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ABSTRACT
Allergic bronchopulmonary aspergillosis (ABPA) is a complex hypersensitivity lung
disease caused by a fungus known as Aspergillus fumigatus. It complicates and
aggravates asthma. Despite their potential associations, the underlying mechanisms
of asthma developing into ABPA remain obscure. Here we performed an integrative
transcriptome analysis based on three types of human peripheral blood, which
derived from ABPA patients, asthmatic patients and health controls, aiming to
identify crucial lncRNAs implicated in ABPA and asthma. Initially, a high-
confidence dataset of lncRNAs was identified using a stringent filtering pipeline.
A comparative mutational analysis revealed no significant difference among
these samples. Differential expression analysis disclosed several immune-related
mRNAs and lncRNAs differentially expressed in ABPA and asthma. For each
disease, three sub-networks were established using differential network analysis.
Many key lncRNAs implicated in ABPA and asthma were identified, respectively,
i.e., AL139423.1-201, AC106028.4-201, HNRNPUL1-210, PUF60-218 and
SREBF1-208. Our analysis indicated that these lncRNAs exhibits in the loss-of-
function networks, and the expression of which were repressed in the occurrences of
both diseases, implying their important roles in the immune-related processes in
response to the occurrence of both diseases. Above all, our analysis proposed a new
point of view to explore the relationship between ABPA and asthma, which might
provide new clues to unveil the pathogenic mechanisms for both diseases.
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INTRODUCTION
Allergic bronchopulmonary aspergillosis (ABPA) is a Th2 hypersensitivity disease
response to the presence of Aspergillus fumigatus in the bronchial mucosa. The first case
was described by Hinson, Moon & Plummer (1952) in the United Kingdom (Hinson,
Moon & Plummer, 1952). The prevalence of ABPA was initially thought to be rare, which
was estimated to be occurred in 1~2% in asthmatic patients (Singh et al., 2018). However,
increasing evidences indicate that ABPA is underdiagnosed and much more prevalent
than previously estimated (Greenberger, 2002; Patel et al., 2019). Denning, Pleuvry & Cole
(2013) estimates that global prevalence of ABPA may be 0.7–3.5% of asthmatic patients,
but now be increased into 2.5% (Patel et al., 2019). On the other hand, asthma is a common
lung condition characterized by bronchial hyper-responsiveness and variable airflow
obstruction. A few cases exhibit complicated and uncontrolled symptoms. This type of
asthma is defined as severe asthma, which could be closely linked to atopic to airborne
allergens, especially to fungal spores (Agarwal, 2011). As one of main risk factor for ABPA,
Aspergillus fumigatus is the most common fungi causing fungal sensitization (Agarwal,
2011; Agarwal & Gupta, 2011), suggesting close association between ABPA and asthma.

In spite of the fact that the correlation between asthma and ABPA has been well
elucidated, the detailed causality between two entities, particularly the pathogenesis of
ABPA is not fully understood yet. For instance, only a small proportion of severe asthmatic
patients develop ABPA. Both diseases are characterized by extremely high serum level of
IgE (Immunoglobulin E) but a small proportion of ABPA patients has less high serum
IgE level (Agarwal et al., 2019). Approximately 60% of ABPA patients can benefit from
traditional treatment for allergic fungal disorder, e.g., the use of systemic oral itraconazole,
but a few patients exhibit uncontrolled symptoms despite various treatments have been
tried.

Recently, some progress has been made in disclosing genetic polymorphisms associated
with ABPA risk and progression. A typical example indicates that asthmatic patients
expressing HLA-DR2 and/or DR5 and lacking HLA-DQ2 are susceptible to develop ABPA
after exposure to A. fumigatus (Chauhan et al., 2000). Around half of non-ABPA
atopic Aspergillus-sensitive individuals are found to possess HLA-DR2 and/or HLADR5
genotype, whereas the HLA-DRB1�1501 and HLA-DRB1�1503 genotype are reported to
have high relative risk (Knutsen, 2017). The mutations in cystic fibrosis transmembrane
conductance regulator gene (CFTR) is reported to raise the risk of ABPA in asthmatic
patients (Agarwal et al., 2012).

Despites there are some advances in the disclosure of genetic risk underlying ABPA,
there are still gaps to be filled. Typically, ABPA patients are found to harbor high frequency
of polymorphism in Toll-like receptor 9T-1237C (TLR9T-1237C). However, the
polymorphisms of TLR9 are reported to have no associations with the patients with severe
asthma who are also associated with Aspergillus sensitivity (Carvalho et al., 2008).
It was suggested that genetic variations are not the only factor contributing ABPA
pathogenesis. Increasing evidences demonstrated that transcriptome dysfunction and
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aberrant gene expression also have a critical role in disease pathogenesis (Zeller et al.,
2010). In particular, lncRNAs are proved to be key regulatory layers associated with
asthma. For instance, lncRNAs BCYRN1 is found to promote the proliferation and
migration of rat airway smooth muscle cells in asthma via activation of transient receptor
potential one (Zhang et al., 2016). Here, aiming to identify potential lncRNAs implicated in
the occurrence of ABPA and asthma, as well as their possible roles in both diseases,
we performed a comprehensive transcriptome analysis on the three different types of
human peripheral blood, including ABPA, asthma and health controls. Our analysis
discovered many key lncRNAs which are likely to be related to immune functions and
might play key roles in the pathogenesis of ABPA and asthma. Our findings benefit the
discovery of novel biomarkers and targets guiding for diagnosis and therapy for both
diseases.

MATERIALS AND METHODS
Inclusion, sampling and deep RNA sequencing
This study was approved by the Medical Ethics Committee of First Affiliated Hospital
of Guangzhou Medical University (ethics approval no. gyfyy-2016-73). All experiments
were performed in accordance with relevant guidelines and regulations of the Ethics
Committee of First Affiliated Hospital of Guangzhou Medical University. All participants
provided written informed consent prior to the publication of clinical and sequencing data.
Briefly, a total of 27 unique male individuals were enrolled for our study, including 7
asthma patients (diagnosed as allergic asthma), 12 ABPA patients and 8 healthy
individuals considered as control group (Table 1). The diagnosis of asthma was according
to the latest Global Initiative for Asthma (GINA) guidelines, and the diagnosis of
ABPA was based on the criteria of The International Society of Human and Animal
Mycology (ISHAM) working group, which contains two obligatory criteria and three
additional criteria (Shah & Panjabi, 2016). Based on the clinical symptoms, 5 asthma
patients were at exacerbation stage and two were at chronic stage (Table S1).
And according to the proposed clinical staging of ABPA (Shah & Panjabi, 2016), among
the included ABPA patients, seven were at acute stage, one was at exacerbation stage,
two was at response stage, while the other two were not able to assess the clinical stage
because of insufficient clinical data (Table S1).

For each enrolled subject, the peripheral whole blood was extracted and the peripheral
blood mononuclear cell (PBMC) was separated immediately by ficoll-paque. The total
RNA was extracted using trizol (invitrogen) method and the library for RNA sequencing
was prepared based on a standard protocol established by RiboBio Company in
Guangzhou and sequenced on Illumina. All the raw RNA-seq data used in the present
study are deposited at Short Read Archive (SRA) database of NCBI (https://trace.ncbi.nlm.
nih.gov/Traces/sra/) and are assigned the accession number PRJNA582337.

Raw data processing
The raw data was trimmed by Trimmomatic v0.36 (ILLUMINACLIP: TruSeq3-PE.
fa:2:30:10:8:true SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:50)
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(Bolger, Lohse & Usadel, 2014) and the cleaned reads were aligned against Ensembl hg38
human genome via STAR (v020201) (Dobin et al., 2013). The transcriptome was
re-constructed using StringTie (v1.3.3b) (Pertea et al., 2015). A stringent stepwise pipeline
(Fig. 1) which had been applied in our previous studies (Huang et al., 2019a; Leng et al.,
2019; Zheng et al., 2020) was utilized for identification of high-confidence dataset of
lncRNAs.

Identification of lncRNAs
Firstly, the known lncRNAs were picked out from complete set of assembled
transcripts according to the “biotype_transcript” of reference gtf file of Homo sapiens
from Ensembl database (Zerbino et al., 2018). The transcript was detected as lncRNA
when its “biotype_transcript” tagged as “Long_non-coding_RNA”, “Non_coding”,
“3prime_overlapping_ncRNA”, “Antisense”, “lincRNA”, “Retained_intron”, “Sense_intronic”,
“Sense_overlapping”, “macro_lncRNA” and “bidirectional_promoter_lncRNA”.

Then the human known mRNAs derived from Ensembl database were excluded from
the remaining transcripts. Afterwards, the alignment was performed for the remaining
transcripts against known protein sequences from NCBI nr database (Pruitt, Tatusova &
Maglott, 2007) and Uniprot database (UniProt Consortium, 2018). Successfully aligned
transcripts were excluded from potentially non-protein-coding sequences. For the
unmapped transcripts, filtering was conducted to get rid of the sequences with length less
than 200 nt and the longest ORF longer than 100 residues. Finally, the qualified sequences

Table 1 Baseline characteristics of the study population.

Asthma (n = 7) ABPA (n = 12) Healthy control (n = 8) P value

Age (years) 44 [41, 46] 34 [29, 40.75]* 26.50 [23.25, 35.75]* 0.007

Blood cell count

Eosinophil (×109 cells/L) 0.36 [0.05, 0.98] 0.58 [0.33, 0.90] 0.20 [0.10, 0.35] 0.284

Neutrophil (×109 cells/L) 5.30 [4.00, 7.50] 5.00 [3.40, 7.40] 3.60 [3.20, 4.35] 0.208

Induced sputum

Neutrophil (%) 79.00 [47.00, 88.50] 39.75 [14.25, 76.88] – 0.297

Macrophage (%) 9.00 [7.80, 12.00] 33.75 [0.13, 79.75] – 0.999

Eosinophil (%) 11.50 [0.50, 40.50] 8.00 [1.38, 39.00] – 0.999

Lymphocytes (%) 1.00 [0.50, 1.80] 1.50 [0.50, 5.13] – 0.655

Immunological characteristic

Total IgE level (kUA/L) 529 [40.2, 826] 2595 [695.5, 4757]* – 0.040

sIgE positivity (%) 57.1% 100%* – 0.013

A.f sIgE positivity (%) 14.3% 100%** – <0.001

Glucocorticoids

Use of oral glucocorticoids (%) 42.9% 58.3% – 0.515

Use of inhaled glucocorticoids (%) 71.4% 50% – 0.361

Note:
Data were given as medians with interquartile range (IQR).
* P < 0.05 compared with asthma.
** P < 0.01 compared with asthma.
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were further filtered to remove the protein-coding sequences according to the results from
Pfamscan (El-Gebali et al., 2019) and CPC (Kong et al., 2007). Eventually, the remaining
transcripts were reserved as final dataset of lncRNAs.

Transcriptome variations analysis
For single nucleotide variants, i.e., SNPs and small insertion and deletion (INDEL)
detection, we applied Genome Analysis Toolkit (GATK) analysis pipeline (Van der
Auwera et al. 2013) for variant calling. All the variants were annotated by ANNOVAR
(Wang, Li & Hakonarson, 2010). Simple sequence repeats (SSRs) detection was
performed using the Perl script of MISA–MicroSAtellite identification tool (http://pgrc.
ipk-gatersleben.de/misa/) with default parameters. Statistical hypotheses were used to
investigate whether there were significant differences in the observed proportion of SNPs,
INDELs and SSRs among populations of ABPA, asthma and healthy control. The detailed
process sees Supplementary Methods.

Transcriptome expression analysis
Differential expression analysis was performed using R package DESeq2 (adjusted p-value
≤ 0.05) (Love, Huber & Anders, 2014). Functional enrichment analysis was performed via
ClueGO V2.5.2 (Bindea et al., 2009) plugin in Cytoscape V3.6.1 (Shannon et al., 2003),
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Figure 1 Bioinformatic analysis pipeline for the transcriptome analysis of RNA-seq data. Full-size DOI: 10.7717/peerj.11453/fig-1
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which could generate a dynamical network structure composed of functionally grouped
terms based on the gene list of interest, i.e., differentially expressed genes. The differentially
expressed transcripts were subjected to R programming language for hierarchical cluster
analysis to detect distinct expression patterns.

Differential interaction network analysis was conducted based on three filtering criteria,
which generated three sub-networks for each group, including loss-of-function network,
gain-of-function network, and anti-function network. A total of 12 algorithms (MCC,
DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality, Betweenness,
Stress, ClusteringCoefficient) of cytoHubba (Chin et al., 2014) plugin in Cytoscape
were used to identify hub node for the established network. Detailed procedure see
Supplementary Methods. For the hub node validation, the expression profile of four data
sets (GSE35571, GSE473, GSE31773, GSE2125) from NCBI GEO database were
downloaded and analyzed (Table S2).

Statistics of clinical data
For the basic statistics of clinical data (File S3), all the data were shown in median
(interquartile range). Non-parametric Kruskal–Wallis test was performed to compare the
differences between three groups while Mann–Whitney test was performed to compare
the differences between two groups. Regarding the ratio data, Chi-square test was applied
for the comparison. Statistical analysis was performed by SPSS 22.0. A value of P < 0.05 was
considered as statistically significant.

RESULTS
Characteristics of study subjects
As shown in Table 1, the asthma group was elder compared with either ABPA group or
Healthy control group (P < 0.05). There was no significant difference in eosinophil or
neutrophil counts of peripheral blood in the three groups. Regarding the percentages
of inflammatory cells in induced sputum, no statistical difference was found in any type of
inflammatory cells between asthma and ABPA. There was also no statistical difference in
the results of lung function between the two patient groups. In the comparison of IgE
levels, patients with ABPA had higher total IgE levels (P < 0.05), higher positive rate of
specific IgE (P < 0.05), in particular A. fumigatus specific IgE (P < 0.01) than patients with
asthma. In addition, use of glucocorticoids (either oral or inhaled) did not differ
significantly between asthma and ABPA.

LncRNAs identification
RNA-seq via Illumina sequencing platform yielded on average 130 million reads per
sample (Table S3). After quality trimming, the clean reads were mapped to human
genome and subsequently assembled into 283,883 transcripts. A total of 94,155 lncRNAs
across 27 samples, including 52,791 known lncRNAs and 41,364 novel lncRNAs were
detected using a stringent stepwise filter pipeline (Fig. 1).
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No significant difference in variants across ABPA, asthma and health
controls
A total of 4,521,799 SNPs and 671,669 INDELs were identified across 27 samples via
GATK analysis pipeline (Fig. 1, Table S4). Majority of variants locates in intronic (~61%)
and intergenic regions (~26.2%) (Table 2, Fig. S1). A total of 62,733 variants are in
genic regions, and 42.9% of them are synonymous SNP (Table S5). 44,090 variants
significantly existed differentially across groups by Fisher Exact probability test (File S1).
In addition, many genes (including few lncRNAs) exhibited distinct variants cross groups
(Fig. 2A).

For SSRs analysis, a total of 4,740,915 different types of SSRs were identified (175,589
per sample on average) (Table S6). No significant difference in SSRs across these samples
was detected (Figs. 2D–2I), despites two statistical approaches (details process see
Supplementary Methods) revealed around 150 SSRs were differentially enriched in total
(Figs. 2B, 2C, File S2).

Differential expression analysis reveals immune-related processes
implicated in both diseases
A total of 2,481 differentially expressed transcripts (DETs, including 554 lncRNAs) were
found in the comparison of ABPA vs healthy controls (Figs. 3A–3D), and 2,706 transcripts
(including 529 lncRNAs) were differentially expressed in the comparison of asthma vs
healthy controls, respectively. Functional analysis via ClueGO for both DET datasets
demonstrated that many immune-related biological processes were significantly enriched,
including leukocyte activation, activation of innate immune response and positive

Table 2 Basic statistics of variants occurred in RNA-seq data detected by GATK analysis pipeline.

Variant type Number

UTR5; UTR3 55

UTR5 17,091

UTR3 147,976

upstream; downstream 2,484

upstream 39,078

downstream 63,520

splicing 2,523

exonic 62,680

exonic; splicing 53

intergenic 1,359,937

intronic 3,170,032

ncRNA_exonic 33,883

ncRNA_exonic; splicing 22

ncRNA_intronic 293,956

ncRNA_splicing 177

ncRNA_UTR5 1
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regulation of immune effector process, etc. (Figs. 3B, 3C). Furthermore by the comparison
of two DET datasets, distinct DETs involved in diverse biological processes were detected
among three different groups (Figs. 3D, 3E).

Additionally, hierarchical cluster analysis via R language based on DETs revealed
three main expression patterns of DETs cross these samples (Fig. 4). Concretely, many
transcripts (including mRNAs and lncRNAs) are found to be down-regulated in
healthy controls but were up-regulated in ABPA and asthma patients (Fig. 4A). Functional
analysis showed that they might be involved in myeloid leukocyte mediated immunity,
regulation of defense response to virus, etc. (Fig. 4B). On the contrary, several transcripts
are down-regulated in healthy controls but are up-regulated in ABPA and asthma
patients (Fig. 4E), which might be associated with columnar/cuboidal epithelial cell
differentiation, regulation of apoptotic signaling pathway, etc. (Fig. 4F). A few transcripts
are specifically up-regulated in ABPA patients (Fig. 4C), and their functions might be
correlated to supramolecular fiber organization and positive regulation of organelle
organization (Fig. 4D).

Differential network analysis reveals crucial lncRNAs correlated to
both diseases
The aforementioned analysis has revealed several lncRNAs and mRNAs differentially
expressed in ABPA and asthma patients. Next to investigate the possible roles of these
lncRNAs implicated in the pathogenesis of ABPA and asthma, we proposed a differential
network analysis. Initially, we built an RNA–RNA interaction network based on the
expression profile data of eight healthy controls using the Pearson Correlation Coefficient
(PCC) method. Then the interactions of these RNAs in the networks were re-assessed
based on the expression profiles of 12 ABPA patients and 7 asthmatic patients. To assess
the changes of network from healthy status to disease status, three different filtering
criteria (details see Supplementary Methods) was proposed to construct three
sub-networks for each disease, namely loss-of-function network, gain-of-function
network, and anti-function network.

In loss-of-function network, for instance, 293,926 RNA–RNA interactions with strong
correlation (|PCC value| ≥ 0.70 & P-value < 0.05) are found in health controls, whereas
these interactions are shown having weak correlation (|PCC value| ≤ 0.30) in ABPA
patients. It is suggested these RNA–RNA interactions might be disrupted by the
occurrence of ABPA. 243,399 RNA–RNA interactions exhibit similar situation in asthma.
For each disease, the immune-related RNA–RNA interactions in two loss-of-function
networks were extracted to establish the loss-of-immune-related-function network,
respectively (Figs. 5A, 5B). Key elements (hub nodes of the network) in both networks
were detected by topological network analysis via Cytohubba. Our analysis revealed several
hub lncRNAs which might play key roles in the immune dysfunction of ABPA and asthma.
In this way, we built the gain-of-function and anti-function networks for both diseases
(Figs. 5C–5F), and relevant key lncRNAs and mRNAs were disclosed (Table S7, S8).

To further investigate convincing RNA–RNA interactions implicated in ABPA and
asthma, we integrated the above-mention networks (Fig. S2). Notably, the RNAs in the
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network can be categorized into four main immune-related groups, including leukocyte
involved immune process, cytokine related immune process, autophagy apoptosis
regulation and response to exogenous invasion. Topological analysis identified many key
mRNAs/lncRNAs implicated in the regulation of diverse immune-related processes in
response to ABPA and asthma (the frequency of counting as top 20 hub nodes among
12 algorithms ≥ 3, Table 3, details see Supplementary Methods), including five lncRNAs,
namely AL139423.1-201, AC106028.4-201, HNRNPUL1-210, PUF60-218 and SREBF1-
208, and five known mRNAs (PRR14L-201, CCRL2-202, GDAP2-202, SPAG1-206,
SLC35B2-207). Notably, many mRNAs have already been demonstrated to be associated
to asthma or ABPA by previous studies. For instance, Inhibition of PARP14 (Top one
hub node in Table 3, it was found to significantly up-regulated in both diseases) was
reported to reduce allergic airway diseases, it thereby was proposed as potential therapeutic
target for asthma (Mehrotra et al., 2013).

Moreover, all the RNA–RNA interactions involved the five key lncRNAs were observed
in the loss-of-function networks in both diseases and exhibited down-regulated expression

Table 3 Hub nodes of the common immune-related functional network in ABPA and asthma.

Transcript ID Gene name Type Differential expression
of regulation in asthma

Differential expression
of regulation in ABPA

Frequency of counting
as top 20 hub nodes
among 12 algorithms

P value

ENST00000327423 PRR14L-201 mRNA UP UP 8 0

MSTRG.89849.1 MSTRG.89849.1 Other DOWN DOWN 8 0

ENST00000606802 AL139423.1-201 lncRNA DOWN DOWN 8 0

ENST00000477475 SRC-208 Other UP DOWN 8 0.98

ENST00000399036 CCRL2-202 mRNA UP DOWN 8 0.98

MSTRG.38792.1 MSTRG.38792.1 Other UP DOWN 8 0

ENST00000369443 GDAP2-202 mRNA UP UP 8 0

MSTRG.68250.13 MSTRG.68250.1 Other UP DOWN 8 0

MSTRG.33289.1 MSTRG.33289.1 Other DOWN DOWN 8 0

ENST00000520643 SPAG1-206 mRNA DOWN DOWN 7 0

MSTRG.520.10 MSTRG.520.10 Other DOWN DOWN 7 0

MSTRG.69149.13 MSTRG.69149.1 Other UP DOWN 6 0

ENST00000595806 HNRNPUL1-210 lncRNA DOWN DOWN 6 0

ENST00000614509 AC106028.4-201 lncRNA DOWN DOWN 6 0

ENST00000619636 SLC35B2-207 mRNA UP DOWN 6 0

ENST00000531995 PUF60-218 lncRNA UP DOWN 5 0

ENST00000514385 FXYD2-204 Other UP DOWN 5 0

MSTRG.61564.1 MSTRG.61564.1 Other UP DOWN 5 0

ENST00000490736 UEVLD-206 Other UP DOWN 4 0

MSTRG.111947.1 MSTRG.111947.1 Other UP DOWN 4 0

ENST00000469356 SREBF1-208 lncRNA DOWN DOWN 4 0

MSTRG.96227.1 MSTRG.96227.1 Other UP DOWN 3 0

MSTRG.68251.13 MSTRG.68251.1 Other UP DOWN 3 0

Note:
3 The transcript exists in the cluster 3 of cluster analysis in Fig. 5E.

Huang et al. (2021), PeerJ, DOI 10.7717/peerj.11453 13/20

http://dx.doi.org/10.7717/peerj.11453/supp-1
http://dx.doi.org/10.7717/peerj.11453
https://peerj.com/


in the peripheral blood of patients in both diseases (Table 3), suggesting the regulations of
hub lncRNAs in these interacted target RNAs were disrupted after the occurrence of
asthma or ABPA. Their targets were found to be involved in many immune-related
processes and pathways (Figs. 6A–6E). Permutation test shows majority of hub nodes are
high-confidence (for details see Supplementary Methods). These findings indicate that the
expression of these five lncRNAs would be repressed during the occurrences of ABPA or
asthma, many immune-related processes mediated by them might be disrupted,
simultaneously.

Validation of hub nodes using GEO datasets
Four hub nodes including two mRNAs (ENST00000327423, ENST00000369443) and
two lncRNAs (ENST00000587128, ENST00000595806) from the two networks were
selected for validation. The expression profiles of four GEO datasets (GSE35571, GSE473,
GSE31773 and GSE2125) were used. The results indicated that the expression level of
the selected hub nodes are consistent with the result of GEO datasets (Figs. 6F–6I). Also,
many interactions involved in these hub nodes could be found in these GEO datasets
(Table S9), implying our predictions are reliable and convincing.

DISCUSSIONS
ABPA has not received the importance that it deserves despites it occurs with a world-wide
distribution in a great number of patients with asthma or cystic fibrosis (CF). Although
more than half of century has passed since ABPA was first described, its exact pathogenesis
as well as potential relationship with asthma is still unknown. The clinical data of the
collected subjects in the present study do not show significant difference between
ABPA and asthmatic patients, except that ABPA have higher IgE level (Table 1).
We thereby tried to find some clues from the transcriptome. Initially, we looked into
whether there is mutational difference between ABPA, asthma and health controls.
The results showed that many genes (including two lncRNAs: LINC00398, LINC00892)
exhibited distinct mutations across those samples (Fig. 2A). Regarding SSRs, no difference
in biological significance was found cross those samples, despites some of them showed
significant P value in statistic test after filtering. These findings indeed are consistent to
the mainstream view on the pathophysiological mechanisms of ABPA and asthma,
i.e., unlike genetic diseases that mutations largely contribute to the pathogenesis of
these diseases, the development of ABPA or asthma should involve the complex
cross-talking between specific heredities and environmental factors. Mutations particularly
in transcriptome might have only a marginal effect on the occurrence of both diseases.
This finding actually is consistent with other previous studies, which indicated that genetic
risk factors have overall small effects for the adult-onset asthma, implying a greater role for
non-genetic risk in adult-onset asthma (Pividori et al., 2019).

Next, we tried to find some clues from the comparison of gene expression among
those groups, particularly in lncRNAs. In addition to traditional differential expression
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analysis, we proposed a differential network analysis to detect the dynamic changes of
transcriptome across those different groups. Differential network analysis based on three
different filtering criteria figured out several key lncRNAs and mRNAs. The reason that we

Figure 6 Functional analysis and GEO validation of key lncRNAs (hub nodes) derived from the loss-of-function networks of two diseases.
(A) hub node: SREBF1-208. (B) hub node: PUF60-218. (C) hub node: HNRNPUL1-210. (D) hub node: AL139423.1-201. (E) hub node:
AC106028.4-201. (Left) sub-networks display all the target mRNAs for the key lncRNAs. (Right) bar plots show Gene ontology (GO) functional
enrichment analysis based on the corresponding target mRNAs. (F–I). Validation of the expression level of four selected hub nodes
(ENST00000327423, ENST00000369443, ENST00000587128 and ENST00000595806) between asthmatic groups and health controls. (F) Validation
based on microarray data of GSE35571. (G) Validation based on microarray data of GSE473. (H) Validation based on microarray data of GSE31773.
(I) Validation based on microarray data of GSE2125. Full-size DOI: 10.7717/peerj.11453/fig-6
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applied different filtering criteria for three different groups is that three networks exhibit
extremely distinct threshold value of pearson correlation coefficient, and different criteria
would yield a similar number of RNA–RNA interactions in different groups. Notably,
we applied 12 different algorithms of topological network analysis to make sure our
predictions more reliable and convincing. Our analysis indicated that the interactions
involved in 82 key transcripts (hub nodes in network) were dramatically disrupted by the
occurrence of ABPA, and some interactions were repressed by ABPA and some were
gained in response to ABPA (Table S7). For instance, the gene RGS3 (Top 2nd hub node in
Table S7) encodes the regulator of G-protein signaling three, and it can activate MAP
kinases (MAPK), which was found to be critically involved in modulation of asthmatic
inflammation. It also was proposed for a potential therapeutic target for asthma
(Huang et al., 2019b). The gene GPR171 (Top 3rd hub node in Table S7) encodes
probable G-protein coupled receptor, which was reported to be implicated in asthma
endophenotypes and negatively regulate myeloid cell differentiation (Thompson et al.,
2006). Similarly, we identified 93 key mRNAs/lncRNAs (Table S8) in asthma network.
Few hub nodes share in ABPA and asthma networks, suggesting that these distinct
hub nodes might be good candidates for further investigating the difference between
ABPA and asthma. Some mRNAs/lncRNAs were found as new risk factors associated with
ABPA or asthma, i.e., AL139423.1-201, GDAP2, which might be novel biomarkers and
targets for diagnosis and therapy in both diseases.

By integrating two networks, we could find several common key mRNAs and
lncRNAs. Permutation test shows the reliability of this analysis. Some of them have already
been demonstrated to be correlated to asthma or ABPA. For example, PARP14 was
found to play a role in transcription of interleukin-4 (IL4)-responsive genes, which
controls cell survival, metabolism and proliferation (Cho et al., 2009). Inhibition of
PARP14 was found to reduce allergic airway diseases (38). CCRL2 (Top 4th hub node
in Table 3) encodes a chemokine receptor like protein. Chemokines and their receptors
have reported to mediate signal transduction, which are critical for the recruitment of
effector immune cells to the site of inflammation (D’Ambrosio et al., 2001). More
importantly, many known and novel lncRNAs were identified to be related to asthma and
ABPA for the first time, i.e., AL139423.1-201, HNRNPUL1-210, AC106028.4-201, etc.

CONCLUSIONS
Our analysis discloses many lncRNAs associated to immune-related mRNAs, which
suggests these lncRNAs might participate regulation of immune-related processes in
response to the occurrence of both diseases. Further investigation on the interactions
among them might provide some clues to access underlying mechanisms of pathogenesis
for both diseases. Certainly, more ingenious experimental design and validation is required
to conclude the concrete roles of these lncRNAs in both diseases. In short, our analysis
describes a rough transcriptome landscape of ABPA and asthma, and benefits
understanding the pathogenesis of both diseases.
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