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ABSTRACT
Spinal cord ischemia-reperfusion injury (SCII) is a pathological process with severe
complications such as paraplegia and paralysis. Aberrant miRNA expression is
involved in the development of SCII. Differences in the experimenters, filtering
conditions, control selection, and sequencing platform may lead to different miRNA
expression results. This study systematically analyzes the available SCII miRNA
expression data to explore the key differently expressed miRNAs (DEmiRNAs) and
the underlying molecular mechanism in SCII. A systematic bioinformatics analysis
was performed on 23 representative rat SCII miRNA datasets from PubMed.
The target genes of key DEmiRNAs were predicted on miRDB. The DAVID and
TFactS databases were utilized for functional enrichment and transcription factor
binding analyses. In this study, 19 key DEmiRNAs involved in SCII were identified, 9
of which were upregulated (miR-144-3p, miR-3568, miR-204, miR-30c, miR-34c-3p,
miR-155-3p, miR-200b, miR-463, and miR-760-5p) and 10 downregulated (miR-28-
5p, miR-21-5p, miR-702-3p, miR-291a-3p, miR-199a-3p, miR-352, miR-743b-3p,
miR-125b-2-3p, miR-129-1-3p, and miR-136). KEGG enrichment analysis on the
target genes of the upregulated DEmiRNAs revealed that the involved pathways were
mainly the cGMP-PKG and cAMP signaling pathways. KEGG enrichment analysis
on the target genes of the downregulated DEmiRNAs revealed that the involved
pathways were mainly the Chemokine and MAPK signaling pathways. GO
enrichment analysis indicated that the target genes of the upregulated DEmiRNAs
were markedly enriched in biological processes such as brain development and the
positive regulation of transcription from RNA polymerase II promoter. Target genes
of the downregulated DEmiRNAs were mainly enriched in biological processes such
as intracellular signal transduction and negative regulation of cell proliferation.
According to the transcription factor analysis, the four transcription factors,
including SP1, GLI1, GLI2, and FOXO3, had important regulatory effects on the
target genes of the key DEmiRNAs. Among the upregulated DEmiRNAs, miR-3568
was especially interesting. While SCII causes severe neurological deficits of lower
extremities, the anti-miRNA oligonucleotides (AMOs) of miR-3568 improve
neurological function. Cleaved caspase-3 and Bax was markedly upregulated in SCII
comparing to the sham group, and miR-3568 AMO reduced the upregulation. Bcl-2
expression levels showed a opposite trend as cleaved caspase-3. The expression of
GATA6, GATA4, and RBPJ decreased after SCII and miR-3568 AMO attenuated this
upregulation. In conclusion, 19 significant DEmiRNAs in the pathogenesis of SCII
were identified, and the underlying molecular mechanisms were validated.
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The DEmiRNAs could serve as potential intervention targets for SCII. Moreover,
inhibition of miR-3568 preserved hind limb function after SCII by reducing
apoptosis, possibly through regulating GATA6, GATA4, and RBPJ in SCII.

Subjects Bioinformatics, Genomics, Molecular Biology, Neuroscience, Neurology
Keywords microRNA, Spinal cord ischemia reperfusion injury, Bioinformatics analysis,
Transcription factor analysis

INTRODUCTION
Spinal cord ischemia-reperfusion injury (SCII) is the damage caused by the restoration of
blood perfusion in the ischemic spinal cord tissues (Fang et al., 2015). The normal function
of the spinal cord may be hindered by SCII, resulting in severe complications such as
paraplegia and paralysis (Smith et al., 2012). Current drugs and therapeutic measures for
SCII are effectual but deficient. Hence, SCII remains a significant challenge in clinical
therapy (Xu et al., 2014a). It is necessary to identify new molecular targets for SCII.

MicroRNAs (miRNAs) are non-coding RNAs 20 to 22 nt in length that regulate target
genes expression at the post-transcriptional level via base-pairing with the 3′-untranslated
region (3′-UTR) of mRNA (Balsam, 2017; Zhai et al., 2012). Due to the involvement in
the numerous biological processes, such as neurogenesis, inflammation, apoptosis, and
autophagy, miRNAs may conduce to the pathogenesis of the central nervous system
(CNS) disorders, including SCII, cerebral ischemia-reperfusion injury (CIRI), spinal cord
injury (SCI), and Parkinson’s disease (Bhalala, Srikanth & Kessler, 2013; Li et al., 2018a; Li
et al., 2018b; Wang et al., 2020b). Moreover, aberrant miRNAs expression has been
connected to the development of SCII at different stages (Hu, Lv & Yin, 2013; Li et al.,
2016b; Liu et al., 2020).

This study aims to furnish the authentic miRNA data and predict the target genes linked
with the occurrence and development of SCII. The role of the contrastingly expressed
miRNAs in regulating the target genes during SCII and the altered miRNA-TF regulatory
patterns were established based on the TFactS database (http://www.tfacts.org/) to
provide significant clues for targeting the key miRNAs as molecular markers in the
treatment of SCII. The involvement of selected miRNA and its target genes in SCII were
also verified.

MATERIALS AND METHODS
Identification of the key differentially expressed miRNAs in SCII
The existing studies on the miRNA expressions in SCII were located on PubMed with
keywords such as miRNA and spinal cord ischemic reperfusion injury on 30 November
2020. The species involved in the related studies were limited to rats. The information
on SCII and the miRNA sequencing samples and the detection methods for the
differentially expressed miRNAs (DEmiRNAs) were extracted from the relevant studies.
The upregulated and downregulated DEmiRNAs in SCII compared with the sham groups
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were also extracted. The DEmiRNAs occurrence of each dataset was calculated, and
DEmiRNAs that appeared in at least two datasets were defined as key DEmiRNAs.

Predicting the target genes of DEmiRNAs in SCII
The target genes of DEmiRNAs were predicted on miDRB with the gene target score set to
over 80.

Gene ontology and KEGG enrichment analysis on the target genes of
DEmiRNAs in SCII
Information on the target genes of DEmiRNAs was obtained from the DAVID database
for KEGG pathway analysis and GO enrichment analysis (Guo et al., 2019). The cut-off
criteria for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
and the gene ontology (GO) term enrichment were statistical significance (p < 0.05).
According to the relations between the genes and the statistically significant biological
processes as well as the relations among miR-3568, genes, and the biological processes, a
miR-3568-biological processes-gene network was built.

Transcription factor analysis of the miRNA-regulated target genes in
SCII
The target genes of DEmiRNAs in SCII were submitted to the TFactS database
(http://www.tfacts.org/), and the transcription factors regulating the target genes of
DEmiRNAs were predicted by the false discovery rate, E value, q value, and p value.
To obtain reliable transcription factors, the false discovery rate, E value, q value, and
p value should all be lower than 0.05. The transcription factors of the target genes of
DEmiRNAs were counted, respectively. The unique and common transcription factors
were compared.

Rat model
Male Sprague Dawley (SD) rats, 8 weeks, weighing 200–250 g, used in the SCII model
were purchased from Liaoning Changsheng Biotechnology Co., Ltd. This study was
approved by the Ethics Committee of China Medical University (CMU2020266). SCII was
induced in the rats via a cross-clamped aortic arch (Li et al., 2014a, 2014b). Briefly, upon
anesthesia by intraperitoneally injecting 4% sodium pentobarbital (50 mg/kg; Beyotime
Biotechnology, China), endotracheal intubation (24 g trocar sleeve) and lung ventilation
was accomplished with a small-animal ventilator (Harvard Apparatus, Holliston, MA,
USA; tidal 15 mL/kg, breathing frequency 80–100 times/min, breathing ratio 1:1). Body
temperatures were kept at 37.5 ± 0.5 �C and monitored with a rectal probe. Under aseptic
conditions, the left common carotid artery was exposed in the middle of neck. Then,
the aortic arch was uncovered through a cervicothoracic incision. Under direct vision, the
aortic arch was cross-clamped for 14 min between the left carotid artery and the left
subclavian artery to induce ischemia. A catheter (24 g trocar sleeve) was inserted into the
femoral artery for blood pressure measurements. After ischemia confirmation (90%
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reduction of the flow assessed at the femoral artery using a laser Doppler blood flow
monitor (Moor Instruments, Axminster, Devon, UK)), the clamping was removed,
followed by 24-h reperfusion. This procedure was performed on the sham animals, except
for blockade.

Interventions
Thirty-two male SD rats were assigned randomly to four groups: (1) sham group; (2) SCII
group; (3) SCII + anti-miRNA oligonucleotides (AMOs) of miR-3568 group; and (5) SCII
+ NC-miR-3568 group. Rats were intrathecally injected with AMOs (Li et al., 2015b).
A synthetic miR-3568 AMO (AMO-3568) (5′-CUGCUUCUGCACGGGAAGAACA-3′),
and negative control were purchased from Jima Inc (China). Rats were intrathecally injected
with liposome complexes of the oligonucleotides (50 mg/kg) and Lipofectamine� 2000
(Invitrogen, Carlsbad, CA, USA). Rats were injected once a day for three consecutive days
before the surgical procedure.

Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR)
Rats were euthanized by sevoflurane overdose at 24 h after SCII in accordance with the
established protocol by the Experimental Animal Center of China Medical University.
Segments L4-L6 of the spinal cord were collected to extract total RNA with the Trizol
reagent (Takara, Otsu, Japan). The RNA was reverse-transcribed into cDNA using a
Prime-Script RT reagent Kit with gDNA Eraser (Takara, Otsu, Japan) (Jia et al., 2019).
The levels of miRNA were measured using an SYBR Premix qRT-PCR (Takara, Otsu,
Japan) on the Applied Biosystems 7500 Real Time PCR system (Takara) with U6 as an
internal control. The primer sequences are shown in Table 1. The 2−ΔΔCt method was used
to calculate the data.

Table 1 The primers used in this study.

miRNA/gene Forward primer Reverse primer

miR-3568 TGTTCTTCCCGTGCAGAAG –

miR-144-3p CGCGCGTACAGTATAGATGATGTA –

miR-34c-3p TAATCACTAACCACACAGCCAGG –

miR-463 CTTGATAGACGCCAATTTGGGTAG –

miR-291a-3p AAAGTGCTTCCACTTTGTGTGC –

miR-702-3p TATATATGCCCACCCTTTACCCC –

miR-28-5p CGAAGGAGCTCACAGTCTATTGA –

miR-199a-3p CGACAGTAGTCTGCACATTGGTTA –

miR-352 CGCGAGAGTAGTAGGTTGCATA –

miR-743b-3p CGCGAAAGACACCATACTGAATAGA –

miR-125b-2-3p ACAAGTCAGGCTCTTGGGA –

miR-129-1-3p CGAAGCCCTTACCCCAAAAAG –
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Neurological evaluation
At 24 h after SCII, the hind limb functions were evaluated based on the Tarlov scores:
0 = no voluntary hind limb function, 1 = poor hind limb motor function with perceptible
movement, 2 = joint motion present with no ability to stand, 3 = stands and walks, and
4 = normal hind limb function (Fang et al., 2015; Li et al., 2016a; Tarlov, 1972).

Western blotting
The expression levels of GATA6, GATA4, RBPJ, BCL-2, Bax, and cleaved caspase-3 in
spinal cord tissues were measured with Western Blotting. Total proteins were extracted
from the L4-L6 segments of the spinal cords with RIPA buffer (KangChen, China).
The antibodies used were rabbit polyclonal anti-GATA6 (Affinity, AF5270, China),
rabbit polyclonal anti-GATA4 (Affinity, AF5245, China), rabbit polyclonal anti-RBPJ
(Affinity, DF7453, China), rabbit monoclonal anti-Bax (#2772; Cell Signaling Technology,
Danvers, MA, USA), rabbit polyclonal anti-Bcl-2 (26593-1-AP, ProteinTech, Rosemont,
IL, USA), rabbit polyclonal anti- cleaved caspase-3 (ab2302; Abcam, Cambridge, MA,
USA), rabbit anti-GAPDH (Boster, A00227, China), and HRP-conjugated secondary
antibodies (Beyotime, China).

Statistical analysis
SPSS 15.0 (IBM, Armonk, NY, USA) was used for statistical analyses. The results were
expressed as mean ± standard deviation. Student’s t-test, one-way ANOVA followed by the
Tukey’s test, or two-way repeated-measures ANOVA with the appropriate post hoc
analysis were adopted to calculate the significant difference. p < 0.05 was defined as
significant.

RESULTS
The analysis process is demonstrated in Fig. 1. The key DEmiRNAs in SCII were
identified first, then the target genes of the DEmiRNAs were predicted, GO and KEGG
enrichment analysis and transcription factor analysis were conducted. The occurrence of
DEmiRNAs in each of the datasets was calculated, and DEmiRNAs appearing in at least
two datasets were identified as key DEmiRNAs. Moreover, qRT-PCR was adopted to
measure the expression of the key DEmiRNAs. One of the key DEmiRNAs, miR-3568, was
especially interesting; thus, the involvement of miR-3568 in SCII was preliminarily
explored.

Searching and identification of key DEmiRNAs in SCII
From the existing SCII miRNA expression profiling in rats, 23 independent miRNA
expression datasets were obtained from PubMed, which provided the DEmiRNAs in
the spinal cord tissues of SCII rats compared with the sham rats. SCII miRNA datasets
were named based on the corresponding authors and year of publication for further study.
Basic characteristics of SCII DEmiRNAs datasets were displayed in Table 2.

The number of DEmiRNAs in each of the 23 SCII miRNA expression datasets was
different (Fig. 2). A total of 151 DEmiRNAs were identified in the 23 SCII miRNA
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expression datasets. Several studies identified more DEmiRNAs than others, such as
HJR2013, LXQ2015, and ZGL2020. The number of DEmiRNAs in dataset ZGL2020 was
the largest (12 and 13 upregulated DEmiRNAs; 1 and 27 downregulated DEmiRNAs).
Due to the differences in DEmiRNAs among the datasets, a systematic analysis of the SCII
miRNA differential expression datasets was conducted to identify the key DEmiRNAs and
the related potential biological functions in SCII.

DEmiRNAs appearing in at least two datasets were defined as key DEmiRNAs, and a
total of 19 key DEmiRNAs were identified (Figs. 2 and 3). SCII induced 9 upregulated
expressions, namely, miR-144-3p, miR-3568, miR-204, miR-30c, miR-200b, miR-463,
miR-760-5p, miR-155-3p, and miR-34c-3p, and 10 downregulated expressions, namely,
miR-125b-2-3p, miR-21-5p, miR-199a-3p, miR-352, miR-743b-3p, miR-28-5p, miR-291a-
3p, miR-702-3p, miR-129-1-3p, and miR-136. Among the 19 key DEmiRNAs, the roles of
five key DEmiRNAs in SCII, including miR-204, miR-30c, miR-21-5p, miR-155-3p, and
miR-136, have been investigated. However, the roles of the remaining key DEmiRNAs
have not been explored.

Although appeared in three independent datasets, LJA2016, ZGL2020, and HF2020,
miR-22-3p showed inconsistent expression trends.

Figure 1 The analysis process of the study. SCII, spinal cord ischemia-reperfusion injury;
DEmiRNAs, differentially expressed miRNAs. Full-size DOI: 10.7717/peerj.11454/fig-1
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Table 2 Basic characteristics of SCII differentially expressed miRNA datasets.

Refs Data set Animals SCII model Time
points

Samples Assay/
sequencing
type

Validated

Hu, Lv &
Yin
(2013)

HJR2013 Rat Ligation of abdominal aorta just
below the left renal artery

48 h after
SCII

Spinal cord tissues microRNA
microarrays

real-time
qRT-PCR

Li et al.
(2015a)

LL2015 Male SD rats
(300 to 350 g)

Inserting 2 F-Fogarty balloon
catheters through the left femoral
artery into the proximal
descending thoracic aorta.

48 h after
SCII

Spinal cord tissues qRT-PCR –

Li et al.
(2015b)

LXQ2015 Male SD rats
(200 to 250 g)

The aortic arch was cross-clamped
between the left common carotid
artery and left subclavian artery

24h and 48
h after
SCII

Spinal cord tissues microRNA
microarrays

qRT-PCR

Li et al.
(2016b)

LJA2016 Male SD rats
280 to 300 g)

Occluding the abdominal aorta 0 h, 24 h
and 48 h
after SCII

Spinal cord tissues microarray
analysis

–

Li et al.
(2016a)

LXQ2016 Male SD rats
(200 to 250 g)

The aortic arch was cross-clamped
between the left common carotid
artery and left subclavian artery

12 h and 48
h after
SCII

Spinal cord tissues microRNA
microarrays

qRT-PCR

He et al.
(2016)

HF2016 Male Wistar rats
(250 g)

The aortic arch was cross-clamped
between the left common carotid
artery and left subclavian artery

2 h after
SCII

Spinal cord tissues qRT-PCR –

Liu et al.
(2017)

LK2017 Male Wistar rats
(250 g)

Cross clamping the descending aorta
just distal to the left subclavian
artery

48 h after
SCII

Spinal cord tissues qRT-PCR –

Jin et al.
(2017)

JRL2017 Male SD rats Clamping the nontraumatic vascular
clip on the abdominal aorta

20 days
after SCII

Spinal cord tissues RT-PCR –

Wang
et al.
(2018)

WY2018 Male SD rats
(250 to 320 g)

Clamping the abdominal aorta with
a bulldog clamp

NA Spinal cord tissues qRT-PCR –

Zhao
et al.
(2019)

ZLL2018 Male SD rats
(approximately
250 g)

Cross clamping the descending aorta
just distal to the left subclavian
artery

6 h after
SCII

Spinal cord tissues qRT-PCR –

He et al.
(2015)

HF2018 Male Wistar rats
(230 to 270 g)

Cross-clamping the descending aorta
just distal to the left subclavian
artery

6 h, 12 h, 24
h and 48 h
after SCII

Spinal cord tissues qRT-PCR –

Yan et al.
(2019)

YLH2018 Male Wistar rats
(about 250 g)

Cross-clamping the descending aorta
just distal to the left subclavian
artery

6 h, 12 h, 24
h and 48 h
after SCII

Spinal cord tissues qRT-PCR –

Li et al.
(2018a)

LXG2018 SD rats
(200 to 220 g)

The aortic arch was exposed through
a cervicothoracic approach and
cross-clamped between the left
common carotid artery and the left
subclavian artery

48 h after
SCII

Spinal cord tissues qRT-PCR –

Li et al.
(2018b)

LXQ2018 SD rats (200 to
250 g, 8 weeks)

The aortic arch was cross-clamped
between the left common carotid
artery and left subclavian artery

12 h, 24 h,
36 h and
48 h after
SCII

Spinal cord tissues qRT-PCR –

(Continued)
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Table 2 (continued)

Refs Data set Animals SCII model Time
points

Samples Assay/
sequencing
type

Validated

Liu et al.
(2018)

LY2018 Rat A 2 F-Fogarty balloon catheter was
used to induce spinal cord ischemia
through the left femoral artery into
the proximal descending thoracic
aorta

48 h after
SCII

Spinal cord tissues RT-PCR –

Qiao et al.
(2018)

QY2018 Male SD rats (220
to 280 g)

Occluding the abdominal aorta 24 h after
SCII

Spinal cord tissues RT-qPCR –

Bao et al.
(2018)

BN2018 Male SD rats (220
to 280 g)

Occluding the aortic arch 24 h after
SCII

Spinal cord tissues microRNA
microarrays

qRT-PCR

Wang
et al.
(2019)

WXY2019 Male SD rats (250
to 300 g)

Occluding between the left common
carotid artery and left subclavian
artery

0 h, 12 h, 24
h and 48 h
after SCII

Spinal cord tissues qRT-PCR –

Wang
et al.
(2020a)

WJ2020 – Model of BSCB under hypoxia – Rat spinal cord
microvascular
endothelial cells
and astrocyte

RT-PCR –

Chen
et al.
(2020b)

CFS2020 Male SD rats (200
to 250 g)

The aortic arch was cross-clamped
between the left common carotid
artery and left subclavian artery

6 h, 12 h, 24
h 36 h, 48
h and 72 h
after SCII

Spinal cord tissues microRNA
microarrays

qRT-PCR

Li et al.
(2020c)

LR2020 Male SD rats (8
weeks)

The abdominal aorta was ligated
with a 10-g bulldog clamp below
the renal artery

1 h after
SCII

Spinal cord tissues RT-qPCR –

Fang et al.
(2020)

HF2020 Male SD rats
(250–260 g)

Occluding between the left carotid
artery and the left subclavian artery

48 h after
SCII

Spinal cord tissues RT-qPCR –

Liu et al.
(2020)

ZGL2020 Male SD rats
(220–280 g)

The abdominal aorta was
cross-clamped between the left
renal artery and origin of the right
renal artery

24 h and 48
h after
SCII

Spinal cord tissues microRNA
microarrays

qRT-PCR

Figure 2 Distribution of DEmiRNAs in 23 SCIIs. (A) Upregulation of the proportion of DEmiRNAs in
the SCII datasets. A total of 72 upregulated miRNAs were obtained. The number of DEmiRNAs sup-
ported by one dataset, two datasets, and three datasets was 51, nine (including an inconsistent expression
miRNA: miR-22-3p), and 1. (B) Downregulation of the proportion of DEmiRNAs in the SCII datasets.
A total of 79 downregulated miRNAs were obtained. The number of DEmiRNAs supported by one
dataset, two datasets, and three datasets was 58, 9, and one. Full-size DOI: 10.7717/peerj.11454/fig-2
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The expression of miR-760-5p has been validated via RT-PCR in HJR2013, and the
expression of miR-200b has been validated via RT-PCR in LXQ2015. RT-PCR was adopted
to explore the expression of the key DEmiRNAs that have not been studied or validated via
RT-PCR. The results revealed that the expression levels of miR-144-3p, miR-3568,
miR-34c-3p, and miR-463 increased significantly at 24 h following SCII (Fig. 3A), while
the expression levels of miR-291a-3p, miR-702-3p, miR-28-5p, miR-199a-3p, miR-352,
miR-743b-3p, miR-125b-2-3p, and miR-129-1-3p decreased significantly at 24 h following
SCII (Fig. 3B).

KEGG and GO enrichment analysis of the target genes of DEmiRNAs
in SCII
The target genes of the 19 key DEmiRNAs were predicted on miDRB. The minimum target
score was set to 80, and the number of the target gene of the 19 key DEmiRNAs were
obtained (Table 3).

According to the KEGG enrichment analysis of the target genes of the upregulated
and downregulated DEmiRNAs, the involved pathways in the upregulated DEmiRNAs
are cGMP-PKG and cAMP signaling pathway and that in the downregulated
DEmiRNAs are Chemokine and MAPK signaling pathway. As shown in Figs. 4A–4B, GO
enrichment analysis results indicated that target genes of the upregulated DEmiRNAs were
markedly enriched in biological processes such as brain development and positive
regulation of transcription from RNA polymerase II promoter. Target genes of the
downregulated DEmiRNAs were mainly enriched in biological processes such as
intracellular signal transduction and negative regulation of cell proliferation, as shown in
Figs. 4C–4D.

Figure 3 Expression of key DEmiRNAs following SCII. (A) The expression of key upregulated
DEmiRNAs following SCII. (B) The expression of key downregulated DEmiRNAs following SCII. n = 4
for per group. Data were analyzed with Student’s t-test. �p < 0.05, versus the sham group.

Full-size DOI: 10.7717/peerj.11454/fig-3
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Transcription factor analysis of the key DEmiRNAs target genes in SCII
The transcription factors corresponding to the key DEmiRNAs regulated target genes were
analyzed. For the upregulated DEmiRNAs target genes, 11 transcription factor genes with
178 interactions were obtained. For the downregulated DEmiRNAs target genes, four
transcription factor genes with 37 interactions were formed. Among the 11 transcription
factor genes that regulated the key DEmiRNAs regulated target genes, four transcription
factor genes could regulate the target genes of the upregulated or downregulated
DEmiRNAs (Fig. 5A). The four transcription factors, including SP1, GLI1, GLI2, and
FOXO3, had significant regulatory effects on the target genes of the key DEmiRNAs
(Fig. 5B).

Verification of miR-3568’s involvement in SCII
For the 19 key DEmiRNAs not studied in SCII, miR-3568 was especially interesting.
A previous study found that miR-3568 was upregulated in liver and serum in rats with
alcoholic steatohepatitis and associated with MAPK signaling pathway (Chen et al., 2013).
The expression of miR-3568 also increased in matrix vesicles (MV) compared with
vascular smooth muscle cell (VSMC) in the rats with chronic kidney disease, indicating the
role of miR-3568 in vascular calcification and/or MV formation (Chaturvedi et al., 2015).
A recent study revealed that miR-3568 expression in simulated IRI-induced H9C2
cardiomyocytes increased in a time-dependent manner, which promotes simulated
IRI-induced apoptosis in H9C2 cardiomyocytes through targeting TRIM62 (Li et al.,
2020b). Although miR-3568 was upregulated after SCII in rats based on microRNA
microarrays results (Chen et al., 2020b; Li et al., 2015b), the expression and potential
function of miR-3568 in SCII has not been further explored.

Enriched biological processes for the target genes of miR-3568 were obtained through
GO analysis. According to the relations between genes and statistically significant
biological processes as well as the relations among miR-3568, genes, and biological
processes, a miR-3568-biological processes-gene network was constructed. GO analysis

Table 3 19 key DEmiRNAs in SCII.

Up
DEmiRNAs

Number target genes
in miRDB (target score
≥ 80)

Studied
separately
or not

The number of
datasheets which
supported

Down
DEmiRNAs

Number target genes
in miRDB (target
score ≥ 80)

Studied
separately
or not

The number of
datasheets which
supported

miR-144-3p 168 NO 2 miR-291a-3p 93 NO 2

miR-3568 89 NO 2 miR-702-3p 39 NO 2

miR-204 166 YES 2 miR-21-5p 66 YES 3

miR-30c 348 YES 3 miR-28-5p 19 NO 2

miR-34c-3p 29 NO 2 miR-199a-3p 60 NO 2

miR-155-3p 15 YES 2 miR-352 21 NO 2

miR-760-5p 27 NO 2 miR-743b-3p 134 NO 2

miR-463 23 NO 2 miR-125b-2-3p 55 NO 2

miR-200b 190 NO 2 miR-129-1-3p 39 NO 2

miR-136 35 YES 2
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showed that miR-3568 target genes were enriched notably in several biological processes
(p < 0.05), and GATA6, GATA4, and RBPJ were enriched in several biological functions
(Fig. 6).

In addition, the SCII induced severe neurological deficits of lower extremities, while
miR-3568 AMO improved neurological function (Fig. 7A). Cleaved caspase-3 was
markedly upregulated in SCII compared with the sham group, and miR-3568 AMO
reduced cleaved caspase-3 expression. Bax expression levels showed similar trends as
cleaved caspase-3. Bcl-2 expression levels significantly decreased after SCII, and miR-3568
AMO increased Bcl-2 expression (Figs. 7B–7E). Moreover, the expression of GATA6,

Figure 4 The KEGG pathway analysis and the GO annotations for biological process of top 10 most significant enrichment terms for target
genes of DEmiRNAs. (A) KEGG pathway analysis for upregulation DEmiRNAs target genes. (B) KEGG pathway analysis for downregulation
DEmiRNAs target genes. (C) The biological process of GO annotations for upregulation DEmiRNAs target genes. (D) The biological process of GO
annotations for downregulation DEmiRNAs target genes. Full-size DOI: 10.7717/peerj.11454/fig-4
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GATA4, and RBPJ decreased after SCII. Intrathecal injection with miR-3568 AMO
attenuated this upregulation. The results were shown in Figs. 8A–8D.

DISCUSSION
To better understand the key miRNAs and the related molecular mechanism of SCII, 19
DEmiRNAs were identified in the pathogenesis of SCII. Among which, 9 DEmiRNAs
were significantly upregulated: miR-144-3p, miR-3568, miR-204, miR-30c, miR-200b,
miR-463, miR-760-5p, miR-155-3p, and miR-34c-3p; 10 DEmiRNAs were significantly
downregulated: miR-125b-2-3p, miR-21-5p, miR-199a-3p, miR-352, miR-743b-3p, miR-
28-5p, miR-291a-3p, miR-702-3p, miR-129-1-3p, and miR-136. The SCII-related
functions of miRNAs such as miR-204, miR-30c, miR-21-5p, miR-155-3p, miR-136, and
miR-22-3p have been investigated. Inhibition of miR-204 could promote autophagy and
anti-apoptosis to mitigate SCII (Yan et al., 2019). Using wild-type (WT) and miR-155
global knockout mice, Awad et al. demonstrated that miR-155 activity accelerates the
initial development of edema and the spreading of gray matter damage, and increases the
rate of paralysis in a mouse model of thoraco-abdominal aortic aneurysm (Awad et al.,
2018). Studies showed that abrogation of miR-30c protected PC12 cells against

Figure 5 Transcription factor analysis of key DEmiRNAs target genes in SCII. (A) The Venn Diagram of transcription factors of DEmiRNAs
target genes. The purple-blue background represents the number of transcription factor analysis for upregulated DEmiRNAs target genes. The pink
background represents the number of transcription factor analysis for downregulated DEmiRNAs target genes. (B) The transcription factor-DE-
miRNAs target genes regulation network. The redtriangle represents the transcription factor; the purple hexagon represents upregulated DEmiRNAs
target genes; the green hexagon represents downregulated DEmiRNAs target genes; the orange hexagon represents target genes of both upregulated
and downregulated DEmiRNAs. Full-size DOI: 10.7717/peerj.11454/fig-5
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OGD-induced apoptosis and the inflammatory response and inhibited SCII through
modulating SIRT1 (Wang et al., 2019). Functioning as a switch regulating the polarization
of reactive astrocytes, miR-21 promoted synapsis formation and nerites growth after
acute SCII (Su et al., 2019). Overexpression of miR-21 exerts anti-apoptosis effects on
SCII via inhibiting the pro-apoptotic proteins Faslg and PDCD4 (He et al., 2016). miR-136
plays a vital role in CNS diseases and miR-136 overexpression alleviated cell apoptosis
induced by SCII via targeting TIMP3 (Jin et al., 2017).

Studies on the other miRNAs are scarce but still far-reaching. Overexpression of
miR-144-3p aggravated IRI-induced ischemic brain injury and promoted neurological
dysfunction (Yao et al., 2020). Fang Liu et al. found that as a tumor suppressor,
overexpression of miR-34c-3p caused a reduction in cell migration and invasion (Liu et al.,
2015). miR-463 works as a negative regulator by targeting small proline-rich repeat protein
1A (SPRR1A) in tibial nerve regeneration (Zhao & Wu, 2019). miR-200b suppresses
cell proliferation, invasion, and chemoresistance via inhibiting p70S6K1 in lung cancer
(Jin et al., 2020). A recent study showed that miR-219a-3p could improve osteoblast
differentiation, cellar activity, and ALP activity of BMSCs (Li et al., 2020a). As a tumor
suppressor in RCC, miR-28-5p exerts multiple antitumor effects by directly inhibiting
RAP1B (Wang et al., 2016). In prostate cancer cells, miR-199-3p reduced invasion and
proliferation via targeting Smad1 (Qu et al., 2017). Upregulation of miR-352 resulted in
autophagic lysosome dysfunction via inhibiting LAMP2 and CTSL1 (Song et al., 2018).
Li et al. found that plasma exosomal miR-125b-2-3p could serve as blood-based
biomarkers for diagnosing and monitoring ischemic stroke patients (Li et al., 2017).
miR-129-1-3p functions as a tumor inhibitor via targeting BDKRB2 in gastric cancer
(Wang, Luo & Guo, 2014). miR-760 inhibited the neuroprotective effect of NaHS against

Figure 6 A miR-3568-biological processes-gene network. Full-size DOI: 10.7717/peerj.11454/fig-6

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11454 13/22

http://dx.doi.org/10.7717/peerj.11454/fig-6
http://dx.doi.org/10.7717/peerj.11454
https://peerj.com/


injury induced by myocardial IRI via reducing the expression of DUSP1 (Ren et al., 2020).
There are few studies about miR-702-3p and miR-743b-3p.

Interestingly, miR-22-3p was downregulated in the SCII sample in the data set HF2020
but upregulated in LJA2016 and ZGL2020. The function and expression of miR-22-3p
need further exploration. miR-22-3p plays a crucial role in suppressing tumors via
inhibiting cellular invasion, migration, and proliferation in hepatocellular carcinoma
and melanoma (Chen et al., 2016; Li, Tang & Duan, 2019). It has been reported that
miR-22 acts as a potential marker in the diagnosis of astrocytoma in the thoracic spinal
cord, and miR-22-3p facilitated M2 polarization of macrophages and inhibited
inflammation and motor dysfunction, thus alleviating SCII (Fang et al., 2020; Ohnishi
et al., 2017).

In the present study, cGMP-PKG and cAMP signaling pathways are involved in the
target genes of the upregulated DEmiRNAs, while the Chemokine signaling pathway and
MAPK signaling pathway are enrichment pathways of the downregulated DEmiRNAs

Figure 7 Effects of AMO-3568 following SCII. Effects of AMO-3568 following SCII. (A) Tarlov scores. n = 8 for per group. (B–E) The protein
expression levels of cleaved caspase-3, Bax, and Bcl-2 were measured with Western blot assay. n = 4 for per group. Data were analyzed with the
one-way ANOVA followed by the Tukey’s test. �p < 0.05, versus the sham group, #p < 0.05 versus the SCII group.

Full-size DOI: 10.7717/peerj.11454/fig-7
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target genes. The results are consistent with previous studies, which implicate the
involvement of the above pathways in SCII (Chen et al., 2020c; Yu et al., 2018). Inhibition
of reactive oxygen species reduced the MAPK pathway in the spinal cord following
limb IRI in rats (Choi et al., 2015). CXCL13/CXCR5 axis promoted the development of
SCII via ERK-mediated pathways (Chen et al., 2020c). During early-phase SCII,
CXCL10/CXCR3 axis was related to inflammatory pain (Yu et al., 2018).

Furthermore, the key DEmiRNAs target genes are strongly regulated by transcription
factors such as SP1, GLI1, GLI2, and FOXO3. SP1 was reported as a widely expressed
DNA-binding protein containing a C2H2 zinc finger structure, which modulated gene
transcription in various physiological and pathological processes (Wang et al., 2020b). SP1
and its family of related protein factors are implicated in various essential biological
processes, such as cell growth, differentiation, carcinogenesis, and apoptosis (Vizcaíno,
Mansilla & Portugal, 2015). GLI1 (Glioma-associated oncogene protein 1) family of
transcription factors have three members that answer to signaling from Hedgehog and
other signaling together, regulating target gene expression (Sterling et al., 2006). GLI1
can be translocated from cytoplasm to nucleus, thus activating the Hedgehog signal
pathway and mediating transcription and expression of many nuclear target genes,
subsequently regulating cell proliferation, apoptosis, migration, and invasion (Guo et al.,
2015; Xu et al., 2014b). GLI2 played a significant role in the pathogenesis of cancer, and
some studies implicated that GLI2 mediated regulation of cytokines in TME to promote

Figure 8 Effects of AMO-3568 on the protein expression levels of RPBJ (A, B), GATA6 (A, C) and
GATA4 (A, D) were measured by Western blot assay. n = 4 for per group. Data were analyzed by
one-way ANOVA followed by the Tukey’s test. �p < 0.05, versus the sham group, #p < 0.05 versus the SCII
group. Full-size DOI: 10.7717/peerj.11454/fig-8
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cancer cell biology (Elsawa et al., 2011; Han et al., 2017). FOXOs transcription factors play
crucial roles in stress resistance, inflammation, metabolism, autophagy, apoptosis, and
proliferation (Zhou et al., 2019). The function of FOXO3 is highly regulated via
posttranslational modifications, such as methylation, acetylation, and phosphorylation
(Hedrick et al., 2012; Tia et al., 2018; Wang, Hu & Liu, 2017). Zhou et al. suggested that
the activation of FOXO3 could induce brain autophagy and contribute to brain
damage after IRI (Zhou et al., 2019). A recent study demonstrated that pyroptosis of
cardiomyocytes in IRI was regulated by miR-149 via the directly targeting of FOXO3 (Lin
et al., 2019).

Among the key DEmiRNAs not studied in SCII, miR-3568 was especially interesting.
A recent study showed that miR-3568 markedly aggravated IRI-induced H9C2
cardiomyocytes apoptosis and decreased the expression of Bcl-2 and Survivin (Li et al.,
2020b). This study implicated that miR-3568 might have antiapoptotic potentials.
One major mechanism of SCII is neuronal apoptosis (Li et al., 2018b). In this study, SCII
caused severe neurological deficits of lower extremities, while miR-3568 AMO improved
neurological function. In addition, cleaved caspase-3 was markedly upregulated in SCII
compared to the sham group, and AMO-3568 reduced cleaved caspase-3 expression.
Bax expression levels showed a similar trend as cleaved caspase-3. Bcl-2 expression levels
decreased significantly after SCII and miR-3568 AMO increased Bcl-2 expression.
The expression of GATA6, GATA4, and RBPJ decreased after SCII. Intrathecal injection
with miR-3568 AMO attenuated this upregulation. The mammalian GATA transcription
factors comprised 6 members. Kamnasaran et al. demonstrated the GATA6 nuclear
expression in endothelial cells, choroids plexus epithelium, astrocytes, and neurons
(Kamnasaran & Guha, 2005). GATA6 upregulated p53 and p21 mRNA to inhibit
tumorigenesis in vivo and lung cancer cell growth in vitro (Chen et al., 2020a). GATA4
has been identified as an antiapoptotic protein that protects cardiomyocytes against
hypoxia, IRI, and doxorubicin-induced apoptosis (Kobayashi et al., 2006). A study has
shown that GATA4 was reduced by OGD/R-induced neuronal apoptosis, indicating a
neuroprotective function of GATA4 (Xiao, Kong & Hu, 2018). RBPJ is a key transcription
factor downstream of receptor activation in the canonical Notch signaling pathway (Zheng
et al., 2009). RBPJ-deficient pericytes induced pathogenic transformation of the
vasculature resembling CCMs at the morphological and molecular level and contribute to
bigger stroke lesions upon ischemic insult (Diéguez-Hurtado et al., 2019). He et al.
indicated that the RBPJ-mediated Notch signaling might be involved in reducing
cardiomyocyte apoptosis after myocardial infarction (He et al., 2018). Considering
previous studies and the results in this study, miR-3568 might be involved in the apoptosis
in SCII. GATA6, GATA4, and RBPJ might be the target genes of miR-3568 for regulating
apoptosis after SCII.

In conclusion, 19 key miRNAs and the underlying molecular mechanism in the
pathogenesis of SCII were explored, which could be potential intervention targets for
SCII. Moreover, inhibition of miR-3568, one of 19 key miRNAs, preserved hind limb
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function after SCII by reducing apoptosis, possibly through regulating GATA6, GATA4,
and RBPJ in SCII. miR-3568 may be a potential clinical target for inhibiting apoptosis in
SCII.
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