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Background. Bite marks attributed to adult Tyrannosaurus rex have been subject to numerous studies.
However, few bite marks attributed to T. rex have been traced to juveniles, leaving considerable gaps in
understanding ontogenetic changes in bite mechanics and force, and the paleoecological role of juvenile
tyrannosaurs in the late Cretaceous.

Methods. Here we present bite force estimates for a juvenile Tyrannosaurus rex based on mechanical
tests designed to replicate bite marks previously attributed to a T. rex of approximately 13 years old. A
maxillary tooth of the juvenile Tyrannosaurus specimen BMR P2002.4.1 was digitized, replicated in
cobalt, and mounted to an electromechanical testing system. The tooth was then pressed into bovine
long bones in various locations with differing cortical bone thicknesses at varying speeds for a total of 17
trials. Forces required to replicate punctures were recorded and puncture dimensions were measured.

Results. Our experimentally derived linear models suggest bite forces of 4,921.08-6,105.68 N from
cortical bone thickness estimated from puncture marks on an Edmontosaurus and a juvenile
Tyrannosaurus. These findings are slightly higher than previously estimated bite forces for a juvenile
Tyrannosaurus rex of approximately the same size as BMR P2002.4.1 but fall within the expected range
when compared to estimates of adult T. rex.
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17 Abstract
18 Background. Bite marks attributed to adult Tyrannosaurus rex have been subject to

19 numerous studies. However, few bite marks attributed to 7. rex have been traced to juveniles,

20 leaving considerable gaps in understanding ontogenetic changes in bite mechanics and force, and
21  the paleoecological role of juvenile tyrannosaurs in the late Cretaceous.

22 Methods. Here we present bite force estimates for a juvenile Tyrannosaurus rex based on
23 mechanical tests designed to replicate bite marks previously attributed to a 7. rex of

24 approximately 13 years old. A maxillary tooth of the juvenile Tyrannosaurus specimen BMR

25 P2002.4.1 was digitized, replicated in cobalt, and mounted to an electromechanical testing

26 system. The tooth was then pressed into bovine long bones in various locations with differing

27 cortical bone thicknesses at varying speeds for a total of 17 trials. Forces required to replicate

28 punctures were recorded and puncture dimensions were measured.

29 Results. Our experimentally derived linear models suggest bite forces of 4,921.08-

30 6,105.68 N from cortical bone thickness estimated from puncture marks on an Edmontosaurus
31 and ajuvenile Tyrannosaurus. These findings are slightly higher than previously estimated bite
32 forces for a juvenile Tyrannosaurus rex of approximately the same size as BMR P2002.4.1 but
33 fall within the expected range when compared to estimates of adult 7. rex.

35
36 Introduction
37 Bite mechanics and feeding habits of dinosaurs have long been debated. A variety of

38 methods have been proposed to determine the bite mechanics and forces of members of
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Dinosauria, including stegosaurs, ceratopsians and hadrosaurids (Weishampel, 1984; Bell et al.,
2009; Reichel, 2010; Erickson et al., 2015), and more commonly, theropods (Rayfield et al.,
2001; Rayfield et al., 2005; Rayfield et al., 2007; Gignac et al., 2010; Lautenschlager et al.,
2013). The genus Tyrannosaurus rex and other tyrannosaurids havefameously been the focus of
many studies on dinosaur bite force and bite mechanics (Erickson et al., 1996; Meers, 2002;
Barret and Rayfield, 2006; Bates and Falkingham, 2012; Gignac and Erickson, 2017; Rowe and
Snively, 2021; Therrien et al., 2021). These studies have relied on several methods for estimating
bite forces, including multi-body dynamic analysis (MDA) (Bates and Falkinham, 2012), finite
element analysis (Rayfield et al., 2005; Rayfield et al., 2007; Maiorino et al., 2015), and
actualistic studies.

However, bite force estimates have largely focused on adult specimens with few studies
providing estimates for juveniles or subadult Tyrannosaurus rex, leaving a considerable gap in
the understanding of tyrannosaur ontogenetic dietary partitioning and paleoecology. Bates and
Falkingham (2012) based their bite force estimate of a late-stage juvenile 7. rex on multi-body
dynamic analysis (MDA), suggesting allometric growth in bite force from juvenile to adult. The
juvenile specimen used in that study (BMRP2002.4.1) was also found to possess conspecific bite
marks through the left maxilla and nasal (Peterson et al., 2009) (Figure 1A-E). Similarly,
Peterson and Daus (2019) identified feeding traces on a proximal caudal vertebra from an
Edmontosaurus likely produced by a 7. rex of a similar ontogenetic stage (Figure 2A-E). The
trace on BMR P2002.4.1 penetrates through 7.5 mm of cortical bone, while the traces on BMR
P2007.4.1 penetrates through 0.4 mm of cortical bone. Both sets of puncture marks are
approximately 10-19 mm in length, and 4-9 mm in width (Peterson et al, 2009; Peterson and

Daus, 2019).
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The presence of two sets of puncture marks attributable to a late-stage juvenile
Tyrannosaurus rex provides the opportunity to test previously derived juvenile 7. rex bite force
estimates from multi-body dynamic analyses with actualistic methods (Gignac et al., 2010).
Comparisons between the bite forces of adult and juvenile Tyrannosaurus rex has the potential to
reveal ontogenetic niche partitioning (Woodward et al., 2020) and illuminate the impact of

Tyrannosaurus rex ontogeny in terrestrial Cretaceous ecosystems.

Materials & Methods

Gignac et al. (2010) reported on bite marks in a specimen of Tenontosaurus tilletti that
were attributed to Deinonychus antirrhopus, and designed indentation experiments to determine
bite force estimates for D. antirrhopus. To estimate the bite force for a juvenile Tyrannosaurus,
we-used-similar methods. Previous studies of BMR P2002.4.1 and BMR P2007.4.1 suggest that
their respective bite marks were produced by a lateral maxillary tooth of a juvenile to sub-adult
tyrannosaur (Peterson et al., 2009; Peterson and Daus, 2019). To replicate these indentations, a
lateral maxillary tooth of the juvenile Tyrannosaurus specimen BMR P2002.4.1 was digitized
and 3D printed. Triangulated laser texture scans were conducted at the Department of Geology at
the University of Wisconsin-Oshkosh in Oshkosh, WI. Scans were made with a NextEngine 3D
Laser Scanner, capturing data at seven scanning divisions in high definition (2.0k points/in2).
Models were built with the NextEngine ScanStudio HD Pro version 2.02 and finalized as STL
models (Figure 3A). The STL files were then imported into Meshmixer (Autodesk, version
10.0.297), in which the ‘Make Solid’ algorithm was utilized to prepare the model for printing by
filling ‘gaps’ in the model mesh as well as the removal of artifacts from the scanning process
(Peterson and Krippner, 2019). The digital model of the tooth was then fused to a model of an

adapter that allowed the 3D printed model to be mounted onto the test frame (see below) using
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Geomagic Wrap (3D Systems, Cary, NC). The STL file was 3D printed in a dental grade cobalt
chromium alloy [Co(61.0).Cr(25.0),Mo0(6.0),W(5.0),Mn(<1.0),Si(<1.0), Fe(<1.0)] with a yield
strength of 47,436 N/cm? (Figure 3B) by the Argen corporation (San Diego, CA).

The cobalt chromium alloy tooth model was mounted to a Shimadzu AGS-X Universal
Electromechanical Test Frame (ETF) equipped with a 10kN load cell, interfaced with the
Shimadzu TrapeziumX software for data collection. Prior experiments on bite force
determination have utilized bovine limb bones for their varying cortical thicknesses and
similarity in microstructure to dinosaurian elements (Erickson et al, 2002; Locke, 2004; Gignac
et al., 2010). While the elements under study include cranial and vertebral elements that may
differ in microstructure than limb elements, the comparable variance in cortical thickness makes
bovid limb elements suitable models for these experiments.

A right bovine humerus and an in-tact left radius/ulna pair, sourced from Moriarty Meats
located at 1650 Elmwood Ave, Buffalo, NY 14207 were used for indent simulations. The bones
were kept frozen upon purchase and thawed overnight at room temperature before testing
proceeded. Epiphyses were left in-tact to reduce the possibility of creating microfractures and
compromising structural integrity during removal. Bones were covered with paper towels soaked
in Hank’s Balanced Salt Solution (HBSS) between tests to maintain moisture. The bones were
secured to the lower stage of the ETF using a series of 1-inch width nylon straps. Testing
parameters including maximum allowed force (10kN), maximum displacement (ranging from 5-
45mm depending on depth of the test location on specimen), and speed (1 mm/s) were set. The
tooth model was then pressed into the bones in various locations with differing cortical bone
thicknesses to produce a total of 17 indents (Figure 4A, B). After each individual test, the

resulting indent was measured using Mitutoyo vernier calipers for depth, width, and length to the
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nearest 0.02 mm before proceeding. We plotted load-displacement relationships of all trials runs
and kept only trials with smooth curves as in Gignac et al. (2010); curves that exhibited sudden
drops in measured load indicate presence of fractures at and around the indentation site, and
those curves were excluded from subsequent analyses. Post-indent testing, all specimens were
scanned at 0.6 mm slice thickness using a GE Discovery 690 PET-CT scanner in the University
at Buffalo Clinical and Translational Science Institute Image Center (Figure 5).

To estimate the indentation forces required to make the specific puncture marks observed
on BMR P2007.4.1 and BMR P2002.4.1, we used linear regression to model the relationship
between per trial maximum recorded indentation force and puncture site cortical bone thickness,
as in Gignac et al. (2010). We then used the linear regression model to calculate the indentation
forces required to make puncture marks with the measured cortical thickness values from BMR
P2007.4.1 (0.4 mm) and BMR P2002.4.1 (7.5 mm). Additionally, we estimated the uncertainty
around the calculated indentation forces using 95% confidence intervals around the linear
regression model equation. These calculations were conducted in the R programming

environment using the core functions /m and predict.

Results
The trial data were analyzed using linear modeling of bovine specimen cortical thickness

and indentation force values and derived predictive formulae (1) with the full data set and (2)
with fractured trial values excluded (Fig. 6A-B). The results indicate a mean force of 1,412.79-
2,292.46N for the indentation on BMR P2007.4.1 (“Constantine”) and 4,921.08-6,105.68N for
the indentations on BMR P2002.4.1 (“Jane™) (Table 1).

The maximum force recorded by the 10kN load cell was 10,448.60 N, and minimum

782.93 N (mean force: 4,430.63 N). Summary of each trial and raw force-displacement time
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series data are available as supplemental data (S1-S2). A video of one of the experimental trials
and CT images of the experimentally punctured cow elements are available on MorphoSource

(S3-S4) (https://www.morphosource.org/Detail/ProjectDetail/Show/project id/1117).

Discussion
Estimated bite forces of adult Tyrannosaurus rex have yielded a wide range of results,

and our study provides the first experimentally derived juvenile bite force estimates to
contextualize the assessment of adult bite force estimates. Modelled muscle volume estimates for
adult 7. rex bite correspond to forces between 8,526 and 34,522 N (Barrett and Rayfield, 2006;
Bates and Falkingham, 2012). However, estimates incorporating likely muscle fiber length
produced results over 64,000 N for adult 7. rex (Bates and Falkingham, 2018). Furthermore, the
unique tooth morphology and arrangement in adult 7. rex promote fine fragmentation of bone
during osteophagy (Gignac and Erickson, 2017). Juvenile 7. rex such as BMR P2002.4.1 have
much narrower and blade-like tooth morphologies (Carr, 2020) and were unlikely to have been
able to withstand similar bite forces at this ontogenetic stage. Bates & Falkingham (2012)
estimated a maximum bite force for BMR P2002.4.1 at 2,400-3,850 N and hypothesized that
ontogenetic increases in bite force could indicate a change in dietary partitioning and feeding
behavior while approaching adulthood. Our experimentally derived linear models suggest bite
forces 0f 4,921.08-6,105.68 N from cortical bone thickness estimated from puncture marks on
Edmontosaurus (BMR P2007.4.1) and a juvenile Tyrannosaurus (BMR P2002.4.1). These
results suggest indentation forces substantially greater than previous estimates for juveniles.

The testing equipment used in this study has a limit of 10,000 N. However, most of the
results were well below this limit, suggesting that mechanical limits of the equipment were not a

factor in the results. Furthermore, the load cell on the test frame is rated for 10,000 N, with a
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built-in safety factor of ~5% over the listed limit. Therefore, it is possible that the values at and
over 10,000 N may be truncated. To assess the effect of potential truncation bias on our linear
model estimates of indentation force, we repeated the analysis by excluding force values at and
over 10,000 N; the resulting indentation force estimates for the fossilized bite marks vary by 16-
17% (higher in the “Constantine” specimen with trimmed data, lower in the “Jane” specimen
with trimmed data). Conservative adjustment of all model-predicted indentation forces by a
factor of 17% on both ends still returns values higher than previous estimates (4084.50-5067.71
N with 17% adjustment vs. 2,400-3,850 N reported by Bates & Falkingham).

Bone mechanical behavior is loading rate-dependent, with increasing strength at higher
loading rates (McElhaney 1966). To gain a broader context for the standardized loading rate used
in our experiments (1 mm/s), we conducted a limited number of bone puncture trials at 10 mm/s
(n = 3 trials) and 16 mm/s (n = 2 trials, presenting the maximum speed permitted on the
equipment used). The resulting relationships between puncture force and cortical thickness at
puncture site in this small sample of additional trials are consistent with those obtained from the
1 mm/s trials. At 10 mm/s, cortical thicknesses ranging from 3.7 to 5.3 mm required forces of
2930.4 to 10,448.6 N. At 16 mm/s, a cortical thickness of 4.5 mm correlated with a puncture
force of 3248.8 N, and a thickness of 9 mm correlated with 9024.41 N. The range of material
properties present (not quantified) throughout the test samples may be partially responsible for
the variability in puncture forces measured at a given cortical thickness, and explain the similar
results obtained in this study using different puncture rates (i.e., higher loading rates at less stiff
locations may result in similar required puncture forces as low loading rates at stiffer locations

on the bone sample).
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Most of the force-displacement curves from experimental trials exhibit a stereotypical
linear or near-linear initial portion, consistent with expectations from first principles of bone
mechanics within the elastic region of a material force-displacement or stress-strain curve. In
contrast, all but three of the force-displacement curves exhibited no clear peak force/stress;
instead, the bone puncture continued to enlarge with additional penetration depth, with
oscillating force magnitudes (data not shown) (Erickson et al., 2004; Gignac et al.,2010). While
these results do not permit absolute determination of whether the bites studied were made with
the animals’ highest possible bite force, they do offer insight into the minimum boundary for the
bite force capabilities of a late-stage juvenile Tyrannosaurus rex.

We observed that the irregularly shaped epiphyses of the bovine bone specimens
sometimes generated minor to substantial movements of the test specimen relative to the testing
frame during bite trials, despite the use of nylon straps to secure the specimens. Test trials that
exhibited visible movements of the bone were removed from data analysis, but it is likely that
minute movements took place during some of the bite force experiments. Consequently, we did
not discuss the bite force trials individually, and we instead relied on mean and range values as
more robust estimates of the bite force values used in our linear model-based estimates of bite
force, which were in turn based on cortical bone thickness at puncture mark sites of fossil
specimens. The possible movement of bone specimens during a given bite experiment is not an
unrealistic factor in the actual feeding and predatory behavior being studied, as movements of
multiple bodies are involved in generating puncture marks from agonistic or hunting behavior in
predators. Future studies that include a more formalized consideration of potential multibody
dynamics of a particular bite would provide further refinement on such bite force estimates. We

opted to maintain the unmodified state of bone specimens in our trials, rather than processing
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those samples into standardized shapes (e.g., cubes, cylinders), in order to minimize inadvertent
damage to samples from cutting and to maximize the number of testing locations on each
specimen. As such, the flexure of specimens is considered alongside flexures of the components
of the testing frame itself as systematic errors in the study design that added variability to our
measured values. Accordingly, the reported findings should be considered in this context.

The tooth marks observed on BMR P2002.4.1 and BMR P2007.4.1 are Type 1 punctures
(Jacobsen, 1998; Tanke and Currie, 1998), described as “punctures (partial and full penetration)
are circular to oval in outline. In unhealed examples, plates of bone are folded down and
inwards into the puncture hole. The tooth/teeth are pushed into the bone and extracted with no
additional damage” (Jacobsen, 1998). Erickson and Olson (1996) note that the tooth marks most
attributed to 7. rex are classified as Type 1 and Type 2 (“Transverse gouges, scores or tooth
drag imprints are elongate, gently curving lesions with ragged (or healing) margins” which are
also known as “pull and puncture”) (Erickson et al., 2004; Carr, 2020).

Similar Type 1 punctures have been observed on the skulls of fossil and extant crocodiles
(Buffetaut, 1983; Katsura, 2004; Peterson et al., 2009) and attributed to intraspecific fighting.
Intraspecific facial biting in crocodylians involves rapid single bites to the face with quick
inertial movements (Kalin, 1939; Webb and Messel, 1977; Webb et al., 1983; Bramble and
Wake, 1985; Lang, 1987; Cleuren and De Vree, 2000; Schwenk, 2000; Njau and Blumenschine,
2006; Hiiemae and Crompton, 2013). Injuries from intraspecific aggression have also been
observed in juvenile Cinereous Vultures (4Aegypius monachus) and Griffon Vultures (Gyps
fluvus) (Blanco et al., 1997).

Feeding behaviors in crocodylians involve similar sequences of biting and quick inertial

movements (Cleuren and De Vree, 2000; Njau and Blumenschine, 2006; Noto et al., 2012).
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However, during feeding carcasses are commonly dismembered through more vigorous inertial
movements such as “death-rolling” where the predator will spin its body along the longitudinal
axis while gripping the carcass in its jaws (Schmidt, 1944; Attwell, 1959; Green, 1988; Njau and
Blumenschine, 2006). This method of carcass reduction permits inertial feeding and often
produces abundant and deep-penetrating tooth marks that are morphologically similar to Type 1
and Type 2 tooth marks observed in theropod dinosaurs (Njau and Blumenschine, 2006).

Bite marks and feeding traces attributed to theropod dinosaurs have been extensively
studied (Fiorillo, 1991; Carpenter, 1998; Chure et al., 1998; Jacobsen, 1998; Tanke and Currie;
1998; Farlow and Holtz, 2002; Fowler and Sullivan, 2006; Happ, 2008; Bell and Currie; 2009;
Peterson et al., 2009;Gignac et al., 2010; Peterson and Daus, 2019; Eberth and Currie, 2010;
Hone and Rauhut; 2010; Hone and Watabe, 2010; Longrich et al., 2010; DePalma et al., 2013;
Hone and Tanke, 2015; McLain, 2018; Drumbheller et al., 2020). Whereas most studies discuss
tooth marks attributable to adult theropods, the ability to observe multiple bitten specimens from
a juvenile offer insight into potential ontogenetic shifts in diet and behavior. Bite marks
specifically attributable to intraspecific aggression in theropods include Type 1 and Type 2 tooth
marks to the maxilla, nasal, jugal, and dentary (Tanke and Currie, 1998; Bell and Currie, 2009;
Peterson et al., 2009). In crocodylians, these injuries are produced during rapid biting motions
directed at the face, which is covered in relatively thin integument and tissues, requiring less
resistance from muscle prior to striking bone.

Alternatively, traces from feeding can occur in a wide variety of skeletal locations, and
the amount of soft tissue present at the time of the bite can have considerable ramifications for
the morphology of the bite mark. For example, the bitten caudal vertebra of BMR P2007.4.1 is

from the cranial-most part of the tail where substantial muscles such as the M. ilio-ischocaudalis

Peer] reviewing PDF | (2021:03:58983:0:1:NEW 15 Mar 2021)



PeerJ

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

and M. caudiofemoralis longus would have been present in life (Snively and Russell, 2007;
Peterson and Daus, 2019). However, the punctures are present on the ventral surface of the
centrum, suggesting that the tyrannosaur was feeding after the haemal complexes and most of the
superficial hypaxial muscles and M. caudofemoralis longus had been removed (Peterson and
Daus, 2019). Despite the inferred later-stage feeding, the punctures on BMR P2007.4.1 still
penetrate approximately Smm in depth. Similar penetrating marks occur from crocodylians
during the disarticulation of a carcass (i.e. “death-rolling”). The modelled craniocervical
musculature of adult Tyrannosaurus rex (based on analysis of superficial muscular
reconstructions of the M. transversospinalis capitis, M. complexus, and M. longissimus capitis
superficialis) suggest rapid strikes ar @ ‘nertial feeding similar to what is seen in extant
archosaurs (Snively and Russell, 2007). As such, the feeding traces present on BMR P.2007.4.1
may have been the result of dismemberment of the carcass by a juvenile tyrannosaur.

These experimental reconstructions of the punctures present on BMR P2002.4.1 and
BMR P2007.4.1 suggest that late-stage juvenile and subadult tyrannosaurs were capable of
puncturing bone during feeding and intraspecific aggressive bouts despite the absence of the
large, blunt dental crowns of adults (Woodward et al., 2020). The tooth marks present on BMR
P2007.4.1 are consistent with feeding traces during dismemberment, possibly while a significant
amount of soft tissue was still present (Peterson and Daus, 2019). Alternatively, the facial
pathologies on BMR P2002.4.1 involved minimal tissue, thus a quicker, higher-inertia bite is
likely, consistent with intraspecific aggression jn crocodylians (Njau and Blumenschine, 2006;
Peterson et al., 2009). Further identification of tyrannosaur feeding traces from different
ontogenetic stages may reveal more insight into the ecological role and potentially dynamic

dietary trends and of Tyrannosaurus rex throughout ontogeny.
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Figure 1

Lesions present on the face of BMR P2002.4.1.

A) A line drawing of the lesions (1-4). B) Red arrows indicate the locations of the four lesions
on the left maxilla and nasal of BMR P2002.4.1. C) A dorsal view of the anterior nasal, red
arrow indicating asymmetry resulting from the puncture on the left side. D) The first
puncture (arrow 5 lesion 1) located on the articular surface of the anterior nasal and left
maxilla. E) The three lesions on the left maxilla of BMR P2002.4.1 with a close-up of lesion 4

(F). Scale bars: A-B 5 10 cm; C-E 5 5 cm. Figure modified from Peterson et al., 2009.
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Figure 2

Punctured caudal vertebra of BMR P2007.4.1.

Punctured caudal vertebra of BMR P2007.4.1. BMR P2007.4.1 in (A) anterior, (B) posterior,
and (C) ventral views, including (D, E) the two elliptical punctures on the ventral surface of

the centrum. Modified from Peterson and Daus, 2019.
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Figure 3

Maxillary tooth model of BMR P2002.4.1.

A) digital model, and B) 3D print in cobalt used for bite force simulation experiments.
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Figure 4

Spatial maps showing experimental indentation locations on bovine long bones.

A) Right humerus, B) left radius and ulna.
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Figure 5

Computed tomographic image of bovine right humerus post-indentation.

Computed tomographic image of bovine right humerus post-indentation. Red arrows indicate

location of experimental indentations.
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Figure 6

Indentation force-cortical thickness plots for experimental data.

Indentation force-cortical thickness plots for experimental data. Thick line represents the
fitted linear regression line. Shaded region represents 95% confidence intervals. (A) Analysis
done using full dataset that excluded trials with evidence of bone fractures. (B) Analysis
excluding both indentation forces at or over the 10,000 N threshold, and those trials that

showed evidence of fracture.
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Table 1l(on next page)

Puncture dimensions (mm), cortical thickness (mm), and measured force (N) of the 17
indentation trials.
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1 Table 1: Puncture dimensions (mm), cortical thickness (mm), and measured force (N) of the
2 17 indentation trials.

3
Puncture Dimensions (mm)|Cortical Thickness| Force
Length | Width | Depth (mm) (N)

11 7.7 10 1.4 782.929
7.3 5.7 10 1.9 1844.92
9.5 8 10 2 4690.79
10 8.1 10 3.1 1202.62
6.9 5.2 6.8 3.2 1263.62
6.7 4.1 1 3.5 2562.17
8.8 5.2 10 3.7 2432.3
10.4 5.4 10 3.8 4657.54
2.8 3.7 4 4.42 2931
8.3 5.7 10 4.7 2830.95
8.4 5 10 4.7 3630.72
9.3 5.3 10 5 3509
8.8 5.3 10 5.1 8000
8.5 5.6 10 5.3 6463.85
11.9 3.8 4 8.5 2094.83

6 3.4 8.5 9.9 10028.7

5 5.6 7.9 15 10024.6
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