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ABSTRACT

Background. The CCT complex is an important mediator of microtubule assembly
and intracellular protein folding. Owing to its high expression in spermatids, CCT
knockdown can disrupt spermatogenesis. In the present report, we therefore evaluated
the in vivo functionality of the testis-specific CCT complex component CCT6B using
a murine knockout model system.

Methods. A CRISPR/Cas9 approach was used to generate Cct6b~'~ mice, after which
candidate gene expression in these animals was evaluated via qQPCR and Western
blotting. Testicular and epididymal phenotypes were assessed through histological
and immunofluorescent staining assays, while a computer-assisted sperm analyzer was
employed to assess semen quality.

Results. Cct6b~/~ mice were successfully generated, and exhibited no differences in
development, fertility, appearance, testis weight, or sperm counts relative to control lit-
termates. In addition, no differences in spermatogenesis were detected when comparing
Cct6b** and Cct6b~'~ testes. However, when progressive motility was analyzed, the
ratio of normal sperm was significantly decreased in Cct6b~/~ male mice, with nuclear
base bending being the primary detected abnormality. In addition, slight decreases in
Cct4 and Cct7 expression were detected.

Conclusion. These data indicated that CCT6B is an important regulator of murine
spermatogenesis, with the loss of this protein resulting in CCT complex dysfunction,
providing a foundation for further studies.

Subjects Biochemistry, Developmental Biology, Molecular Biology, Histology
Keywords CCT6B, Spermatogenesis, Gene knockout, Protein folding

INTRODUCTION

Spermatogenesis is a complex process in which spermatogonial stem cells differentiate
and develop to yield mature spermatozoa in an ordered process (Hess ¢ Renato de
Franca, 2008), which is composed of three primary steps. First, spermatogonial stem
cells proliferate and differentiate to yield primary spermatocytes in what is known as the
mitotic amplification phase or the pre-meiotic-phase. The spermatocytes then undergo a
second round of meiotic division and develop into round haploid spermatids in the meiotic
phase. In the final post-meiotic phase of spermiogenesis, these round spermatids undergo
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morphological changes that lead to mature sperm production (De Kretser et al., 1998).
During this final phase, extensive remodeling occurs including nuclear condensation,
acrosome formation, flagellar development, and a loss of most cytoplasmic material (Dias
etal., 2016).

Sperm motility and structural integrity are closely linked to microtubule assembly and
acrosome formation, and the disruption of these processes can have a severe adverse
impact on fertility (Fouquet ¢ Kann, 1994). Microtubules are composed primarily of
tubulin, whereas the acrosome is made of actin. The folding of tubulin and actin is highly
conserved in eukaryotic cells, being regulated by the multi-protein chaperonin-containing
TCP-1 (CCT) complex (Dunn, Melville & Frydman, 2001; Lopez, Dalton & Frydman, 2015;
Valpuesta et al., 2002). This ATP-dependent chaperonin complex assists in the efficient
folding of newly generated polypeptides (Broadley & Hartl, 2009; Rothman, 1989), and
is composed of two symmetrical rings containing 8 paralogous subunits encoded by
TCP1, CCT2, CCT3, CCT4, CCT5, CCT6A or CCT6B, CCT7, and CCT8 (Kubota, Hynes
& Willison, 1995a; Spiess et al., 2004). The CCT1-8 subunits share a moderate degree of
sequence identity (~30%), and orthologous proteins are highly similar across species,
with ~60% identity being shared between mammalian and yeast cells (Kubota et al., 1994;
Kubota, Hynes & Willison, 1995b). The sequence diversity of individual subunits is believed
to provide appropriate substrate specificity through interactions with particular protein
domains (Counts, Hester ¢ Rouhana, 2017). Indeed, the CCT complex assists in the folding
of roughly 15% of human proteins (Thulasiraman, Yang ¢» Frydman, 1999; Yam et al.,
2008).

The CCT complex is a key mediator of protein folding in the context of spermatogenesis
(Giuffrida et al., 20065 Soues et al., 2003; Zhu et al., 2006). In planarians, all eight CCT
complex subunits have been shown to be critical for normal sperm development, and the
relative levels of these proteins have the potential to influence the spermatogenic process
(Counts, Hester ¢ Rouhana, 2017). However, no knockout-based approaches to date have
explored the role of CCT in murine spermatogenesis. There are two CCT6 homologs
encoded in the human and murine genomes, with CCT6A being ubiquitously expressed
whereas CCT6B is restricted to the testes (Kubota et al., 1997). The specific expression of
CCT6B solely in the testes suggests it may be an important mediator of spermatogenesis,
yet no data confirming this hypothesis have been published to date.

Genetic knockout models remain an essential tool for the in vivo assessment of the
functions of specific genes, with CRISPR/Cas9 system-based approaches having been used
on multiple occasions to target specific loci of interest in mammalian model systems
(Mali, Esvelt ¢ Church, 2013; Shen et al., 2013; Wang et al., 2013). Indeed, knockout mice
generated via this approach are commonly used for genetic studies (Castaneda et al.,
2017; Hua et al., 2019; Jiang et al., 2014; Zhang et al., 2019). As such, we herein employed
CRISPR/Cas9 approach to generate a 5-bp shift mutation in the fourth exon of the Cct6b
gene in C57B/6] mice, and we then used these animals to assess the reproductive impacts of
CCT6B knockout. The results of these analyses suggest that Cct6b is an important regulator
of spermiogenesis.
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MATERIALS & METHODS

Animals

Animal care and treatment protocols were designed based upon the guidelines of the
Institutional Animal Care and Use Committee (IACUC) of Nanjing Medical University,
and all protocols described herein have received approval from the Animal Ethical and
Welfare Committee (Approval No. IACUC-2009002-1).

All mice were obtained from and maintained under SPF conditions in the Laboratory
Animal Center of Nanjing Medical University. Mice were housed in a climate-controlled
facility (20-22 °C, 50-70% humidity, 12 h light/dark cycle) with free food and water access.
All mice were treated humanely and all efforts were made to minimize suffering. When
appropriate, mice were euthanized via cervical dislocation prior to tissue sample collection.
There were no surviving animals at the end of study.

Antibodies

Rabbit anti-CCT6B (NBP2-92177) was purchased from Novus. Rabbit anti-3-TUBULIN
was purchased from ABways (AB0039). LIN28A (ab46020) and anti-yH2AX (ab26350)
were purchased from Abcam. Mouse anti-AC-Tubulin (T6793) was purchased from Sigma.
Rabbit anti-SOX9 (AB5535) was purchased from Merck.

CRISPR/Cas9-mediated Cct6b~'~ mouse generation

Cct6b-knockout mice were generated via a CRISPR/Cas9 approach as detailed previously
(Wang et al., 20205 Zhang et al., 2019; Zhu et al., 2020). Briefly, single-guide RNAs
(sgRNAs) targeting CCT6B exon 4 were designed with the following sequences: 5'-
GACGAAAGTTCATGCTGAACTGG-3' and 5'-ATGTTCTAGCCACATCCAAGAGG-3'.
The Cas9 and sgRNA plasmids were respectively linearized using Agel and Dral respectively,
and were then purified with a MinElute PCR Purification Kit (Qiagen, Duesseldorf,
Germany). A MESSAGE mMACHINE T7 Ultra Kit (Ambion, TX, USA) was used to
generate the Cas9 mRNA, while a MEGA Shortscript and Clear Kit (Ambion) was used to
prepare the purified sgRNA. Wild-type C57BL/6 superovulated females were then mated
with C57BL/6 males to generate zygotes for Cas9 mRNA and sgRNA injection.

T7El cleavage assay and sequencing

Genomic DNA (gDNA) was extracted from testes using the Universal Genomic DNA kit
(CW2298M; CWBIO) and amplified using Phanta Max super-fidelity DNA polymerase
(p525; VAZYME) and the primers listed in Table S2. After agarose gel electrophoresis, PCR
products were purified using a PCR cleanup kit (AP-PCR-250; Axygen). A T7EI cleavage
assay was then used for genotyping as described previously (Shen et al., 2013). Briefly,
after having been mixed with Buffer 2 (NEB), purified PCR products were denatured
and re-annealed using a thermocycler. Then, the PCR products were digested using T7EI
(M0302L; NEB) for 25 min at 37 °C and separated on a 2.3% agarose gel.

Off-target effect assay
Using the open tool CRISPOR (http://crispor.tefor.net/) (Concordet ¢ Haeussler, 2018),
we predicted potential off-target sites based on the sequence of the target site. Off-target

Yang et al. (2021), PeerdJ, DOI 10.7717/peerj.11545 3/16


https://peerj.com
http://dx.doi.org/10.7717/peerj.11545#supp-5
http://crispor.tefor.net/
http://dx.doi.org/10.7717/peerj.11545

Peer

site selection was performed as described previously (Niu et al., 2014). Briefly, the aNy
base—Guanosine—Guanosine (NGG) sequence was chosen as the protospacer adjacent
motif (PAM), and sites with eight conserved base pairs proximal to the PAM with three
or fewer total mismatches were chosen as potential off-target sites. Potential off-target loci
were first amplified from gDNA extracted from the testes of founder mice with the primers
listed in Table S2. PCR fragments including the off-target loci were then subjected to the
T7EI cleavage assay. Sanger sequencing of PCR products with typical T7EI cleavage bands
was then performed.

Genotyping

Edited founders harboring Cct6b frameshift mutations were mated with wild type mice
for a minimum of three generations to eliminate the potential effects of off-target
gene editing. PCR amplification was used to confirm the genotypes of the resultant
offspring (primers: forward, 5'- GCATACTTACTACTCGGAGAGCAT -3; reverse, 5'-
CAGAGATAAGAAGGTGGCATTGGA -3'), and Sanger sequencing was additionally
conducted, with the results being analyzed via SnapGene (v.3.2.1).

qPCR

An RNeasy Plus Micro Kit with on-column DNase digestion (Qiagen Ltd., 74034) was
used to extract RNA from murine tissues. A heat-sterilized Teflon micropestle containing
350 ul of RLT buffer and 4 1 of B-mercaptoethanol was used to homogenize samples, after
which RNA was isolated based on provided directions, with samples being maintained on
ice at all times. Final RNA samples were eluted in 14 pl of RNase-free water, after which
1 pg of total RNA per sample was used to prepare cDNA with a PrimeScript RT reagent Kit
(TaKaRa Bio Inc., RR037A). Both oligo(dT) and random primers were used for the reverse
transcription. After a 15 min incubation at 37 °C, reverse transcriptase was heat-inactivated
for 5 s at 85 °C. The samples were maintained on ice throughout the RNA extraction and
reverse transcription. A qPCR instrument (StepOne-Plus, Applied Biosciences) was then
used to conduct triplicate gene expression analyses via a SYBR green approach. All gPCR
primers are compiled in Table S1, and 18S rRNA served as a normalization control.

Western blotting

Western blotting was conducted using a slightly modified version of a previously published
protocol (Zheng et al., 2015). Briefly, a lysis buffer (7M urea, 2M thiourea, 2% (w/v) DTT)
containing a 1% (v/w) protease inhibitor mixture (Pierce Biotechnology) was used to
extract proteins, which were subsequently separated via SDS-PAGE and transferred to
PVDF membranes. These blots were then blocked for 2 h at room temperature with 5%
nonfat milk in TBST, followed by overnight (>12 h) incubation with primary antibodies
at 4 °C. Anti-CCT6B was used at a 1:1000 dilution, while anti-3-TUBULIN was used

at a 1:3000 dilution. After three washes with TBST, blots were then probed for 2 h with
secondary antibodies, after which the SuperSignalWest Femto Chemiluminescent Substrate
Western Blotting detection system (Thermo Scientific) was used to detect protein bands.
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Histological analyses

Murine testes or epididymal tissues were collected from a minimum of three mice per
genotype and were fixed for 24 h in modified Davidson’s fluid prior to storage in 70%
ethanol. A graded ethanol series was then used to dehydrate these samples, which were
paraffin-embedded and cut to prepare 5 pm-thick sections that were mounted onto glass
slides. Following deparaffinization, these sections were subjected to Periodic Acid Schiff or
Hematoxylin and eosin (H&E) staining to facilitate histological analyses.

Sperm analysis

Sperm analyses were conducted as in prior reports (Castaneda et al., 2017; Jiang et al., 2014).
Briefly, distal and clamping of the cauda region of the right epididymis was conducted for
each mouse, after which this section was excised, washed with warm PBS, and added to an
Eppendorf tube containing fresh human tubal fluid (HTF) media (Millipore) containing
10% FBS at 37 °C. Clamping was then reversed, and the cauda was pierced with the tip of
a scalpel to enable the sperm to diffuse into the medium for 5 m in at 37 °C. Sperm were
then diluted using additional medium to enable a sperm motility analysis of a 10 pl sperm
suspension via computer-assisted semen analysis detection (Hamilton Thorne Research
Inc.).

Immunofluorescence staining

Following deparaffinization, tissue sections were rehydrated, washed thrice with PBS (10
min/wash), and boiled in 10 mM citrate buffer (pH 6.0) in a microwave to facilitate antigen
retrieval. A microwave oven for 10 min. For spermatozoa samples, preparation was instead
conducted by spreading cells onto microscope slides and allowed to air-dry. These cells
were then fixed for 10 min using 1% paraformaldehyde in PBS.

Immunofluorescent staining was conducted by washing samples thrice with PBST (10
min/wash), followed by a 1 h blocking step using 1% BSA. Samples were then incubated
overnight (>12 h) with appropriate primary antibodies at 4 °C, followed by incubation
for 2 h with secondary antibodies. Anti-LIN28A was used at 1:500, anti-SOX9 at 1:500,
anti-y H2AX was used at 1:100, and anti-AC-TUBULIN was used at 1:500. Hoechst 33342
was used to counterstain nuclei for 5 min, after which slides were rinsed with PBS and
mounted using VectaShield or Immu-Mount. An LSM800 confocal microscope (Carl Zeiss
AG) was then used to image the stained slides.

Transmission electron microscopy

Ultrastructural analyses were performed as in prior reports (Hua et al., 2019). Briefly, testes
from adult mice were isolated and fixed overnight using 2.5% (v/v) glutaraldehyde in 0.2
M cacodylate buffer (50 mM cacodylate, 50 mM KCl, and 2.5 mM MgCl2, pH 7.2). After
subsequent washing in this buffer, the tissues were cut into ~1 mm? pieces and submerged
in 1% OsO4 in 0.2 M cacodylate buffer for 2 h at 4 °C. Samples were then washed again
prior to overnight immersion in 0.5% uranyl acetate. After dehydration with an ethanol
gradient, these samples were embedded in resin using the Low Viscosity Embedding Media
Spurr’s Kit (EMS, 14300). An ultramicrotome was then used to prepare ultrathin sample
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Figure 1 Cct6b distribution patterns in mice. (A) The expression of Cct6b in different murine tissues
(12 weeks) was assessed via qQPCR. n = 3. (B) The expression of Cct6b in murine testes at different develop-
mental stages, including 0, 1, 2, 3, 4, 5, 6, and 7 weeks, was assessed via QPCR. 18s served as a normaliza-
tion control for all gPCR analyses.

Full-size Gal DOI: 10.7717/peerj.11545/fig-1

sections that were mounted onto copper grids, stained for 10 min with lead citrate and
uranyl acetate, and assessed with a JEM-1400 transmission electron microscope (JEOL).

Statistical analysis
Data are means & SEM, and were compared via two-tailed Student’s -tests. Not significant
(NS): P >0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

RESULTS

Assessment of murine CCT6B expression patterns

Given that Cct6b is evolutionarily conserved (Fig. S1), it is likely to play conserved
functions in animals expressing this gene. To explore these functions, we assessed Cct6b
expression patterns in mice via qPCR, revealing abundant expression of this gene in the
testis but not in other analyzed tissues (Fig. 1A). The first round of spermatogenesis in
murine testis is relatively synchronous. As such, we collected testis tissue Cct6b expression
in mice at different numbers of weeks after birth (W) in order to capture the initial
spermatogenesis wave. This analysis revealed Cct6b expression beginning at week 3, which
is the developmental stage during which spermatids emerge in murine testes (Fig. 1B).

Cct6b~'- mouse generation

To explore the functional importance of Cct6b in spermatogenesis, we next used a
CRISPR/Cas9 approach to generate C57BL/6 mice in which this gene had been knocked
out. To accomplish this, a frameshift mutation in exon 4 of the Cct6b gene was introduced
into super-ovulated fertilized mouse eggs (Fig. 2A). The mutation causes p.Glul125Gly
fs ter22 (Fig. S2), and has the potential to result in the nonsense-mediated decay of the
encoded mRNA. Relative to wild-type controls, animals in the F2 Cct6b='~ generation
harbored a 5bp deletion in exon 4 of Cct6b as detected by PCR and Sanger sequencing
(Fig. 2B). Western blotting and qPCR further confirmed that the expression of Cct6b was
completely absent at the protein level and markedly reduced at the mRNA level in the testes
of Cct6b™'~ mice (Figs. 2C-2D). Concerns involving off-target mutations associated with
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the CRISPR/Cas9 system have been previously expressed (Pattanayak et al., 2013; Sander ¢
Joung, 2014), and as such, we analyzed these animals for any potential off-target events. We
first excluded the potential off-target effects of the sgRNAs on other CCT genes. Although
there is a high degree of homology among the CCT family proteins, there were still multiple
mismatched base pairs at the sgRNA site (Figure. S3A). More importantly, protospacer
adjacent motif (PAM) sequences at the sgRNA sites of other CCT family members are not
conserved, and these play a crucial role in the efficiency of sgRNA cleavage (Fig. S3A) (Cong
et al., 2013; Mojica et al., 2009). In addition, predicted off-target sites within the genome
were identified, and a subsequent T7E1 assay exhibited no off-target effects on these sites
(Table S3 and Fig. S3B). The Cct6b~/~ mice were viable and developmentally normal.
Collectively, these results indicated that we had successfully constructed a Cct6b-knockout
mouse line.

Cct6b~'~ mice exhibit normal spermatogenesis

The fertility of male mice was next assessed by housing Cct6b™/* or Cct6b~/~ males
with wild-type females for 4 months and recording the number of offspring per litter.
The average number of pups per litter for Cct6b*/* mating pairs was 4.5 & 1.22, while
Cct6b~'~ males sired an average of 5 4 1.87 pups per litter. This suggests that Cct6b is
dispensable for male fertility (Fig. 3A). No differences in testes (n = 3) or epididymis (Figs.
3B-3C) size were observed when comparing mice in these two groups, and PAS staining
did not reveal any differences in spermatogenesis when assessing testes or epididymal
tissues from these mice. The average numbers of spermatocytes, round spermatids, and
elongated spermatids per tubule were comparable when comparing adult wild-type and
Cct6b™'~ testes (Figs. 3D-3E). In addition, immunofluorescent staining revealed normal
spermatogonia self-renewal, meiotic progression, and acrosome formation in these two
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groups (Figs. 4A—4C), and comparable SOX9 expression was evident in Cct6b™/* and
Cct6b™'~ mice (Figs. 4D—4F). Together, these results indicated that Cct6b~'~ mice are
fertile and exhibit normal spermatogenesis.

CCT6B knockout results in the bending of the sperm neck

After developing in the testes, spermatozoa enter the epididymis. However, no differences
were observed when assessing H&E-stained epididymal samples from these two groups
of mice (Fig. 5A). We therefore directly assessed sperm quality in Cct6b™/~ males with a
Computer-Assisted Sperm Analyzer (CASA). The overall epididymal cauda sperm counts
were comparable for Cct6b™/* and Cct6b~/~ animals (Fig. 5B), and sperm motility was
also similar in these two groups (Fig. 5C). However, sperm from Cct6b~'~ mice exhibited
significantly decreased progressive motility (Fig. 5D). Morphological analyses also revealed
that the ratio of normal sperm (n =3, P =0.006) was significantly decreased in male
Cct6b™'~ mice, with nuclear base bending being the primary abnormality evident in these
mice (n=3, P =0.005) (Figs. 5E-5F). However, immunofluorescent staining suggested
that the major structures of these malformed sperm, including the flagella and acrosome,
remained normal (Fig. 5G). To assess whether the occurrence of bent neck Cct6b~/'~ sperm
was the result of defective flagellar organization, we employed TEM to directly evaluate
sperm morphology. No significant differences were observed when comparing flagella
between Cct6b~'~ and Cct6b™/* sperm, but cytoplasmic retention around the head of
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Cct6b™'~ sperm was observed via this approach, as was the curling of the flagellar tail in
the cytoplasm (Fig. 6). Together, these results indicated that Cct6b knockout can result in

teratospermia characterized by neck bending and cytoplasmic redundancy.

Other CCT complex components exhibit decreased transcript abun-
dance in Cct6b~'~ mice

Given the function of CCT6B as a CCT complex protein, and the high degree of homology
between CCT6B and the other CCT proteins, we additionally explored the impact of
knocking out this gene on other CCT complex components at the mRNA level. Compared
with the control group, the mRNA expression levels of other CCT family genes were not
significantly increased in Cct6 '~ testes, (Fig. 7), suggesting that the loss of function of
CCT6B was not compensated for by the upregulation of other CCT complex components.

DISCUSSION

The CCT chaperone complex is estimated to aid in the folding of up to 15% of the
eukaryotic proteome (Thulasiraman, Yang ¢ Frydman, 1999; Yam et al., 2008). Over half
of active chaperons are occupied by the folding of tubulin and actin, which serve as
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Figure 5 Teratozoospermia is evident in Cct6b~'~ males. (A) H&E-stained cauda epididymis tissues
from Cct6b*'* and Cct6b~'~ mice. (B) Cauda epididymal sperm contents from Cct6*/* and Cct6b™~'~ mice,
n=3. (C) Average frequencies of motile and (D) progressive sperm in the Cct6*'* and Cct6b™'~ mice, n=
3. (E) H&E-stained spermatozoa from Cct6*'* and Cct6b~'~ mice. (F) Frequencies of sperm exhibiting ab-
normal morphological characteristics in Cct6 */* and Cct6b~'~ mice, n = 3. (G) AC-tubulin and PNA im-
munofluorescent detection in Cct6*'+ and Cct6b~'~ spermatozoa.

Full-size G4l DOI: 10.7717/peerj.11545/fig-5

the primary components of microtubules and the acrosome, respectively, suggesting

a potential mechanistic relationship between CCT and spermiogenesis (Siegers et al.,
2008). Indeed, prior reports have shown CCT proteins to play important roles in
spermatogenesis and fertilization. Sylvie et al. initially demonstrated the presence of
CCT in the microtubule-organizing centers (MTOCs) and manchette microtubules during
spermiogenesis, indicating that this chaperone complex is likely a key regulator of sperm
microtubule assembly (Soues et al., 2003). Matthew et al. determined that CCT is present
on capacitated spermatozoa surfaces and may regulate the zona binding activity of these
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Figure 6 Electron microscopy images of Cct6'* and Cct6b~'~ spermatozoa. The cytoplasm of knock-
out sperms remain around the head of the sperm, while the flagella remain curled in the cytoplasm of
these cells (arrows); *, Residual cytoplasm; M, midpiece; P, principal piece.
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Figure 7 Gene expression changes in the testes of Cct6b~'~ mice. The expression of Cctl1-5, Cct6a, and
Cct7-8 in murine testes was assessed via gPCR. 18S rRNA served as a normalization control. n = 3.
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cells (Dun et al., 2011). CCT knockdown experiments have recently revealed that knocking

down any CCT complex subunits can adversely affect fertility in planarians (Counts, Hester

¢ Rouhana, 2017). However, no knockout studies in mammalian models have specifically

explored the role of CCT in spermatogenesis.

CCT6B is a member of the CCT complex that exhibits a testis-specific expression pattern.

Herein, we confirmed that this gene was expressed exclusively during spermiogenesis (Fig.

1), indicating that CCT6B is likely to play an important role in regulating spermiogenesis,

spermatid release, and maturation. To test the functional importance of this gene, we
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generated Cct6b-knockout mice via a CRISPR/Cas9 approach and confirmed that CCT6B
protein expression was absent in the testes of these animals (Fig. 2). Adult male Cct6b™'~
C57BL/6 mice remained fertile, and no differences in the histology or morphology of
the testes and epididymides of these mice were observed when compared to wild-type
controls (Fig. 3). Spermatogonia proliferation and spermatocyte meiosis also appeared
normal in these Cct6b~/~ animals (Fig. 4), and epididymal sperm numbers and motility
remained normal. However, progressive motility and the ratio of normal sperm were
significantly decreased in male Cct6b~/'~ mice (Fig. 5). TEM revealed a deficiency in the
neck of Cct6b™'~ sperm (Fig. 6). As CCT paralogs share 65-71% sequence identity across
most of their exonic sequences, with the ubiquitously-expressed Cct6a protein exhibiting
particularly high levels of homology with Cct6b (Counts, Hester ¢~ Rouhana, 2017), we
additionally evaluated the expression of the other CCT proteins. This analysis revealed
slight reductions in Cct4 and Cct7 levels, whereas no changes in other components were
detected (Fig. 7), suggesting that no compensatory effects mediated by the expression of
other CCT complex components occur in these tissues.

Our results indicate that CCT6B plays an important role in regulating sperm
morphogenesis. The loss of CCT6B results in an increased ratio of sperm nuclear base
bending, suggesting that the functionality of certain structural proteins in these cells
is disrupted. This highlights a potential role for the CCT complex in the assembly of
structural proteins during spermatogenesis. Even so, CCT6B-deficient mice generated
normal amounts of sperm and remained fertile, suggesting that CCT6B is an auxiliary
module in the CCT complex, consistent with its testis-specific expression pattern. One
possibility is that it plays an enhanced role in protein folding processes in the context of
spermatogenesis, but further research will be required to test this possibility.
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