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ABSTRACT
Background. At any particular location, frequencies of alleles that are associated with
adaptive traits are expected to change in future climates through local adaption and
migration, including assisted migration (human-implemented when climate change
is more rapid than natural migration rates). Making the assumption that the baseline
frequencies of alleles across environmental gradients can act as a predictor of patterns
in changed climates (typically future but possibly paleo-climates), a methodology is
provided by AlleleShift of predicting changes in allele frequencies at the population
level.
Methods. The prediction procedure involves a first calibration and prediction step
through redundancy analysis (RDA), and a second calibration and prediction step
through a generalized additive model (GAM) with a binomial family. As such, the
procedure is fundamentally different to an alternative approach recently proposed to
predict changes in allele frequencies from canonical correspondence analysis (CCA).
The RDA step is based on the Euclidean distance that is also the typical distance
used in Analysis of Molecular Variance (AMOVA). Because the RDA step or CCA
approach sometimes predict negative allele frequencies, the GAM step ensures that
allele frequencies are in the range of 0 to 1.
Results. AlleleShift provides data sets with predicted frequencies and several visualiza-
tionmethods to depict the predicted shifts in allele frequencies frombaseline to changed
climates. These visualizations include ‘dot plot’ graphics (function shift.dot.ggplot ),
pie diagrams (shift.pie.ggplot ), moon diagrams (shift.moon.ggplot ), ‘waffle’ diagrams
(shift.waffle.ggplot ) and smoothed surface diagrams of allele frequencies of baseline or
future patterns in geographical space (shift.surf.ggplot ). As these visualizations were
generated through the ggplot2 package, methods of generating animations for a climate
change time series are straightforward, as shown in the documentation of AlleleShift
and in the supplemental videos.
Availability. AlleleShift is available as an open-source R package from https://cran.
r-project.org/package=AlleleShift and https://github.com/RoelandKindt/AlleleShift.
Genetic input data is expected to be in the adegenet::genpop format, which can be
generated from the adegenet::genind format. Climate data is available from various
resources such asWorldClim and Envirem.
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INTRODUCTION
There is clear evidence of anthropogenically induced climate change, with our planet facing
a climate emergency (Ripple et al., 2020). Anticipating climate change, many countries
are developing National Adaptation Plans (NAPs; https://www4.unfccc.int/sites/napc).
Specifically for forests and trees, technical guidelines have recently been prepared on the
integration of forests, agroforestry and trees in the formulation and implementations of
NAPs (Meybeck et al., 2020). Stanturf et al. (2015) provide a practical framework and a
stoplight tool to plan for climate change mitigation and adaptation in forest and landscape
restoration initiatives.

For loci involved in adaptation, shifts in allele frequencies (and changes in phenotypes
as a result) can be anticipated (Günther & Coop, 2013; Stange, Barrett & Hendry, 2020).
Although the methods involved are far from straightforward, statistical approaches such
as Genome Wide Association Studies (GWAS) and Environmental Association Analyses
(EAA) can be applied to genomic data to postulate genes and specific alleles involved
in climate change responses (Luikart et al., 2018; Anderson & Song, 2020; Waldvogel et al.,
2020). AlleleShift predicts shifts in allele frequencies for those loci predicted by GWAS or
EAA to be associated with adaptive traits.

Themethodology used inAlleleShift exploits the analogy between analysing a community
matrix (consisting of sites as rows, species as columns and abundances as cell values) and
a genetic matrix (consisting of populations or individuals as rows, alleles as columns and
allele counts as cell values). As a consequence, the common constrained ordinationmethod
in the field of community ecology of redundancy analysis (RDA; Legendre & Legendre, 2012,
pp. 629–661) can be applied.

RDA is based on Euclidean distances and without explanatory variables is equivalent to
principal components analysis (PCA). Various recent studies of adaptative genetic variation
have also used the RDA methodology (e.g., Razgour et al., 2019; Capblancq et al., 2020;
Nelson, Motamayor & Cornejo, 2020; Temunović et al., 2020). Analysis of a genetic matrix
via Euclidean distances is appropriate for several reasons:

• Euclidean distances are also used in Analysis ofMolecular Variance (AMOVA; (Excoffier,
Smouse & Quattro, 1992; Meirmans & Liu, 2018; Michalakis & Excoffier, 1996)) and it
can be demonstrated (see examples for the AlleleShift::amova.rda function and
possibly also compare with AMOVA analysis in GenAlEx; (Peakall & Smouse, 2012))
that RDA provides the same information on squared Euclidean distances and mean
squares as an AMOVA analysis.
• In Article S1, I demonstrate how Euclidean distances between adegenet::genpop

objects are linearly related to the Euclidean distances between the centroids obtained
from a PCA analysis of adegenet::genind objects. As a corollary, shifts of populations
can be understood as the average shift of individuals in ordination space.
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• Recently, I also showed (Kindt, 2020a) how RDA can be directly interpreted in terms of
Sums-of-Squares of AMOVA by analysing distances from individuals to centroids and
among centroids.

The RDA model is calibrated with an explanatory data set that documents the
environmental values of populations in the baseline climate. The prediction function
uses the values of populations in the changed (future or past) climate as explanatory
variables to predict changes in allele counts and frequencies in the changed climate. As
possibly negative allele counts can be predicted by the calibrated RDA, as with the example
data set shown below, a second calibration step is implemented that guarantees that allele
frequencies are within the biologically realistic interval between 0 and 1.

By using RDA and avoiding negative allele frequencies, AlleleShift is fundamentally
different from the protocol developed by Blumstein et al. (2020) based on canonical
correspondence analysis (CCA; Legendre & Legendre, 2012, pp. 661–673). Besides the
advantage of RDA to reflect Euclidean distances, a disadvantage of CCA is that the
interpretation of species scores in ordination diagrams is more complex in showing the
peak of its unimodal distribution against a vector of an explanatory variable (see Fig. 3 in
Ter Braak (1987); Fig. 11.9 in Legendre & Legendr (2012); or Figure 10.13 in Kindt and Coe,
2005).

MATERIALS & METHODS
Data import
Genetic response data (including a matrix with populations as rows and allele counts
as columns) for the calibration of the AlleleShift::count.model and prediction
via AlleleShift::count.pred is required to be in the adegenet::genpop format.
Individual-based data that are in the adegenet::genind format can be converted
into the genpop format via the adegenet::genind2genpop function. The adegenet
and poppr packages provide various methods of importing data from other software
application formats into the genind format, such as adegenet::import2genind and
poppr::read.genalex. Environmental data of populations, used as explanatory variables
in redundancy analysis (RDA), is expected to be provided as a data.frame with the same
sequence of populations as the genetic response data (this is a general requirement for
community ecology methods in the vegan and BiodiversityR packages; a check is available
via BiodiversityR::check.datasets). Whereas environmental data typically is baseline
and changed (bio)climatic data such as is available from WorldClim (Fick & Hijmans,
2017), ENVIREM (Title & Bemmels, 2018), CHELSA (Karger, Schmatz & Dettling, 2020) or
PaleoClim (Brown et al., 2018), it is also possible to expand input to other data available
for species distribution modelling (a recent overview of available data sets is provided by
Booth (2018).

Data analysis
Prior to calibrating the models that predict allele frequencies from bioclimatic explanatory
data, it is recommended to reduce the explanatory variables to a subset where the Variance
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Inflation Factor (VIF) is below a predefined threshold for each variable. Such methods are
also recommended for regression analysis (Fox & Monette, 1992) and species distribution
modelling (Kindt, 2018). With this approach, it is easy to select the same variables from
future data sets and comparison with other studies may also become easier. VIF analysis,
and an additional feature of forcing the algorithm to keep preselected variables within the
final subset, is available via AlleleShift::VIF.subset (Table 1). This is a function that
uses BiodiversityR::ensemble.VIF.dataframe internally after a first step of removing
all explanatory variables that have correlations larger than the VIF threshold with the
preselected variables. There is an option to generate a correlation matrix for the final subset
of variables (Fig. 1). I also recommend conducting the VIF analysis for the genetic response
data (see discussion and Fig. 1). I further advise to remove any individuals with partially
missing genetic or (bio)climatic data prior to the analysis. As a sensitivity analysis, results
could possibly be compared with models calibrated with data where missing genotypes
were replaced by genotypes predicted by the impute function of the LEA package (Gain &
François, 2021).

Prior to model calibration, I suggest checking (according to criteria described below) for
the shifts of populations in environmental space between the baseline and changed climates.
This can be achieved via function AlleleShift::population.shift, which draws arrows
between each population in the baseline and changed climate. There are alternatives of
using principal components analysis (PCA) or redundancy analysis (RDA) to generate
the ordination diagrams (Fig. 2). What is important to check in the ordination graphs is
whether populations shift in a similar fashion, as that will facilitate the interpretation of
predicted shifts in allele frequencies. If some populations would show a different trend
in the ordination graph, their allele frequencies would also be expected to change in a
different way.

With the selected genetic and explanatory data, model calibration can be done. In a
first step, a RDA model is fitted (AlleleShift::count.model) that can predict counts
of alleles in baseline or changed climates (AlleleShift::count.pred). The user has
the option also to obtain results for the canonical correspondence analysis procedure
of Blumstein et al. (2020) with the count model via argument cca.model=TRUE. In the
second step, the predicted allele counts for the baseline climate serve as explanatory
variables for the calibration of a generalized linear model (GAM via mgcv::gam; Wood,
2004) with the baseline allele frequencies as response and a binomial family function
(AlleleShift::freq.model). This procedure ensures that predictions are within the
realistic interval for frequencies between 0 to 1. Function AlleleShift::freq.pred

allows the prediction of allele frequencies for baseline and changed climates. A simulation
study (Article S2, using a subset of a simulation study available from Frichot & François
(2015)) and the results below show that the predicted frequencies approximate the expected
frequencies well.

The output of the two steps (RDA followed by GAM) is a data.frame as shown in
Table 2 (to fit printing space available here, the data is shown in a transposed format where
rows and columns were swapped). All figures shown in this manuscript were obtained
with the example data sets of AlleleShift::Poptri.genind (individually-based allele
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Table 1 Functions found in AlleleShift and their short descriptions.

Function Description

Preparation
VIF.subset Reduce the number of explanatory variables through Variance

Inflation Factor analysis, with an option to plot a correlation
matrix (GGally::ggcorr). Internally, the function calls the
BiodiversityR::ensemble.VIF.dataframe function.

environmental.novel Identify populations with some values of the explanatory variables that are
outside the range of values used for calibration.

Analysis
count.model Calibration of RDA model (vegan::rda) with baseline allele counts as

response and baseline bioclimatic variables as explanatory variables
count.pred Prediction of allele counts (vegan::predict.rda) from explanatory

variables. Explanatory variables correspond to the baseline climate to check
the calibration

freq.model Calibration of GAMmodel (mgcv::gam) with baseline allele frequencies as
response and predicted baseline counts from the RDA model as explanatory
variables

freq.pred Prediction of allele frequencies (mgcv::predict.gam) from the predicted
alleles counts of count.pred

amova.rda Perform AMOVA with the outputs from RDA. The function returns an
output that is similar to the output of poppr::poppr.amova so that results
can be readily compared

Visualization
population.shift Shifts of populations in environmental space, with superellipses

(ggforce::geom_mark_ellipse) and arrows between baseline and
changed positions to show climatic shifts. Internally, the function calls
vegan::ordiplot and various helper functions from BiodiversityR (Kindt,
2020a) are used

freq.ggplot Plots of baseline allele frequencies against predicted allele frequencies. Data
points can be coloured differently by population or by allele

shift.dot.ggplot Shifts of Allele Frequencies as Response to Climate Change
shift.pie.ggplot Shifts of Allele Frequencies as Response to Climate Change via

ggforce::geom_arc_bar

pie.baker Helper function to prepare data for shift.pie.ggplot from the output of
freq.pred.

shift.moon.ggplot Shifts of Allele Frequencies as Response to Climate Change via
gggibbous::geom_moon

moon.waxer Helper function to prepare data for shift.moon.ggplot from the output
of freq.pred

shift.waffle.ggplot Shifts of Allele Frequencies as Response to Climate Change. Graphics are
similar to waffle::waffle, but the graph is made de novo in AlleleShift

waffle.baker Helper function to prepare data for shift.waffle.ggplot from the
output of freq.pred

shift.surf.ggplot Shifts of Allele Frequencies as Response to Climate Change, plotted
in geographical space through smoothed regression surfaces
(vegan::ordisurf)

Notes.
BiodiversityR (Kindt & Coe, 2005; version 2.12-3 used in this manuscript); ggforce (Pedersen & Robinson, 2020; version 0.3.2); gggibbous (Bramson, 2019; version 0.1.0); mgcv
(Wood, 2004); version 1.8-31); poppr Kamvar, Tabima & Grünwald, 2014; version 2.8.6); vegan (Oksanen et al., 2020; version 2.5-6).

Kindt (2021), PeerJ, DOI 10.7717/peerj.11534 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.11534


Figure 1 Correlation matrices. (A) Correlation matrix plot for the final subset of bioclimatic variables
selected by the VIF.subset function. CMI, climatic moisture index; Eref, reference atmospheric evaporative
demand; SHM, summer heat-to-moisture index; AHM, annual heat-to-moisture index; TD, continental-
ity; MAT, mean annual temperature. (B) Correlation matrix plot for the minor alleles.

Full-size DOI: 10.7717/peerj.11534/fig-1

counts), AlleleShift::Poptri.baseline.env (climatic descriptors of the populations
in the baseline climate), AlleleShift::Poptri.future.env (climatic descriptors of
the populations in the future climate) and AlleleShift::Poptri.loc (geographical
coordinates of the populations). These data sets were converted from the example data sets
provided by Blumstein et al. (2020) for Populus trichocarpa. It can be seen for population
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Figure 2 Ordination graphs. (A) Principal Component Analysis (PCA) ordination graph for shifts in
populations in environmental space. (B) Redundancy Analysis (RDA) ordination graph for shifts in popu-
lations with climate (a categorical variable with ‘baseline’ and ‘future’ as levels) as explanatory variable.

Full-size DOI: 10.7717/peerj.11534/fig-2

Nisqually in our case study that negative allele counts and frequencies are predicted for
one of the minor alleles in the RDA prediction step, but that the GAM step predicts the
biologically acceptable frequency of 0.027. Function AlleleShift::freq.ggplot (Fig. 3)
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Table 2 Output from function freq.pred for the changed climate for four populations and 2 alleles (A
and B). This is a subset of the results with all populations and all alleles for the example data sets in Alle-
leShift for Populus trichocarpa.

Population Puyallup Tahoe Skagit Nisqually

N 372 24 326 28
Locus X01_10838495
Allele.freq 0.172 0.625 0.236 0.107
A 64 15 77 3
B 308 9 249 25
Ap 144.376 23.471 75.381 15.165
Bp 227.624 0.529 250.619 12.835
N.e1 372 24 326 28
Freq.e1 0.388 0.978 0.231 0.542
Freq.e2 0.425 0.959 0.192 0.633
LCL 0.306 0.794 0.175 0.452
UCL 0.544 1.000 0.210 0.813
increasing TRUE TRUE FALSE TRUE
Locus X01_16628872
Allele.freq 0.169 0.083 0.181 0.250
A 63 2 59 7
B 309 22 267 21
Ap 38.751 0.509 52.668 −0.038
Bp 333.249 23.491 273.332 28.038
N.e1 372 24 326 28
Freq.e1 0.104 0.021 0.162 −0.001
Freq.e2 0.104 0.037 0.183 0.027
LCL 0.091 0.029 0.161 0.018
UCL 0.117 0.045 0.205 0.036
increasing FALSE FALSE TRUE FALSE

Notes.
N, number of alleles sampled from population; Allele.freq, frequency of the minor allele in the baseline climate calcu-
lated via adegenet::make.freq; A/B, count of the alleles in the baseline climate; Ap/Bp, predicted counts of the alleles in the
changed climate; N.e1, predicted number of alleles; Freq.e1: predicted frequency of the minor allele via RDA; Freq.e2, pre-
dicted frequency of the minor allele via GAM; LCL/UCL: lower/ upper confidence limits; increasing, flag whether frequency is
increasing.

enables a visual inspection of the power of the models to predict allele frequencies for the
calibration data.

Visualizations
AlleleShift generates various types of ggplot2 (Wickham, 2016; version 3.3.2) graphics from
the output of AlleleShift::freq.pred. These include dot (Fig. 4), pie or donut (Fig. 5),
moon (Fig. 6) and waffle (Fig. 7) graphics, and smoothed regression surfaces (Fig. 8).
As an intermediate step to generate various of these graphics, helper functions such
as waffle.baker for shift.waffle.ggplot or moon.waxer for shift.moon.ggplot
prepare data for the main graphing function (Table 1). With default settings, visualizations
depict changes in allele frequencies for each allele in different panels, internally via
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Figure 3 Plot of the actual frequency of the minor allele against the predicted frequency for the cali-
bration data. The ‘olivegreen’ reference lines indicate 1:1 (bold line), 1:1.05 and 1:0.95 (dashed lines) rela-
tionships. (A) Data for populations where a linear model explains more than 50% in allele frequencies. (B)
Data for populations where a linear model explains less than 50% in allele frequencies.

Full-size DOI: 10.7717/peerj.11534/fig-3

ggplot2::facet_grid. Setting argument mean.change to TRUE, the graphics depict
median or mean changes in allele frequencies.

Function shift.surf.ggplot plots populations in geographical space via their geographical
coordinates (longitude and latitude in Fig. 8). The function fits a smoothed regression
surface for allele frequencies via vegan::ordisurf. This output is then further processed
internally within the function via BiodiversityR::ordisurfgrid.long (an overview
of generating ggplot2 ordination diagrams via vegan and BiodiversityR is given in Kindt
(2020b); these guidelines can be used to customize ordination graphs as shown in Figs. 2
and 8). Various options of fitting smoothed regression surfaces are available by providing
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Figure 4 Depiction of changes in minor allele frequencies via AlleleShift::shift.dot.ggplot. Black cir-
cles reflect baseline frequencies, blue circles indicate future frequencies and vertical lines indicate the con-
fidence interval.

Full-size DOI: 10.7717/peerj.11534/fig-4

additional arguments to shift.surf.ggplot, such as the various mgcv::smooth.terms
options of thin plates, Duchon splines, cubic regression splines, P-splines, Markov Random
Fields, Gaussian process smooths, soap film smooths, splines on the sphere and random
effects.

As graphics are generated with ggplot2, it is relatively easy to generate animated versions
of visualizations with gganimate (Pedersen & Robinson, 2020; version 1.0.7). Scripts for
generating animated versions for dot graphics, pie graphics and smoothed surfaces are
provided with the documentation of the respective functions. Video S3–S5 are for a time
series that interpolates bioclimatic data between baseline and future climate in steps of five
years; these also extrapolate data far into the future (up to a million years, see the Results
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Figure 5 Depiction of changes in allele frequencies via AlleleShift::shift.pie.ggplot. Columns on the left
reflect baseline frequencies with frequency of the minor allele in black. Columns on the right reflect future
frequencies, with colour of the arc and colour of the central circle reflecting frequencies and trends (red=
decreasing, green= increasing) of the minor allele.

Full-size DOI: 10.7717/peerj.11534/fig-5

and Discussion for my reason to do this). Other than time series, animated visualizations
could also be generated for different global circulation models (GCMs) or scenarios such
as various shared socio-economic pathways (SSPs) developed in the context of the sixth
assessment report of the Intergovernmental Panel on Climate Change.
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Figure 6 Depiction of changes in allele frequencies via AlleleShift::shift.moon.ggplot. Columns on the
left reflect baseline frequencies with frequency of the minor allele in white. Columns on the right reflect
future frequencies, with colour of the waxing moon and colour of the central circle reflecting frequencies
and trends (red= decreasing, green= increasing) of the minor allele.

Full-size DOI: 10.7717/peerj.11534/fig-6

RESULTS AND DISCUSSION
AlleleShift predicts shifts in allele frequencies via RDA and GAM, an alternative pathway
that maintains Euclidean distances among populations and individuals (Article S1). It also
avoids making negative frequency predictions as what may occur with the protocol recently
devised by Blumstein et al. (2020). My methodology however faces the same limitations
of data requirements as discussed by Blumstein et al. (2020) for their protocol in terms of
the initial identification of responsive markers. Key assumptions of the Blumstein et al.
(2020) protocol apply also to my approach, including that allelic effects are independent
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Figure 7 Depiction of changes in allele frequencies via AlleleShift::shift.waffle.ggplot. Each ‘waffle’
has 100 ‘cells’. Columns on the left reflect baseline frequencies with frequency of the minor allele in black.
Columns on the right reflect future frequencies of the minor allele, with colour indicating trends (red=
decreasing, green= increasing).

Full-size DOI: 10.7717/peerj.11534/fig-7

and additive with no epistasis or dominance (see also the discussion on epistasis, structural
genomic variation and epigenetics by Stange, Barrett & Hendry (2020).

I recommend reducing both the explanatory variables and the response variables to
subsets of data with a maximum Variance Inflation Factor (VIF) of 20 or less (Ter Braak
& Smilauer, 2002), for alleles to obtain better estimates of changes in their frequencies.
For the allele counts as response variables, if VIF would be larger than 20, I would use
function VIF.subset in an iterative procedure whereby earlier selected subsets of alleles
are excluded, to generate different subsets of alleles (but keeping variables for both A and
B allele counts in each final subset). For example, with 20 alleles X01A, X01B, X02A, X02B,
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Figure 8 Depiction of changes in allele frequencies in geographical space via Alle-
leShift::shift.surf.ggplot. (A) Frequencies in the baseline climate for the minor allele for locus 10838495.
(B) Frequencies in a future climate for the same allele as in (A). (C) Frequencies in the baseline climate for
the minor allele for locus 23799134. (D) Frequencies in a future climate for the same allele as in (D). Sizes
of circles reflect the frequencies for the populations. Colours for the future frequencies (B, D) indicate
trends (red= decreasing, green= increasing).

Full-size DOI: 10.7717/peerj.11534/fig-8

. . . , X10A, X10B, the two subsets could be {X01A, X01B, . . . , X05A, X05B} and {X06A,
X06B, . . . , X10A, X10B}. With the various subsets, shifts in allele frequencies can then be
predicted, and finally predictions with all subsets can be combined.

When predictions are made by AlleleShift into the future, and especially into novel
climatic conditions, it is warranted to consider the transferability of the calibrated models
and ideally to provide ‘transferability metrics’ that quantify prediction uncertainty (Yates
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et al., 2018). The function of environmental.novel identifies populations that have
novel climatic conditions (values outside the baseline range) for at least one of the
explanatory variables for the changed climate. This function also calculates the probabilities
of encountering the novel conditions from the mean and standard deviation of the baseline
ranges and then returns the lowest of these probabilities as an indicator of the degree of
novelty of the environmental conditions.

For the animated graphics, as an extreme example of the caveats of the methodology,
I made projections one million years into the future. These projections followed
earlier trends of the 21st century and resulted in allele frequencies becoming fixed
at 0 or 1, which is a biologically possible scenario. At the same time, however, these
simulations clearly illustrated that the methodology through RDA is correlative as in
correlative/phenomenological species distribution models. In fact, the linear extrapolation
of climate variables resulted in an environmental data set where the mean annual
temperature was above 30,000 degrees, which obviously is a biologically irrelevant scenario.
Thus, the method presented here should be used cautiously in novel climates especially
as predictions will be available (the model will not crash or give an error warning), and
should thus be used even more cautiously where differences between baseline and future
climates are large.

As an approach to obtain a better handle on the transferability of AlleleShift predictions
into future climates, I recommend to also estimate the habitat suitability via species
distribution models (SDMs). Where habitat suitability is below a certain threshold, for
instance a threshold where the sum of sensitivity and specificity is maximized (Liu, White
& Newell, 2013), results of predictions of AlleleShift could be annotated of having lower
transferability. Similarly, where evaluation strips as proposed by Elith et al. (2005) suggest
that it is less likely that the habitat is suitable within the changed range of environmental
conditions, additional information could be provided on a lower transferability. Well-
documented methods of utilizing SDMs to predict shifts in species habitat suitability are
available in the literature, including recent examples that use the ensemble suitability
modelling framework available in BiodiversityR (e.g., de Sousa et al., 2019; Fremout et al.,
2020; Kindt, 2018; Ranjitkar et al., 2014). For organisms such as trees, correlative SDMs
remain the best available method of predicting future species suitability, whereas the
limitations of these methods may not be as great as has been suggested (Booth, 2016; Booth,
2018). What is also attractive about SDMs is that a wider set of presence observations are
likely to be available than those populations that have been studied genetically. Presence
data are available from open-source databases such as GBIF or the Botanical Information
and Ecology Network (Enquist et al., 2016). Further to the collation of a larger set of
presence observations, application of SDMs should be straightforward using the same
(bio)climatic data sets as applied in AlleleShift. The approach of combining the results of
AlleleShift with SDM is somewhat similar to the method applied by Aguirre-Liguori et al.
(2019) to develop species distribution models for alleles. In my proposal, however, the
predictions of allele frequencies and SDM are done independently, and ideally with an
expanded point presence data set for SDM.
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A straightforward and practical expansion of the methodology I have proposed is to tree
seed sourcing programmes (Broadhurst et al., 2008), possibly for developing schemes of
human-assisted geneflow sensu Aitken & Whitlock (2013). This is important for ensuring
the matching of planting materials to the conditions of planting sites (Cernansky, 2018;
Roshetko et al., 2018; Kettle et al., 2020). For specific planting sites and planting times
(considering the perennial nature of trees, climate change during the production cycle
should be considered) of interest, the prediction methods can readily provide the predicted
allele frequencies needed for adaptation. Theoretically, based on the similarity between
predicted allele frequencies and those of available source populations, the best matching
source can then be selected. Similar approaches to devise transfer and conservation schemes
in the face of climate change can be employed for other organisms than plants (Fitzpatrick
& Edelsparre, 2018; Rochat, Selmoni & Joost, 2021).

CONCLUSIONS
The R package AlleleShift provides a set of functions that allow the prediction of
allele frequencies from baseline, future and past (bio)climatic explanatory variables via
redundancy analysis (RDA) and generalized additivemodels (GAM). Various visualizations
are provided via ggplot2 and its extension packages such as ggforce and gganimate. At the
time of submission of this manuscript, no package was available for this set of tools. As
with any other methodology that projects into the future, it is important to reflect on
transferability to novel climates.
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