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ABSTRACT
Elevation is important for determining the nutrient biogeochemical cycle in forest
ecosystems. Changes in the ecological stoichiometry of nutrients along an elevation
gradient can be used to predict how an element cycle responds in the midst of global
climate change.We investigated changes in concentrations of and relationships between
nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)
in the leaves and roots of the dominant tree species, Castanopsis fargesii, along an
elevation gradient (from 500 to 1,000 m above mean sea level) in a subtropical natural
forest in China. We analyzed correlations between C. fargesii’s above-ground biomass
and stoichiometry with environmental factors. We also analyzed the soil and plant
stoichiometry of this C. fargesii population. Our results showed that leaf N decreased
while leaf K and Ca increased at higher elevations. Meanwhile, leaf P showed no
relationship with elevation. The leaf N:P indicated that C. fargesii was limited by N.
Elevation gradients contributed 46.40%of the total variance of ecological stoichiometry
when assessing environmental factors. Our research may provide a theoretical basis for
the biogeochemical cycle along with better forest management and fertilization for this
C. fargesii population.

Subjects Ecology, Plant Science, Soil Science, Biogeochemistry, Forestry
Keywords Global warming, Subtropical evergreen broad-leaved forest, Elevation, Castanopsis
fargesii, Leaf stoichiometry

INTRODUCTION
The global forest ecosystem is affected by increasing global temperatures caused by excess
greenhouse gases from anthropogenic activities (Wang et al., 2016). Global warming
has affected nutrient element cycling in forest ecosystems (Penuelas & Matamala, 1990;
Penuelas & Matamala, 1993; Penuelas et al., 2020; Sardans et al., 2015) and its impact on
the biogeochemical cycle is difficult to ignore. Global warming may alter the distribution
of nutrient elements by impacting plant metabolism, thus affecting nutrient transfer in
plant organs (Gavito et al., 2005; Jónsdóttir, Khitun & Stenström, 2005; Yan, Zhu & Yang,
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2017). Two the large-scale effects of global warming on element cycling have been studied
to date: latitudinal effects over large areas (He et al., 2006; Han et al., 2011; Ordoñez et al.,
2009; Zhang et al., 2012; Fang et al., 2019) and altitude effects. These are crucial factors for
determining how variations in temperature and relative climatic changes drive ecological
processes (Körner, 2007; Normand et al., 2009).

Recently, studies on plant stoichiometry changes along elevation gradients have not
shown uniform patterns of change. Changes in plant N has shown an increase (Richardson,
Berlyn & Gregoire, 2001; Shi, Körner & Hoch, 2006), decrease (Li & Sun, 2016; Soethe,
Lehmann & Engels, 2008; Van De Weg et al., 2009), or no linear correlation (Macek et al.,
2012) with increasing elevation. Most studies have shown that plant P decreased with
increasing elevation (Soethe, Lehmann & Engels, 2008; Tanner, Vitousek & Cuevas, 1998;
Vitousek et al., 1992; Wang et al., 2018). Elevational gradients may lead to significant
variations in regional microclimate and soil properties (Zeng et al., 2018; Chang et al.,
2016) , which further affects the nutrient cycling of a plant-soil system in forest ecosystems.
This suggests that there is closely-coupled element cycling between C, N, and P in the
plant-soil system (Elser et al., 2000). Deng et al. (2008) demonstrated that plant P had
a significant positive correlation with soil P in the subtropical forest karst area. Plant
stoichiometry was also affected by environmental factors. Studying plant stoichiometry
and its correlation with environmental factors may provide a theoretical understanding
of plants’ nutritional requirements and their mutual feedback with the environment (Li
et al., 2019). Reich & Oleksyn (2004) showed that leaf N and P increases from the tropics
to mid-latitudes due to temperature-related plant physiological stoichiometry and soil
substrate age; these elements decreased at higher latitudes because cold temperatures affect
biogeochemistry.Ma et al. (2015) found that root N and P were negatively correlated with
annual average temperature and annual precipitation. Many studies of plant stoichiometry
have focused on C, N, and P but few have considered the stoichiometry of other crucial
elements, including K, Ca, and Mg.

Fagaceae is a vital subtropical plant in China that is important for maintaining and
promoting the element cycling of subtropical forest ecosystems. Zheng et al. (2017) showed
that there were significant differences between leaf and root C, N, and P in seedlings
and young trees of Castanopsis fissa and other plant organs. Chang et al. (2013) showed
that P was the most important element for limiting plant productivity in the subtropical
forest ecosystem. Castanopsis fargesii is one of the main species of the subtropical forests of
China; however, there is little information on its stoichiometry, which affects the regional
forest ecosystem and element cycle characteristics. Previous studies have focused on the
ecological characteristics of C. fargesii, including its community structure, photosynthetic
characteristics, community biomass, and soil organic carbon (Song et al., 2003; Zhao et al.,
2005; Qian et al., 2004; Gong et al., 2015; Dai et al., 2018). However, changes C. fargesii ’s
stoichiometry along elevation gradients have not been well-studied (Liu et al., 2019; Dai et
al., 2018).

Temperatures are known to change with increasing elevation, even over short distances
(Tan &Wang, 2016; Paudel et al., 2019). The elevational changes in temperature and soil
nutrients may have an effect on plant stoichiometry (Normand et al., 2009; Sundqvist,
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Sanders & Wardle, 2013; Yu et al., 2013). Thus, we conducted experiments with five
elevation gradients as a proxy for the effects of global warming in a subtropical natural forest
on GuoyanMountain in southern China. We sought to investigate the plant (specifically in
its leaves and roots) and soil stoichiometry (N, P, K, Ca, and Mg) in C. fargesii populations
along elevation gradients and determine the relative importance of elevation to the total
variation of ecological stoichiometry.

MATERIAL AND METHODS
Study area description
The study was conducted in the Guoyan Mountain Natural Reserve on Wuyi Mountain
(17◦29′ ∼118◦14′E, 26◦38′ ∼27◦12′N) in the northwestern Fujian Province. Its peak
elevation was 1,383.7 m (Fig. 1). The study area had a moderate-subtropical monsoon
climate with an average annual temperature of 19 ◦C and an average annual rainfall of
2,051 mm. C. fargesii was one of the dominant species along the elevation gradients in the
study area, which ranged from 500 to 1,000 m.

Sampling
Elevation gradients were established from 500 to 1,000 m and covered C. fargesii’s
natural habitat. Forests were intentionally planted below this range according to our
field observations. Five 30 m× 30 m plots were established at 100 m intervals (i.e., 500–600
m, 600–700 m, 700–800m, 800–900m, and 900–1,000 m, respectively, which were denoted
as 500 m, 600 m, 700 m, 800 m, and 900 m). Three plots were established at 500 m where
fewer C. fargesii were found and are close to bamboo plantations. Five C. fargesii specimens
were selected randomly in each plot and leaf samples were collected from each tree that
exhibited good growth conditions. Root samples were collected from the same five trees.
Soil samples were collected from around each tree at three depths (0–20 cm, 20–40 cm, and
40–60 cm) using a soil sampling auger with a diameter of five cm. All samples from each
plot were mixed thoroughly and stored at 4 ◦C before being transported to a laboratory.
The specimens’ biodiversity index, height, and diameter at breast height (DBH) were also
recorded (Table 1).

Laboratory analyses
Roots were deposited into 0.15mmnet bags and washed under running water. Fine roots (d
< 2 mm) were separated. The leaves and roots were cleaned with distilled water and dried
at 50 ◦C to a constant weight. All plant parts were ground prior to analysis. We removed
stones and visible litter from the soil samples and then air-dried and sieved the soil through
a two mm nylon mesh. We used 0.10 g of leaf and root material and 0.20 g of soil material
to determine the N content using a Vario Max CN analyzer (Elementar, Germany). The
leaf and soil P, K, Ca, and Mg concentrations were determined using Inductively Coupled
Plasma- Mass Spectrometry (ICP-MS) (PE Optima 8000) following H2SO4/HClO4 and
HF/HClO4 digestion.
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Figure 1 (A) Location of this study, (B) Ancient road in the GuoyanMountain Natural Reserve, and
(C) Photo of Castanopsis fargesii. Photo credit: Shaofei Jin. Map data c©2021 Google.

Full-size DOI: 10.7717/peerj.11553/fig-1

Table 1 Importance value index, DBH, and tree height of C. fargesii at different elevations (n = 15).

Elevation
(m)

Importance
value index

DBH
(cm)

Tree height
(m)

400 0 NA NA
500 38.70 15.50± 1.15 12.33± 0.76
600 43.46 17.06± 2.19 14.40± 0.80
700 26.09 14.22± 2.36 12.30± 3.99
800 40.53 13.00± 1.99 9.80± 2.22
900 71.12 10.58± 1.04 9.80± 0.94
1,000 0 NA NA

Notes.
DBH, diameter at breast height; NA, not available..
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Estimating above-ground biomass of C. fargesii
The above-ground biomass (AGB) of C. fargesii in each plot was estimated according to the
2006 IPCC Guidelines for National Greenhouse Gas Inventory (Eggleston et al., 2006). AGB
was obtained as follows: Eqs. (1) and (2)

AGB=V ×n×S÷ s×BCEFs (1)

V = g1.3× (H+3)× f3 (2)

where V is the volume of an individual C. fargesii; g 1.3 is the basal area of breast-height;
H is the tree height; f3 is the experimental form factor; the value of the broad-leaved trees
is 0.40 (Meng, 2006); S is the 1 hm2 of the stand area; s is the stand area of each plot;
BCEFs is the biomass conversion and expansion factor of growing-stock. Its value is 0.66
in subtropical regions (Eggleston et al., 2006).

Statistical analysis
Leaf, root, and soil stoichiometry variations at different elevations were compared using
one-way ANOVA. Multiple comparisons were performed using Tukey-HSD post hoc tests.
The correlations between the environmental factors, plant tissues, and soil stoichiometry
of the C. fargesii community were determined using redundancy analysis (RDA). All data
were checked to assess whether they met the assumptions of homogeneity and normality.
All analyses and figures were determined at a significance level of p< 0.05 using R software.
All raw data are shown in Supplemental File 1.

RESULTS
Variations in the plant stoichiometry of C. fargesii along the elevation
gradients
The mean N, P, K, Ca, and Mg concentrations in the leaves were 14.76 ± 1.60 mg/g,
2.00 ± 0.16 mg/kg, 41.59 ± 8.71 mg/kg, 20.68 ± 7.14 mg/kg, and 8.83 ± 1.51 mg/kg,
respectively. The mean N, P, K, Ca, and Mg concentrations in the roots were 12.53 ± 1.91
mg/g, 1.96± 0.43 mg/kg, 18.56± 4.29 mg/kg, 10.89± 4.29 mg/kg, and 5.30± 1.56 mg/kg,
respectively. Significant differences (P <0.05) in the leaf (Fig. 2) and root (Fig. 3) ecological
stoichiometry were found among different elevation gradients. The linear regressions
between the ecological stoichiometry and the elevation gradients are shown in Fig. S1 and
Fig. S2, respectively. The greatest leaf N concentration was found at the lowest elevation.
The mean leaf N:P along the elevation was 7.50 ± 0.63. A significantly positive correlation
was found between leaf K and elevation. The leaf and root Ca increased significantly at
higher elevations.

Correlations between AGB and plant stoichiometry
Variations in C. fargesii’s AGB at different elevations are shown in Fig. 4. The greatest AGB
was found at 600 m. The AGB showed a significantly negative correlation with leaf Ca and
no correlation with other leaf stoichiometry. The AGB also showed a significantly positive
correlation with root K and root P. There was a significantly negative correlation between
the AGB and root Ca (Fig. 5).
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Figure 2 Variations in the leaf N, P, K, Ca, andMg concentrations (A–E) and the leaf N:P, N:K, N:Ca,
N:Mg, P:K, P:Ca, P:Mg, K:Ca, K:Mg, and Ca:Mg ratios (F–O) at different elevations. The error bars rep-
resent standard deviation. Different letters indicate that there are significant differences among different
elevations (p < 0.05).

Full-size DOI: 10.7717/peerj.11553/fig-2

Relationships between soil stoichiometry and plant stoichiometry in
the C. fargesii population
There were significantly positive correlations between soil N, leaf Ca, and root Ca. There
were significantly negative correlations between soil N, leaf N, and leaf Mg. However,
there was no correlation between soil P and leaf and root nutrients. Soil K was found to be
positively correlated with root P and negatively correlated with leaf Ca, leaf Mg, and root
Ca. Soil Ca was found positively correlated with leaf N and leaf P. There was a significantly
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Figure 3 Variations in the root N, P, K, Ca, andMg concentrations (A–E) and the root N:P, N:K, N:Ca,
N:Mg, P:K, P:Ca, P:Mg, K:Ca, K:Mg, and Ca:Mg ratios (F–O) at different elevations. The error bars rep-
resent standard deviation. Different letters indicate that there are significant differences among different
elevations (p < 0.05).

Full-size DOI: 10.7717/peerj.11553/fig-3

positive correlation between soil Mg and leaf K, and a negative correlation between soil
and leaf Mg, root N, and root K (Table 2). The changes in the soil stoichiometry of the C.
fargesii community are shown in Fig. 6.
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Relationships between environmental factors and leaf and root nutri-
ents in the C. fargesii population
RDA analysis identified two main axes of environmental variation that together accounted
for 58.73% of the total variance of ecological stoichiometry (Fig. 7, Tables 3 and 4). The
first RDA axis contributed 38.99% of total variance which was explained by soil pH and
elevation. The second RDA axis contributed 19.74% of total variance and was mainly
explained by soil moisture and soil temperature. We show the ranking of environmental
variables in the order of contribution in Table 3. Elevation, soil moisture, soil temperature,
and soil pH contributed 46.4%, 33.8%, 16%, and 3.9%, respectively.
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Table 2 Correlation analysis between soil stoichiometry and plant stoichiometry of C. fargesii.

Soil
stoichiometry

Leaf stoichiometry Root stoichiometry

Leaf N Leaf P Leaf K Leaf Ca Leaf Mg Root N Root P Root K Root Ca Root Mg

Soil N −0.46*** −0.16 0.17 0.44*** −0.21* −0.14 −0.056 0.028 0.4*** 0.012
Soil P 0.059 0.11 −0.048 0.2 0.026 −0.085 0.14 0.081 0.064 −0.0035
Soil K −0.29* −0.051 −0.011 −0.34** −0.35** −0.22* 0.66*** 0.059 −0.48*** −0.00094
Soil Ca 0.36** 0.37** −0.036 0.065 0.03 −0.25* 0.15 −0.024 −0.24* −0.12
Soil Mg −0.068 0.2 0.62*** −0.037 −0.52*** −0.35** −0.0079 −0.49*** 0.21* −0.091

Notes.
*p< 0.05.
**p< 0.01.
***p< 0.001
No asterisk denotes no significant correlation coefficient was found.

DISCUSSION
Plant stoichiometry responses to elevation
We determined that the greatest leaf N concentration of C. fargesii was found at the
lowest elevation (Fig. 2). This result was consistent with previous studies (Li & Sun,
2016; Soethe, Lehmann & Engels, 2008; Van De Weg et al., 2009). Lower temperatures were
found at higher elevations, which decreased the decomposition and mineralization of
organic matter (Hobbie et al., 2000; Hobbie, Nadelhoffer & Högberg, 2002; He et al., 2016)
and thus decreased the availability of leaf N (Reich & Oleksyn, 2004). Leaf N is typically
determined by plant growth characteristics, whereas leaf P is determined by plant growth
and environment. Therefore, leaf N is more stable and consistent than leaf P (Chen et al.,
2013). According to Güsewell (2004), leaf N:P <10 represents the N limitation, and N:P
>20 represents the P limitation. C. fargesii was limited by N but not P, since N was lower
than that in lower-elevation plants in China (Han et al., 2011; Zhang et al., 2012). There
were significant differences in root N and P across elevations. Root N and P were greater
than those of lower-elevation plants in China (Ma et al., 2015). There was a significantly
positive correlation between leaf K and elevation, which was supported by the findings
of Du et al. (2017). This indicates that the ecology at higher elevations did not restrict K
uptake by plants. Leaf Ca increased with elevation except at 500 m. Root Ca increased at
higher elevations. The lower temperatures at higher elevations promoted Ca uptake by
plants, which aided in their defense against the cold (Plieth et al., 1999). C. fargesii required
more Ca at higher elevations and we predict that its demands at the same elevation may
decrease in the future with global warming and altered forest lines.

Correlations between AGB and C. fargesii plant stoichiometry
C. fargesii’s highest AGB (Fig. 4) and importance value (Table 1) were found at 600 m,
indicating that this environment is more suitable for growth than those at other elevations.
However, the AGB decreased as elevation increased and species’ tendency to migrate to a
higher elevation was not noticeable despite being affected by warming temperatures and
the tree line moving up. Leaf and root Ca were significantly negatively correlated with
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Figure 6 Variations in the soil N, P, K, Ca, andMg contents (A–E) and the soil N:P, N:K, N:Ca, N:Mg,
P:K, P:Ca, P:Mg, K:Ca, K:Mg, and Ca:Mg ratios (F–O) at different elevations and soil depths. The error
bars represent standard deviation. Different uppercase letters within the panels indicate that there are sig-
nificant differences between different elevations (p < 0.05), and different lowercase letters within the pan-
els indicate that there are significant differences between different soil depths (p < 0.05).

Full-size DOI: 10.7717/peerj.11553/fig-6

C. fargesii AGB indicating that C. fargesii with a larger above-ground biomass had less
demand for Ca. C. fargesii at a higher elevation may require more Ca than those at lower
elevations in our research area. Root P and K were significantly positively correlated with
AGB indicating that C. fargesiiwith a larger AGB hadmore demand for P and K. In general,
P-limiting was found in the acidic soil of tropical and subtropical regions. However, we
found that P-limiting did not exist in our research area and P was absorbed by plant roots as
an essential nutrient in P-rich soils. Estimating the AGB of C. fargesii at different elevations
and analyzing the relationship between AGB and the concentration of plant stoichiometry
may provide a basis for C. fargesii management and fertilization in the future.
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Figure 7 RDA analysis of environmental factors, leaf and root nutrient of the C. fargesii community
in the GuoyanMountain Natural Reserve. ST, soil temperature; ELE, elevation; SM, soil moisture; SpH,
soil pH; LN, leaf N concentrations; LP, leaf P concentrations; LK, leaf K concentrations; LCa, leaf Ca con-
centrations; LMg, leaf Mg concentrations; RN, root N concentrations; RP, root P concentrations; RK, root
K concentrations; RCa, root Ca concentrations; RMg, root Mg concentrations.

Full-size DOI: 10.7717/peerj.11553/fig-7

Table 3 Summary of environmental factor at different elevation gradients.

Elevation
(m)

Soil temperature
(◦ C)

Soil moisture
(%)

Soil pH

500 17.13± 7.13 14.12± 4.12 5.34± .342
600 17.93± 7.93 15.98± 5.98 4.73± .738
700 16.40± 0.36 14.02± 4.02 4.67± .672
800 16.28± 6.28 13.04± 3.04 4.42± .424
900 14.70± 4.70 18.82± 8.82 4.70± .702

Table 4 Relative contribution of environmental variables to the variance of ecological stoichiometry
of the C. fargesii community.

Order Variable Contribution (%) F p

1 Elevation 46.4 8.2 0.002
2 Soil moisture 33.8 8.0 0.002
3 Soil temperature 16.0 4.4 0.006
4 Soil pH 3.9 1.1 0.394
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Relationships between the soil stoichiometry, environmental factors,
and plant stoichiometry in the C. fargesii population
Soil influences plant growth, productivity, and distribution (Condit et al., 2013) which
are relevant to the biogeochemical cycling of nutrients in terrestrial ecosystems
(Izquierdo, Houlton & van Huysen, 2013; Tian et al., 2010). Previous studies have
demonstrated that soil P was strongly related to leaf N and P (Han et al., 2005;Hedin, 2004).
However, we found that soil P showed no relationship with leaf stoichiometry, indicating
that soil P did not govern nutrient accumulation in leaves from the study area. Leaf Ca
and Mg were found to be negatively correlated with soil K. Previous studies have shown
that a high concentration of one cation could cause an imbalance in the concentrations of
other cations in the soil (Hailu et al., 2015). Therefore, Ca and Mg absorption by plants
was negatively affected by the excess K in the soil (Hailu et al., 2015; Xue et al., 2019).
There was a negative relationship between the soil and leaf N, but a previous study showed
that soil N was not correlated with leaf N across Chinese grasslands (He et al., 2010). We
explored the relative contribution of elevation gradients and soil microenvironment (soil
temperature, soil pH, and soil moisture rate) to ecological stoichiometry variation. Our
results show that elevation was the most important factor impacting the stoichiometry of
C. fargesii. However, elevation had the least impact on stoichiometry variation for Pinus
taiwanensis within our study area, which indicates that this evergreen broad-leaf species is
more sensitive than coniferous trees. These results imply that the ecological stoichiometry
of C. fargesii will alter during global warming.

CONCLUSIONS
Leaf N, K, and Ca levels within C. fargesii were significantly related to elevation, while
leaf P and Mg showed no relationship with elevation. The leaf N:P indicated that C.
fargesii was limited by N in this subtropic forest ecosystem in China. Soil P showed no
relationship with leaf stoichiometry. The elevation explained nearly half of the variation of
ecological stoichiometry in C. fargesii. Our results may improve our understanding of the
biogeochemical cycle for nutrients in the subtropical forests of China.
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