recover the phalanges and unguals as being bones with some of the lowest frequency
of modification (Dominguez-Rodrigo 1999; Rodriguez-Hidalgo et al. 2013; Arilla et al. 2014;
Rodriguez-Hidalgo et al. 2015; Arilla et al. 2019) and these elements rank low in the carcass
consumption sequence, and then are largely used for their marrow (Blumenschine 1986; Marean
et al. 1992). Additionally, the tooth marks on the bone surface of TMP 2018.012.0123 are not
consistent with glancing contact between tooth and bone, but appear to be as a result of directly
biting the bone surface. These tooth marks are not consistent with incidental marks during
feeding, which appears to be the case for the majority of theropod tooth marks (Hone & Rauhut
2010).

Predation/Grasping — It is possible that the bites were delivered to the prey animal while
it was still alive, and are the result of active predation. In this hypothesis, the predator may have
arabbed on the hind foot of the hadrosaur with its jaws in an effort to it slow down and,
presumably with the combined effort of multiple individuals, bring down the prey. Multiple
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bites, and repositioning of the tooth row between bites, may be indicative of the struggle between
prey-and-predator.

There are several problems with this hypothesis. Firstly, the differential between potential
predator and prey size is extreme. Mass estimates for adult-sized potential tracemakers range
from 16 kg and 18 kg for Dromaeosaurus albertensis and Saurornitholestes langstoni, to 57 kg
for Troodon inequalis (Campione et al. 2014; Benson et al. 2018). Mass estimates for an
immature tyrannosaur is more challenging. Given scaling of the skull length to body mass
(Therrien & Henderson 2007) in Theropoda, and femur to skull length in Tyrannosauridae
(Currie 2003), and mass and femur length (Christiansen & Farifia 2004), the lower jaw of TMP
1994.012.0155 (29 cm long) would suggest a tyrannosaur tracemaker was no more than 32 or 44
kg, respectively. It should be noted that these estimation methods are not designed for immature
individuals, are likely underestimates, and should be regarded as coarse at best. In comparison,
adult-sized hadrosaurid taxa from Dinosaur Park Formation have mass estimates ranging from
>3,000 to >5,000 kg (Campione & Evans 2012; Benson et al. 2018). This puts the mass of the
hadrosaur at two orders of magnitude greater than the putative theropod tracemakers. This size
differential is much great than that seen between predator and prey in analogue systems (Hone &
Rauhut 2010). Given this size differential, it is difficult to believe that a theropod grabbing the
rear ungual of a hadrosaur could not easily be kicked off. Further, if the multiple marks are
interpreted as the result of a moving/struggling prey animal, one would expect there to be
slippage and rotation of the marks, and the spacing and alignment of successive to be more
irregular. Rather, the multiple bites are parallel and equidistant.

Play — Tyrannosaur tooth marks to isolated bones have been interpreted as evidence for
play (Rothschild 2015). This hypothesis has been reviewed (Snively & Samman 2015), and it has
been pointed out that it makes few testable predictions, and is difficult to falsify. Object based
play behavior is within the behavioral extant phylogenetic bracket for Dinosauria (Snively &
Samman 2015), so this behavior is theropod dinosaur may not be unexpected. Given its difficulty
to test, however, this hypothesis is not addressed in detail here, though we suggest that the
repeated nature of the bites at a single location on the ungual do not easily align with the idea of
play.

Late-stage carcass consumption — Perhaps the most likely hypothesis is that the tooth
marks are result of late-stage carcass consumption (Hone & Watabe 2010). Repeated, high
powered bites delivered near the articular face of the ungual may have served to either sever or
disarticulated the bone from the rest of the foot, or to break open the bone as part of a bone
consumption strategy. The multiple parallel marks may also indicate repositioning of the bite to
produce better leverage as the tracemaker attempted to pull apart the skeleton. The hypothesis of
late-stage carcass consumption is consistent with interpretations of other densely tooth marked
specimens attributable to tyrannosaurs (Erickson & Olson 1996; Fowler & Sullivan 2006; Hone
& Watabe 2010).

This specimen, however, differs from these other reports in several major ways. First, the
ungual is likely to have little to no flesh in association, especially compared to a ceratopsian
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pelvis (Erickson & Olson 1996; Fowler & Sullivan 2006) or hadrosaur humerus (Hone &
Watabe 2010). As such, this may represent an even more extreme example of late-stage carcass
consumption than these previous reports. Second, although these other specimens show a high
number of tooth marks, and are consistent with multiple bites to a single bone, these bites (with
the possible exception of the deltopectoral crest of the humerus (Hone & Watabe 2010)) are not
delivered to the same areas repeatedly. The marks to TMP 2018.012.0123 are restricted to a
small area that was bitten up to six times. Third, previous records of bones with high density of
tyrannosaurid bite-marks are attributable Tyrannosaurinae; i.e. Daspletosaurus (Fowler &
Sullivan 2006), Tarbosaurus (Hone & Watabe 2010), Tyrannosaurus (Erickson & Olson 1996).
The tooth mark described here, may be attributable to either Albertosaurinae (i.e., Gorgosaurus)
or Tyrannosaurinae (i.e., Daspletosaurus) or to Dromaeosauridae, pbroadening this behavior
phylogenetically within Theropoda. Finally, these other reports document the-activity in adult-
size tyrannosaurs. If the bite marks described herein are from a tyrannosaur, they are from a very
small, young individual, an individual at, or below, the size of the smallest known articulated
skulls.

It is unclear if the purposed of the repeated, localized bites was to dismember the ungual
from the rest of an articulated foot to expose articular cartilage or tendon, to break open the bone
to exposed the marrow, or for some other purpose.

We suggest that the general lower levels of bone exploitation by theropods may be linked
to the difficulty of accessing the marrow cavity for them. Mammals may have proportionally
larger marrow cavities than do dinosaurs (particularly ornithischians) for a given bone diameter,
but in any case large dinosaurs will have absolutely thicker bone walls compared to mammals
(e.g. sauropods and large ornithischians have absolutely larger femora than any living terrestrial
mammals aside from, perhaps elephants). Furthermore, large mammalian carnivores typically
have more robust teeth for their size than do non-tyrannosaurid theropods so overall would have
a greater ability to process bone to obtain the marrow than theropods, and-thus the discrepancy-in
bene-utilization between the two-¢clades. The bones of dinosaurian juveniles or small taxa could
still be broken and /or consumed and thus destroyed, but the lack of bite traces on large
dinosaurian elements may at least in part reflect an inability to break into them.

Conclusions

A hadrosaurid pedal ungual bears a distinct pattern g tooth marks suggesting multiple,
repeated, powerful bites delivered to a restricted area of the element. The morphology, size and
spacing of the tooth marks suggest the tracemaker was a small-medium, sized theropod dinosaur,
likely a dromaeosaurid or young tyrannosaur. This behavior is most consistent with late-stage
carcass consumption of an element that had limited association with the soft tissue considered to
be the primary food source. Theropod bite marks on other hadrosaur unguals are known, but
appear to occur at a very low frequency.

The traces left on these ungual, are largely consistent with those left by gnawing
behaviour. The mechanism of the bone processing behaviour is at least superficially similar to
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gnawing in mammals, and may represent “gnawing-like” behavior. Indeed, if similar marks were
left on a bone from a mammalian carnivore, “gnawing” would likely be considered an
appropriate term. This specimen expands our understanding of prey bone utilization behavior in
theropods dinosaur, representing the strongest case for “gnawing-like” behavior in this clade.
The occurrence of this prey bone utilization is also expanded, either phylogenetically into
Dromacosauridae, or ontogenetically into young tyrannosaurids.
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Figure Captions:

Figure 1: Ammonium chloride coated photographs of the hadrosaurid pedal ungual TMP
2018.012.0123 showing bite marks (ventral/plantar view). (A) View of entire specimen, with
marks highlighted in red (A’). (B) Close up of the bitten region, with marks highlighted in red
and numbered in Arabic numerals (B’). All scale bars = 1 cm.

Figure 2: Position and orientation of bite mark on ungual and within hadrosaur pes. (A) Right
articulated hadrosaurid pes in dorsal view, with in ungual of digit three highlighted (white) and
the position of the tooth marks (ventral side) indicated in black — modified from (Prieto-Marquez
2014). (B) shaded line drawing of the ventral (plantar) view of the ungual TMP 2018.012.0123,
showing the position of the bite marks (black). (C) Close up view of bite mark size, shape, and
orientation, showing alignment of bites in rows (lowercase letter) and columns (Roman
numerals) indicated by botted lines (based on Fig. 1B). (D) Close up view of bite marks showing
potential alignment of tooth row parallel with tooth mark long axis. Hollow fills in C indicate
potential bite marks missing from rows/columns. All scale bars =1 cm.

Figure 3: Photographs (upper) and interpretive drawings (lower) of three isolated hadrosaurid
pedal unguals with theropod toothmarks. (A) UALVP55092 in ventral (plantar) view, (B) TMP
1979.008.0769 in dorsal view, (C) TMP 1980.016.1215 in dorsal view. In lower drawings
hatched areas indicate missing bone surface, dashed lines are approximate margins, and black
indicates tooth marks. All specimens to same scale. Scale bar = 1 cm.

Figure 4. Size comparison of spacing between subsequent tooth marks on TMP 2018.012.0123
(A, B, J), and exemplars of potential theropod trace making taxa (C-I, K-N). (A-I) Histograms
showing distributions on spacing between tooth marks (A, B) and teeth/alveoli (C-1): (A, B)
TMP2018.012.0123, for rows (A) and column (B); (C, D) Stenonychosaurus inequalis — TMP
1967.014.0039, and 1982.016.0138; (E, F) Saurornitholestes langstoni — TMP 1988.121.0039
and 1991.036.0112; (G) Dromaeosaurus albertensis — TMP 1984.008.0001 (cast of AMNH
5356), and H, I) juvenile Gorgosaurus libratus — TMP 1990.081.0006 and 1994.012.0155. J-N)
Scaled line drawings illustrating the morphology and size of the tooth traces exemplar dentaries
(J) ungual TMP 2018.012.0123 in ventral view, with tooth marks shown in black; (K) medial
view of reconstructed Stenonychosaurus inequalis (Troodontidae) dentary based on CMN 8540,
redrawn from (Currie 1987); (L) medial view of complete dentary of Saurornitholestes langstoni
(Dromaeosauridae) — based on TMP 1988.121.0039; (M) lateral view of complete dentary of
Dromaeosaurus albertensis (Dromaeosauridae) — based on AMNH 5356, redrawn from (Currie
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1995), (N) medial view of a dentary of a juvenile Gorgosaurus libratus (Tyrannosauridae) -
based on TMP 1994.012.0155. Lines above dentaries indicates tooth size/alveolar spacing. All
specimens to same scale. Scale bar = 1 cm.

Table 1: Linear measurements of the 13 tooth marks on TMP 2018.012.0123. See Fig. 1B for
mark numbers.

Table 2: Spacing between successive tooth marks by both row (i, ii, etc.) and column (a, b, etc.)
on TMP 2018.012.0123, see Fig. 2C.

Table 3: Spacing between successive tooth positions (or alveoli) in tooth rows across specimens
of several potential tracemakers

Table 4: Results of Kolmogorov-Smirnov test (two sample), comparing the spacing between

successive tooth positions (or alveoli) in TMP 2018.012.0123 with specimens of several
potential tracemakers.
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Figure 1

Ammonium chloride coated photographs of the hadrosaurid pedal ungual TMP
2018.012.0123 showing bite marks (ventral/plantar view).

(A) View of entire specimen, with marks highlighted in red (A’). (B) Close up of the bitten
region, with marks highlighted in red and numbered in Arabic numerals (B’). All scale bars

1cm.

Peer] reviewing PDF | (2021:02:57752:0:0:NEW 4 Feb 2021)



PeerJ

Figure 2

Position and orientation of bite marks on ungual and within hadrosaur pes.

(A) Right articulated hadrosaurid pes in dorsal view, with in ungual of digit three highlighted
(white) and the position of the tooth marks (ventral side) indicated in black - modified from
(Prieto-Marquez 2014) . (B) shaded line drawing of the ventral (plantar) view of the ungual
TMP 2018.012.0123, showing the position of the bite marks (black). (C) Close up view of bite
mark size, shape, and orientation, showing alignment of bites in rows (lowercase letter) and
columns (Roman numerals) indicated by betted lines (based on Fig. 1B). (D) Close up view of
bite marks showing potential alignment of tooth row parallel with tooth mark long axis.
Hollow fills in C indicate potential bite marks missing from rows/columns. All scale bars =1

cm.
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Figure 3

Photographs (upper) and interpretive drawings (lower) of three isolated hadrosaurid
pedal unguals with theropod toothmarks.

(A) UALVP55092 in ventral (plantar) view, (B) TMP 1979.008.0769 in dorsal view, (C) TMP
1980.016.1215 in dorsal view. In lower drawings hatched areas indicate missing bone
surface, dashed lines are approximate margins, and black indicates tooth marks. All

specimens to same scale. Scale bar =1 cm.
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Figure 4

Size comparison of spacing between subsequent tooth marks on TMP 2018.012.0123 (A,
B, J), and exemplars of potential theropod trace making taxa (C-1, K-N).

(A-l) Histograms showing distributions on spacing between tooth marks (A, B) and
teeth/alveoli (C-1): (A, B) TMP2018.012.0123, for rows (A) and column (B); (C, D)
Stenonychosaurus inequalis - TMP 1967.014.0039, and 1982.016.0138; (E, F)
Saurornitholestes langstoni - TMP 1988.121.0039 and 1991.036.0112; (G) Dromaeosaurus
albertensis - TMP 1984.008.0001 (cast of AMNH 5356), and H, 1) juvenile Gorgosaurus
libratus - TMP 1990.081.0006 and 1994.012.0155. J-N) Scaled line drawings illustrating the
morphology and size of the tooth traces exemplar dentaries (J) ungual TMP 2018.012.0123 in
ventral view, with tooth marks shown in black; (K) medial view of reconstructed
Stenonychosaurus inequalis (Troodontidae) dentary based on CMN 8540, redrawn from
(Currie 1987) ; (L) medial view of complete dentary of Saurornitholestes langstoni
(Dromaeosauridae) - based on TMP 1988.121.0039; (M) lateral view of complete dentary of
Dromaeosaurus albertensis (Dromaeosauridae) - based on AMNH 5356, redrawn from (Currie
1995) , (N) medial view of a dentary of a juvenile Gorgosaurus libratus (Tyrannosauridae) -
based on TMP 1994.012.0155. Lines above dentaries indicates tooth size/alveolar spacing. All

specimens to same scale. Scale bar =1 cm.
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Table 1l(on next page)

Linear measurements of the 13 tooth marks on TMP 2018.012.0123.

See Fig. 1B for mark numbers.
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1 Table 1: Linear measurements (longest axis) of the 13 tooth marks on TMP 2018.012.0123. See
2 Figure 1B for mark numbers.
3
4 Mark Row Column Length (mm) Width (mm)
5 1 i b 7.8 2.7
6 2 i c 6.5 2.1
7 3 i a 7.9 2.4
g 4 i b 10.5 3.3
10 5 ii c 6.6 2.3
1 6 ii a 7.8 2.1
12 7 iii b 8.5 2.3
13 8 iii c 4.7 1.6
14 9 iv b 5.8 1.8
}2 10 | iv c 5.1 1.6
17 11 v? c? 2.7 1.6
18 12 vi a’ 5.0 2.3
19 13 Vi b? 4.0 2.3
20 Mean 6.4 2.2
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
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Table 2(on next page)

Spacing between successive tooth marks by both row (i, ii, etc.) and column (a, b, etc.)
on TMP 2018.012.0123.

See Fig. 2C for row and column designation.
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Table 2: Spacing between successive tooth marks by both rows (i, ii, etc.) and columns (a, b,

etc.) on TMP 2018.012.0123, see Figure 2C.

Distance

Alignment  Marks (mm)
Rows
i 1,2 8.8
i 3,4 8.6
ii 4,5 6.8
iii 6,7 6.6
iii 7,8 4.9
iv 9,10 6.4

Mean 7.0
Columns
a 3,6 6.1
b 1,4 7.4
b 4,7 4.9
b 7,9 4.2
C 2,5 4.0
o 5,8 5.5
C 8,10 5.2

Mean 5.3
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Table 3(on next page)

Spacing between successive tooth positions (or alveoli) in tooth rows across specimens
of several potential tracemakers.
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1 Table 3: Spacing between successive tooth positions (or alveoli) in tooth rows across specimens
2 of several potential tracemakers.
3

Mean
Taxon Specimen Element (mm) Count (n
Gorgosaurus TMP
libratus - juv. 1994.012.0155 R. Dent. 12,6 12.3 129 12.8 119 12.8 12.1 124 12.7 103 9.6 12.0 11
Gorgosaurus TMP
libratus - juv. 1994.012.0155 L. Dent. 114 12,5 14.2 12 129 12 12.1 11.2 10.7 10.1 1.9 10
Gorgosaurus TMP
libratus - juv. 1990.081.0006 R. Dent. 10.7 10.5 11 11.6 11 10 10.8 6
Saurornitholestes TMP
langstoni 1988.121.0039 L. Dent. 58 4.9 5 5.6 6.4 5.1 52 4.9 5 5.9 59 4.9 43 4.4 52 14
Saurornitholestes TMP
langstoni 1991.036.0112 L. Dent. 72 7.6 79 7.8 7.6 4
Stenonychosaurus | TMP
inequalis 1967.014.0039 L. Dent. 22 22 2.1 2.6 2.7 25 2.6 25 2.6 23 2.8 27 2.3 29 29 3.1 2.6 16
Stenonychosaurus | TMP
inequalis 1982.016.0138 L. Dent. 3.6 3.6 3.6 3.1 3.4 3.1 3.4 6
Dromaeosaurus TMP
albertensis 1984.008.0001 L. Dent. 6.3 8.3 8.2 8.1 79 7.8 7.3 7.6 8.5 7.8 9
Dromaeosaurus TMP
albertensis 1984.008.0001 R. Dent. 6.7 6.6 8.3 8.5 8.7 8.6 8.2 7.6 7.4 6.6 77 10

9]
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Table 4(on next page)

Results of Kolmogorov-Smirnov test (two sample), comparing the spacing between

successive tooth positions (or alveoli) in TMP 2018.012.0123 with specimens of several
potential tracemakers.
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1 Table 4: Results of Kolmogorov-Smirnov test (two sample), comparing the spacing between
2 successive tooth positions (or alveoli) in TMP 2018.012.0123 with specimens of several

3 potential tracemakers.

4
Toothmark Spacing
Potential Tracemakers Tooth Spacing Rows Columns
Taxon N 6 7

TMP 1967.014.0039  Stenonychosaurus inequalis 21 | 0.0003242 | 0.0001179
TMP 1982.016.0138  Stenonychosaurus inequalis 6 0.004958 | 0.003125
TMP 1988.121.0039  Saurornitholestes langstoni 14 0.01525 0.8407
TMP 1991.036.0112  Saurornitholestes langstoni 4 0.181 0.0303
TMP 1984.008.0001  Dromaeosaurus albertensis 16 0.2989 | 0.001088
TMP 1990.081.0006 Gorgosaurus libratus - Juvenile 6 0.004958 | 0.003125
TMP 1994.012.0155 Gorgosaurus libratus - Juvenile 19 | 0.0001769 5.51E-05

5

6

7
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