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ABSTRACT
Background. Plants have evolved physical–chemical defense to prevent/diminish
damage by their enemies. Chemical defense involves the synthesis’ pathways of
specialized toxic, repellent, or anti-nutritive metabolites to herbivores. Molecular
evolutionary studies have revealed the origin of new genes, acquisition and functional
diversification along time in different plant lineages.
Methods. Using bioinformatic tools we analyze gene divergence of tropane alkaloids
(TAs) and terpene synthases (TPSs) in Datura stramonium and other species of
Solanaceae; compared gene and amino acids sequence of TAs and TPSs on genomes,
cDNA and proteins sequences of Viridiplantae. We analyzed two recently assembled
genomes of D. stramonium (Ticumán and Teotihuacán), transcriptomes of Datura
metel and genomes of other Solanaceae. Hence, we analyzed variation of TAs and TPSs
to infer genes involved in plant defense and plant responses before stress. We analyzed
protein modeling and molecular docking to predict interactions between H6H and
ligand; we translated the sequences (Teo19488, Tic8550 and Tic8549) obtained from
the two genomes of D. stramonium by using Swiss-Model and Ramachandran plot and
MolProbity structure validation of Teo19488 protein model.
Results. For TAs, we detected an expansion event in the tropinone reductase II (TRII)
and the ratio synonymous/non-synonymous substitutions indicate positive selection. In
contrast, a contraction event and negative selection was detected in tropinone reductase
I (TRI). In Hy-oscyamine 6 b-hydroxylase (H6H), enzyme involved in the production
of tropane alkaloids atropine and scopolamine, the synonymous/non-synonymous
substitution ratio in its dominion indicates positive selection. For terpenes (TPS), we
found 18DsTPS inD. stramomiun and seven inD. metel ; evolutionary analyses detected
positive selection in TPS10.1 and TPS10.2 ofD. stramonium andD. metel. Comparison
of copies of TPSs in D. stramonium detected variation among them in the binding
site. Duplication events and differentiation of TAs and TPSs of D. stramonium, as
compared to other Solanaceae, suggest their possible involvement on adaptive evolution
of defense to herbivores. Protein modeling and docking show that the three protein
structures obtained of DsH6H from Teo19488, Tic-8550 and Tic8549 maintain the
same interactions and the union site of 2OG-FeII_Oxy with theHy-o ligand as in 6TTM
of D. metel.
Conclusion. Our results indicate differences in the number of gene copies involved in
the synthesis of tropane alkaloids, between the genomes of D. stramonium from two
Mexican populations. More copies of genes related to the synthesis of tropane alkaloids
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(TRI, TRII, H6H, PMT) are found in D. stramonium as compared to Viridiplantae.
Likewise, for terpene synthases (TPS), TPS-10 is duplicated in D. stramonium and D.
metel. Further studies should be directed to experimentally assess gain (overexpression)
or loss (silencing) of function of duplicated genes.

Subjects Bioinformatics, Evolutionary Studies, Genomics, Plant Science
Keywords Datura stramonium, Gene duplication and contraction, H6H, Plant defense to
herbivores, Solanaceae, Terpene synthase, Tropane alkaloids, Tropinone reductase, Phylogeny

INTRODUCTION
Plants are exposed to manifold environmental factors, biotic and abiotic, that affect their
lifetime reproductive success. To cope with the different types of environmental stress,
plants have evolved differentmechanisms, ranging frommorpho-anatomical, physiological,
biochemical, molecular and epigenetic modifications, among others (Lamalakshmi et al.,
2017). An ubiquitous defensive mechanism that protects plants from physical and biotic
stresses is represented by the synthesis of specialized metabolites (SM; the so-called
‘‘secondary metabolites’’). Thousands of chemical compounds found in plants promote
protection against plants’ natural enemies (i.e., pathogens, viruses andherbivores) (Mithöfer
& Boland, 2008). More than 40,000 and 12,000 terpenoids and alkaloids, respectively, have
been described in plants (Zhou & Pichersky, 2020).

Tropane alkaloids (TAs) and Terpene synthases (TPSs) are important specialized
molecules of plants that help to protect them from herbivores and pathogens (Kessler &
Baldwin, 2002). Tropane alkaloids are distinctive, but not exclusive, of Solanaceae (Wink,
2003; Mithöfer & Boland, 2008; Pigatto et al., 2015) and in Datura stramonium, implicated
in plant defense to herbivores (Shonle & Bergelson, 2000;Castillo et al., 2014;Miranda-Pérez
et al., 2016). Terpene synthases are enzymatic genes involved in the synthesis of volatile
organic compounds (VOCs) in many organisms (Picazo-Aragonés, Terrab & Balao, 2020).
Alkaloids and VOCs negatively affect herbivores. The concentration of VOCs may even
rise before herbivores start to feed (Heil, Lion & Boland, 2008). Recent molecular studies
in plants indicate modifications in the expression of SM as defense mechanisms (Mithöfer
& Boland, 2008). Such modifications may result from the composition of the herbivore
community, their abundance and dominance (Koerner et al., 2018). In this study we present
a bioinformatic analysis of the changes in genes involved in the synthesis of tropane alkaloids
and terpene synthases in Solanaceae, with particular attention toDatura stramonium. Gene
modifications may include changes in the regulatory sequence or in the dominion, in the
length of genes (including duplication), and post-transductionmodifications (Defoort, Van
de Peer & Carretero-Paule, 2019). Here, we analyze events of duplication in Solanaceae,
with reference to whether duplicates are involved inmodifications of biosynthetic pathways
of TAs and TPSs.

Generally, copies of genes can have different fates. If different copies are retained, they
may undergo sub-functionalization, dividing the original function. Alternatively, one copy
may undergo neofunctionalization, acquiring a new function. However, the most frequent
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outcome is pseudogenization, whereby one copy becomes non-functional (pseudogene)
and tends to disappear due to accumulation of deleterious mutations. A pseudogene shows
strong similarity to the parental copy, which encodes a particular protein, but has one
or more alterations such as premature stop codons, mutations that cause phase changes,
deletions and/or insertions that prevent a protein from being functional (Ohno, 1970). It
has been reported that in some species the retention of pseudogenes for a long time only
accumulates neutral mutations. However, several questions arise regarding the survival
mode of these inactivated genes (Ohno, 1970; Lynch & Conery, 2003; Conan &Wolfe, 2008;
Wang et al., 2012). Some retained functions maintain developmental homeostasis, for
instance, the ability to rapid respond to a wide variety of environmental cues (Huot et al.,
2014). One first defense response of plants involves the activation of signaling mechanisms
(De-la-Cruz, Velázquez-Márquez & Núñez Farfán, 2020), and therefore protein turnover.
It is estimated that more than 80% of the proteins are degraded through the proteosome
pathway (Maltsev et al., 2005). In recent years it has been reported that the responses of
specialized metabolites are grouped into several multigenic families. Therefore, we aim
to elucidate the evolutionary process of two gene families, TAs (Tropane alkaloids) and
TPSs (terpenes synthases) (Karunanithi & Zerbe, 2019; De-la-Cruz et al., 2021). Studies
conducted in Solanaceae have found rapid responses to biotic and abiotic stimuli, in a
matter of minutes, of genes involved in the synthesis of specialized metabolites (atropine,
scopolamine, VOCs) (Brille, Loreto & Baccelli, 2019). To date, several groups have reported
different TAs and TPSs and have found similar results (De-la-Cruz, Velázquez-Márquez &
Núñez Farfán, 2020).

In this study we analyze the evolutionary history of genes involved in the synthesis of
tropane alkaloids and terpene synthase in the Solanaceae family and specifically in draft
genomes of two plants of Datura stramonium from populations of México (Ticumán and
Teotihuacán). Overall, our bioinformatic analyses infer duplication of the genes of the
main biosynthetic pathways leading to specialized metabolites.

MATERIALS AND METHODS
Selection and bioinformatic analyses: identification of TAs and TPs,
genomics, transcripts and protein sequences
We obtained the sequences of nucleotide, transcripts and proteins of TAs and TPSs.
Nine genomes (Table 1) of Solanaceae species were sourced for protein coding
genes and CDS (Coding Sequence) genomes from the Sol Genomics Network (see
links in Table 1): Nicotiana tabacum (Edwards et al., 2017), Nicotiana sylvestris (Sierro
et al., 2013), Nicotiana attenuata (Xu et al., 2017), Nicotiana tomentosiformis (Sierro
et al., 2013), Solanum pimpinellifolium (Razali et al., 2018), Solanum lycopersicum (The
Tomato Genome Consortium, 2012), Solanum pennellii (Bolger et al., 2014), Solanum
tuberosum (The Potato Genome Sequencing Consortium, 2011), Capsicum annuum, CM334
v1.55 (Kim et al., 2014). In addition, data of Datura stramonium were extracted from
protein whereas TAs and TPSs’ sequence were obtained from the genome of D.
stramonium from the Mexican populations of Ticumán, Morelos (18◦44′28.19′′N,
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Table 1 Genome of Solanaceae employed in this study.

Specie Link Link

Nicotiana tabacum https://solgenomics.net/organism/Nicotiana_tabacum/genome https://solgenomics.net/tools/blast/
Nicotiana sylvestris https://solgenomics.net/organism/Nicotiana_sylvestris/genome https://solgenomics.net/tools/blast/
Nicotiana attenuata https://solgenomics.net/organism/Nicotiana_attenuata/genome https://solgenomics.net/tools/blast/
Nicotiana tomentosiformis https://solgenomics.net/organism/Nicotiana_tomentosiformis/genome https://solgenomics.net/tools/blast/
Solanum pimpinellifolium https://solgenomics.net/organism/Solanum_pimpinellifolium/genome https://solgenomics.net/tools/blast/
Solanum lycopersicum https://solgenomics.net/organism/Solanum_lycopersicum/genome https://solgenomics.net/tools/blast/
Solanum pennellii https://solgenomics.net/organism/Solanum_pinnelii/genome https://solgenomics.net/tools/blast/
Solanum tuberosum https://solgenomics.net/organism/Solanum_tuberosum/genome https://solgenomics.net/tools/blast/
Capsicum annuum https://solgenomics.net/organism/Capsicum_annuum/genome https://solgenomics.net/tools/blast/

99◦7′44.26′′W), and Teotihuacán, Estado de México (19◦41′16.58′′N, 98◦50′4.14′′W)
(https://github.com/icruz1989/Datura-stramonium-genome-project) (De-la-Cruz et al.,
2021) and transcriptomes (https://medplantrnaseq.org/).

We downloaded the whole genome of D. stramonium to extract the TPSs genes and
gene prediction was performed using AUGUSTUS (Stanke et al., 2006). All sequences
were uploaded and mapped using as reference species of Solanaceae. A total of 366,000
genes were extracted, and gene redundancy was reduced with CDHIT (Chen et al., 2016).
The selected TPSs genes were blasted against the NCBI, UNIPROT databases and the
nine genomes of Solanaceae, using a threshold value of 1E−5. All TPSs were downloaded
from Viridiplantae followed by a protein-protein blast; hits above 80% of similarity and
70% of cover were saved for further analyses. Meta-alignments of protein sequences were
performed using T-coffee (Wallace et al., 2006), MUSCLE v3.8 (Edgar, 2004) and MAFF
(https://mafft.cbrc.jp/alignment/server/) v6. (Rozewick et al., 2019).

Identification of orthogroups and inference of phylogenetic tree of TPa
and TPSs
Construction of orthogroups, gene families, was performed according to De-la-Cruz
et al. (2021) using Orthofinder v2.3.3 (Emms & Kelly, 2015; Emms & Kelly, 2019). The
phylogenetic tree inference was accomplished using the program BEAST with the pair-wise
deletion option, and reliability of the obtained phylogenetic treewas tested by bootstrapping
with 1,000,000 MKKM chains. The model of substitution selected was JTT+G+F, with a
branch support of 1 (Drummond et al., 2002). The trees were edited at the interactive tree
of life (https://itol.embl.de) (Letunic & Bork, 2019).

We downloaded all orthologous sequences of TAs and TPSs of D. stramonium, D. metel
and nine species of Solanaceae (see Table 1) to construct the orthogroups. Downloaded
sequences of proteins and ORFs were extracted using TransDecoder and corroborated
with GenScan. TPS genes were translated with GenScan and checked for the right direction
and correct CDS; we corroborated this with the NCBI. The database used for BLAST
was Uniprot; all available data for the analyzed plant species were downloaded. These
amounts 847,544 sequences of TAs and TPSs. BLAST was carried out with a filtering
E-value < 1e−5 and only hits above 85% were selected (Data S1, S2). Orthogroups were
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inferred using Orthfinder v 2.3.3. DIAMONS (Emms & Kelly, 2015; Emms & Kelly, 2019)
while OrthoMCL was used to assess orthologs among species (Chen et al., 2006).

Protein modeling
Molecular modelling and protein-ligand docking was performed with GLIDE software
(Schrödinger Release 2021-1, 2021). Simulations of interactions for each protein was done
in a quadrat of 6LU/ processed with the same coordinates of the crystalized ligand as
described inWallace & Zhang (2020).

The SWISS-MODEL (http://www.expasy.org/swissmod/SWISS-MODEL.html)
(Waterhouse et al., 2018) was employed tomodel the tertiary structure of proteins, from the
previously determined structure by the dominion DIOX_N (PF14226) (Hagel & Facchini,
2010) as a blueprint of modelling. Models were visualized and analyzed through Visual
Molecular Dynamics (Waterhouse et al., 2018; Bienert et al., 2017)

Molecular docking
The in-silico docking (AutodockVina) of the PDB files (produced by the SWISS-Model)
of Tic8550 (Ticumán) and Teo19488 (Teotihuacán) was performed in a simulation
of molecular coupling with the native ligand of H6H, which is Hy-oscyamine (Hy-o).
For docking, the protein was prepared with AutodockTools, assigning the parameters
of energies and force fields of AutoDock4.0. Then, we obtained the results of the
thermodynamically favored conformation for the Hy-o ligand using the algorithm
VINA. The selected conformation had affinity coupling parameters of −7.3 and −7.5
kcl/mol for Teo19488 and Tic8550, respectively. As positive control, we performed the
re-docking of the molecule of reference 6TTM (Datura metel), eliminating the ligand of
the crystallized structure; the adopted conformation is similar to that obtained by the
method of crystallization, and the coupling affinity for the reference model was −7.9
kcal/mol. The produced models are theoretically correct, and it is predicted that these have
an oxidoreductase and use Hy-o as substrate.

Tropane alkaloids
Analyses detected variation in the number of TAs gene copies in D. stramonium: DsTRI,
DsTRII, DsPMT and DsH6H. Compared to Viridiplantae D. stramonium has one or more
copies of these genes suggesting a genome expansion of TAs.

We detected eight copies of tropinone reductase I (DsTRI) and four copies of DsTRII.
TRI and TRII define two groups in Solanaceae (Fig. 1A). The gene DsTRII have had
duplications events in D. stramonium (Fig. 1B). The first duplication occurs in Rosidae-
Asteridae, followed by three duplications at the base of Solanaceae and one more in D.
stramonium (Fig. 1B). The phylogeny and structure of 32 protein sequences (TRI) from
different plant species show variability in the ADH_Short_C2 TRI dominion (Fig. 2); in D.
stramonium (Tic23_dati33027) there is a duplication of this dominion but shorter (Fig. 2).

In Hy-oscyamine- 6-ß-hydroxylase (DsH6H ) in the Ticumán genome we detected two
copies of the gene, Tic8550 and Tic8549 (Fig. 3A). Tic8550 has a tandem duplication of
the DIOX-N dominion of 79 amino acids (Fig. 3) whereas Tic8549 has the dominion
2-oxaglutarate (65 amino acids) (Fig. 3A). In contrast, in the Teotihuacán genome,DsH6H
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Figure 1 Phylogenetic analysis of TRI and TRII protein sequences. TR-I and TR-II define Group I and
II, respectively, in Solanaceae (A). Substitution rates (ω) of TR-II (B). Three duplication events in the
genome of Datura stramonium are indicated (diamonds).

Full-size DOI: 10.7717/peerj.11466/fig-1

Figure 2 Structure of domains of TRI. Phylogenetic analysis and structure of domains of TRI gene
in different species. Six copies are distributed in different clades. Tic23dati33027 has an extra domain
adh_short_C.

Full-size DOI: 10.7717/peerj.11466/fig-2

(i.e., Teo19488) has only one copy (Fig. 3). The alignment of 29 sequences of H6H of
different plant species indicate the variation in the duplicated DIOX-N dominion in
Tic8550 (Fig. 3B).
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Figure 3 Phylogeny of gene H6H. Phylogeny of gene H6H in 19 species. In (A) we observe two copies of
the gene are present in the two sequenced genomes of D. stramonium (Tic and Teo). In Tic8550 there is a
tandem duplication of dominion DIOX N (PF14226) vs. Teo 19488; two copies of the gene are present in
both genomes (segmental duplication) distributed in different clades. (B) Alignment of sequences of pro-
tein H6H with the conserved zones highlighted. In the terminal carboxyl, the DIOX-N dominion is dupli-
cated in TIC8550.

Full-size DOI: 10.7717/peerj.11466/fig-3

Figure 4 Phylogeny of pmt. Phylogeny of Putrescine N-methyltransferase (pmt ). date= Datura stramo-
nium Teotihuacán, dati= Datura stramonium Ticumán. The genomic analyses indicate an expansion of
pmt, two copies in date and five in dati. The latter has an additional dominion of spermine synthase.

Full-size DOI: 10.7717/peerj.11466/fig-4

In N-methyl putremescine transferase (DsPMT) we found variation in the number of
gene copies in comparison to other Solanaceae (Fig. 4). In Tucumán’s genome there are
three copies while two copies were detected in Teotihuacán’s genome (Fig. 4, Fig. S1).
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Figure 5 Phylogeny of TPS. 18 TPSs were found in D. stramonium (white letters) and Solanaceae and
other angiosperms. Two copies of TPS-10 and TPS-13 in the subfamily TPSa. Tree obtained by Bayesian
inference, with JTT+G+F evolutionary model. Most branches have a bootstrap support of 1.

Full-size DOI: 10.7717/peerj.11466/fig-5

Terpene synthases
Eighteen TPSs genes were found in the genomes of D. stramonium (Fig. 5; Table S1) and
seven in Datura metel (Fig. S2). The 18 DsTPS found in D. stramonium are distributed in
four subfamilies, identified for other angiosperms: Nine in TPSa, 3 in TPSb, 2 in TPSc, 2
in TPSg and 2 TPS- unknown (Fig. S3, Tables S1 and S2) (Huang et al., 2013; Huang et al.,
2017; Falara et al., 2011).

The domains of these TPSs, directly involved in the biosynthesis of terpenoids,
show expansion events and positive selection in TPS10 (Fig. 6; Table S3). Changes
in the dominions are: Terpene synthase, N-terminal domain (IPR001906), Terpenoid
cyclases/protein prenyl transferase alpha-alpha toroid (IPR008930), Terpene synthase,
metal-binding domain (IPR005630), Terpene cyclase-like 1, C-terminal (IPR034741).
Analyses indicate that Solanaceae have the gene TPS10.1 whereas only D. stramonium and
D. metel possess TPS10.2 (Fig. 7 and Tables S2 and S3); this possibly is a duplicate of
TPS10.1_like.

Protein modeling and molecular docking
Superimposition of the reported protein structure of H6H from D. metel (PDB ID 6TTM)
with the corresponding model obtained from DsH6H sequences for the two genomes
of D. stramonium from two Mexican populations (Teo19488 and Tic8550), indicate
similarities (Fig. 7A). The Teo19488 predicted structure match very well with the DmH6H
structure (Fig. S2); similarly, Tic8550 matches well except for some residues that were not
modeled (Fig. 7B, Fig. S3). This fragment of Tic8550 have a big terminal protein sequence
(NQTMMLKWLLFLKLVYKQYLYKLYSTIGEKAEKDVINHGVPEKIMVEAMEFTKSFL-
HCLLRKKKSLSQKEASIKQSSML) of 79 amino acids was not modeled (Fig. 7B, cf. Fig.
3B). Further, a NCBI protein-protein blast of this sequence aligns well to the region: 33–72
of DmH6H fragment; we analyzed this fragment separately as Tic8550_Fragment (Fig.
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Figure 6 Phylogeny of TPS-10. Phylogeny of TPS-10 (green) of Datura stramonium, D. metel and other
Solanaceae. In these species the TPS-10 is duplicated. Tree obtained by Bayesian inference, with JTT+G+F
evolutionary model. Most branches have a support above 80%.

Full-size DOI: 10.7717/peerj.11466/fig-6

Figure 7 Structure of 6TTM inDatura metel. (A) Superimposition on the tertiary structure of H6H re-
ported for Datura metel (PDB ID 6TTM) (in blue) of obtained models of the sequence for gene DsH6H
Datura stramonium Teo19488 (Cyan) (A) and Tic8550 (Pink) (B). In orange color the folding present
only in the reference structure 6TTM but not in D. stramonium are highlighted.

Full-size DOI: 10.7717/peerj.11466/fig-7

86). The Tic8549 sequence corresponds to a 65 amino acids sequence (MLPIIPRPKSTL-
GAGGHYDGNIITFLQQDCLACNNSLLRMTNGLLLNLSYCFCGLSGTHSKGYEQ) that
was modeled as Hy-oscyamine 6 beta-hydroxylase like fragment (Fig. 8). This fragment
(Tic8549) aligns to DmH6H in one section of the binding pocket, where His-217 and
Asp-219 are coordinated with Ni2+ (Fig. 8C). The presence of these amino acids in
Tic8549 sequence is interesting since Ni2+ ion, a surrogate of the natively present Fe2+

ion, is coordinated by the side chains of His-217 (strand βII), Asp-219 (loop βII/ βIII)
and His-274 (strand βVII) that forms a metal binding His-X-Asp. . .His motif, highly
conserved in the oxoglutarate dependent oxygenases (ODD) family (Kluza et al., 2020).
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Figure 8 Models of H6H. Superimposition of reported structure of DmH6H (PDB ID 6TTM) (blue) and
models obtained for the sequence Tic8549 (yellow) (A) and a fragment of the sequence Tic8550 (green)
(B). Both sequences possess structural similarity with other sequences of the same protein. The fragment
Tic8549 (yellow) aligns in the region where residues of the active site of H6H are located (gray) and in-
volved in the coordination of the structure with metals (C). This site is highly conserved in the enzyme
families ODD. (D) surface of fragments Tic8549 (Yellow) and Tic8550_Fragment (green) superimposed
on H6H structure. In red are the residues that compose the active (binding) site.

Full-size DOI: 10.7717/peerj.11466/fig-8

Proteinmodels of H6H forD. metel andD. stramonium (Teo19488 and Tic8550) predict
more interaction between residues in Tic8550 than on D. metel and Teo19488 (Fig. 9). It
has recently been reported that the binding pocket (BP) of DmH6H is mainly formed by
hydrophobic amino acids. It has been demonstrated that in the crystalized H6H the phenyl
ring of Hy-o is bounded in an aromatic cage formed by Phe-103, Tyr-295, Tyr-319, Phe-322
and Tyr-326, of which the most prominent bound is with Tyr-326 which forms CH-π
hydrogen bonds with the phenyl ring of Hy-o in an edge-to-face bidentate manner (Kluza
et al., 2020) (Figs. 9A, 9D). Our results shown that the predicted model for Teo19488
have the same amino acids forming the aromatic cage composed by Phe-88, Tyr-255,
Tyr-279, Phe-282 and Tyr-286 and the predicted pose of Hy-o obtained by the docking
in silico shows that the phenyl ring is inside of this aromatic cage (Fig. 9B). Nevertheless,
the main interaction with Tyr-286 was not detected (Fig. 9E). This could be because the
cutoff distance was set 4 Å and the predicted pose of this residue is beyond this cutoff
distance. The predicted structure of Tic8550 has different amino acids arrangement inside
the binding pocket. This predicted structure does not contain the aromatic cage, instead
it is predicted that the phenyl ring of Hy-o inside of a cavity formed by the non-polar
amino acids Leu-308, Leu-92, Ile-179, Met-181, Met-292 and the polar uncharged amino
acids Asn-206 and Asn-289 (Fig. 9C). Also, it is predicted that the phenyl ring has several
non-polar interactions with these side chain amino acids (Fig. 9F). The Asn-206 forms a
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Figure 9 Structure of 6TTM. (A) Structure of 6TTM in Datura metel (yellow). The ligand (blue) inside
the BP is surrounded by amino acids (gray). (B) Structure modelled for Datura stramonium Teo_19488
(cyan) and (C) D. stramonium Tic_8550. The interactions between the predicted residues of the BP and
the ligand Hy-o are illustrated in D, E and F.

Full-size DOI: 10.7717/peerj.11466/fig-9

conventional hydrogen bond with the hydroxyl group from Hy-o which may stabilize the
structure in the BP.

DISCUSSION
Gene duplicates product of molecular evolution are the raw material for evolutionary
innovation (Defoort, Van de Peer & Carretero-Paule, 2019). Recent findings have uncovered
the interactions and contrasting functions of genes that may help plants to confront
environmental stresses in nature and serve as important agronomic characteristics.
Hence, to trace the origin, molecular mechanisms, evolutionary fate and function of
gene duplicates is a main goal (Panchy, Lehti-Shiu & Shiu, 2016; Soltis & Soltis, 2016;
Van de Peer, Mizrachi & Marchal, 2017). The phylogenetic analyses of genes involved in
the synthesis of tropane alkaloids (DsPMT, DsTRI, DsTRII and DsH6H ) here presented,
indicate that two genes (DsTRII and DsH6H) have expanded inD. stramonium, presenting
five and two copies, respectively. Previous studies have shown that tropinone reductases
are involved in the bifurcation of the synthesis pathways in Solanaceae (Dräger et al., 1992;
Nakajima, Hashimoto & Yamada, 1993; Birgit, 2006; Kanehisa & Sato, 2019). These genes
are responsive to environmental stimuli and activate the signaling pathways (Campos, Kang
& Howe, 2014). The presence of these genes in the Solanaceae, as revealed by phylogenetic
analyses, suggests that these duplicates in D. stramonium may contribute to increase the
production of tropane alkaloids. The absence of TRII in Zea mays and A. thaliana suggest
that these species never had this gene or lost it during their evolution. However, the gene
is also absent in species of other clades (e.g., Brassica rapa, Glycine max, Vitis vinifera, etc.;
Fig. 1). Another possibility is that TRII is not related to the synthesis of tropane alkaloids
in these species (Miller, Arteca & Pell, 1999).
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The gene DsPMT of D. stramonium found in the population of Ticumán, México, had
an extra domain of spermine-synthase in comparison with its homologous gene found in
the same species but from the population of Teotihuacán, México (De-la-Cruz et al., 2021).
We named this gene as Ds PMT7568ti (Fig. 4), Spermine gene is a potent plant defense
activator, with protective effects of broad-spectrum (Seifi & Shelp, 2019). Reports indicate
that overexpression of spermidine synthase enhances tolerance to multiple environmental
stresses, including the attack by herbivores and pathogens (Kasukabe et al., 2004; Seifi et al.,
2019). In addition, PMT is a key enzyme in the catalysis of N-methylputrescine from
putrescine and S-adenosyl-L-methionine and triggers the production of hygrine and other
different tropane alkaloids (Kanehisa & Sato, 2019).

In contrast to other plants, in Solanaceae (Atropa belladona, Hy-osciamus niger and
Datura stramonium), TRII is duplicated and under positive selection. In this line, we
hypothesize that TRII may have acquired a different functional importance after its
duplication in D. stramonium and hence, it has retained multiple copies of the gene. Yet,
this hypothesis warrants further analysis. The phylogeny indicates an independent history,
for instance, from Brassicaceae.

Perhaps TRs in Brassicales have other functions, different to the production of alkaloids,
but using the same pathways. For instance, they may have conferred plasticity to deal with
environmental stresses. Plant species with small genome size may have lost considerable
fractions of their genome. Thus, enzymes with similar function may have been replaced by
TRII.

Of the four subfamilies of TPSs found in the D. stramonium’s genome, three have been
reported in other angiosperms (TPSa, TPSb and TPSg). TPS10 is member of the subfamily
a and its role in defense against pathogens and herbivores has been dilucidated in Zea mays
(Huang et al., 2017; Singh & Sharma, 2015; Tholl, 2006). We detected positive selection on
TPS; positive selection on TPS10.1 and TPS10.2 was detected in D. stramonium and D.
metel. We speculate that the presence of two copies of this gene can contribute to plant
defense against plants’ natural enemies (Köllner, Gershenzon & Degenhardt, 2009; Köllner,
Degenhardt & Gershenzon, 2020).

In this line, duplicated genes involved in the specialized metabolism and plant defense
often show differential restrictions (constraints, trade-offs, limitations) either indicating
positive selection or differential selection (Wang et al., 2016). Apparently, TRII displays
genic redundancy since it possesses different copies and polymorphic sites. However, this
may not be the case since this process is only present in genes of primary metabolism or
development (Wang et al., 2016; Maltsev et al., 2005) which are constitutive and display
low variation. The gene H6H is involved in the last step in the production of scopolamine
and atropine in one of the pathways for the production of tropane alkaloids (Kanehisa &
Sato, 2019). Here, we detected one duplicated in tandem of this gene in D. stramonium
(Ticumán has two domains of DIOX_N (PF14226), although each copy belongs to two
different gene families (OG0028637 and OG0043057; cf. Fig. 3). Similarly, we found 18
TPSs in D. stramonium that likely are involved in plant defense against herbivores like in
other plants species (e.g., Bharat & Sharma 2015). Lineages in the Solanaceae have high
values of the ratio K a/K s (Table 2). Thus, positive selection may have acted on TPS10.1

Velázquez-Márquez et al. (2021), PeerJ, DOI 10.7717/peerj.11466 12/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.11466


Table 2 Selection test for tropane alkaloids (TAs) and terpene syntahses (TPSs) genes ofDatura stra-
monium.

Genes Chi-Square Proportion of
sites selected

ω

PMT 5.43432 0.1389 2.5778
TRI 0 NA
TRII 31.5335 0.09994 10.6356
H6H 15.66146 0.15136 6.469
TPS10_1 22.75614 0.07163 1.704
TPs10_2 16.16614 0.014589 2.295
TPS14 4.67532 0.098812 3.7809
TPS21 1.43981 NA
GGPS1 3.89631 0.0899 2.5988

and TPS10.2 of D. stramonium, not recently and the selection effect on allelic diversity may
be masked by the accumulation of neutral mutation.

On the other hand, results of protein simulation and molecular docking suggest that
the structure and interactions of this protein (H6H) in Tic8550 might have a different
structure to that of the known H6H; we speculate if this may be related to enhancing the
efficiency of alkaloids’ synthesis.

It is interesting to note that the Tic8549 possess only the fragment 2OG-FeII_Oxy
(PF03171) whereas Tic8550 possess an extra dominion (DIOX_N) which aligns structurally
to a highly conserved region of H6H proteins (Figs. S2 and S3) (and associated to a
coordination of binding metal Ni+2 (Fig. S5)). Further, it is interesting noting that a
particular gene Tic8549 is associated to this fragment DIOX_N (PF14226).

Finally, the number of copies and differentiation of TAs and TPSs of D. stramonium, as
compared to other solanaceous species, suggest their involvement on adaptive evolution of
chemical defense against herbivores. Further studies should be directed to experimentally
assess gain (overexpression) or loss (silencing) of function of duplicated genes.

CONCLUSION
Our results indicate differences in the number of gene copies involved in the synthesis
of tropane alkaloids, between the genomes of Datura stramonium from the two Mexican
populations (Ticumán and Teotihuacán). Furthermore, more copies of genes related to
the synthesis of tropane alkaloids (TRI, TRII, H6H, PMT-10) are found in D. stramonium
as compared to Viridiplantae. Likewise, for terpene synthases (TPS), TPS-10 is duplicated
in D. stramonium and D. metel. These results point future experimental studies of gain/loss
of duplicated genes.

Links to data on Figshare (Data S3).
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