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Background. Bite marks attributed to adult Tyrannosaurus rex have been subject to numerous studies.
However, few bite marks attributed to T. rex have been traced to juveniles, leaving considerable gaps in
understanding ontogenetic changes in bite mechanics and force, and the paleoecological role of juvenile
tyrannosaurs in the late Cretaceous.

Methods. Here we present bite force estimates for a juvenile Tyrannosaurus rex based on mechanical
tests designed to replicate bite marks previously attributed to a T. rex of approximately 13 years old. A
maxillary tooth of the juvenile Tyrannosaurus specimen BMR P2002.4.1 was digitized, replicated in
cobalt, and mounted to an electromechanical testing system. The tooth was then pressed into bovine
long bones in various locations with differing cortical bone thicknesses at varying speeds for a total of 17
trials. Forces required to replicate punctures were recorded and puncture dimensions were measured.

Results. Our experimentally derived linear models suggest bite forces of 4,921.08-6,105.68 N from
cortical bone thickness estimated from puncture marks on an Edmontosaurus and a juvenile
Tyrannosaurus. These findings are slightly higher than previously estimated bite forces for a juvenile
Tyrannosaurus rex of approximately the same size as BMR P2002.4.1 but fall within the expected range
when compared to estimates of adult T. rex.

PeerJ reviewing PDF | (2021:03:58983:0:1:NEW 15 Mar 2021)

Manuscript to be reviewed



1 Bite force estimates in juvenile Tyrannosaurus rex 

2 based on simulated puncture marks 
3

4

5 Joseph E. Peterson1, Z. Jack Tseng2, Shannon Brink3

6

7 1 Department of Geology, University of Wisconsin Oshkosh, Oshkosh, WI, USA

8 2 Department of Integrative Biology and Museum of Paleontology, University of California 

9 Berkely, Berkely, CA, USA

10 3 Department of Geological Sciences, East Carolina University, Greenville, NC, USA

11

12 Corresponding Author:

13 Joseph Peterson1

14 800 Algoma Blvd, Oshkosh, WI, 54901, USA

15 Email address: petersoj@uwosh.edu

16

17 Abstract

18 Background. Bite marks attributed to adult Tyrannosaurus rex have been subject to 

19 numerous studies. However, few bite marks attributed to T. rex have been traced to juveniles, 

20 leaving considerable gaps in understanding ontogenetic changes in bite mechanics and force, and 

21 the paleoecological role of juvenile tyrannosaurs in the late Cretaceous. 

22 Methods. Here we present bite force estimates for a juvenile Tyrannosaurus rex based on 

23 mechanical tests designed to replicate bite marks previously attributed to a T. rex of 

24 approximately 13 years old. A maxillary tooth of the juvenile Tyrannosaurus specimen BMR 

25 P2002.4.1 was digitized, replicated in cobalt, and mounted to an electromechanical testing 

26 system. The tooth was then pressed into bovine long bones in various locations with differing 

27 cortical bone thicknesses at varying speeds for a total of 17 trials. Forces required to replicate 

28 punctures were recorded and puncture dimensions were measured. 

29 Results. Our experimentally derived linear models suggest bite forces of 4,921.08-

30 6,105.68 N from cortical bone thickness estimated from puncture marks on an Edmontosaurus 

31 and a juvenile Tyrannosaurus. These findings are slightly higher than previously estimated bite 

32 forces for a juvenile Tyrannosaurus rex of approximately the same size as BMR P2002.4.1 but 

33 fall within the expected range when compared to estimates of adult T. rex.

34

35

36 Introduction

37 Bite mechanics and feeding habits of dinosaurs have long been debated. A variety of 

38 methods have been proposed to determine the bite mechanics and forces of members of 
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39 Dinosauria, including stegosaurs, ceratopsians and hadrosaurids (Weishampel, 1984; Bell et al., 

40 2009; Reichel, 2010; Erickson et al., 2015), and more commonly, theropods (Rayfield et al., 

41 2001; Rayfield et al., 2005; Rayfield et al., 2007; Gignac et al., 2010; Lautenschlager et al., 

42 2013). The genus Tyrannosaurus rex and other tyrannosaurids have famously been the focus of 

43 many studies on dinosaur bite force and bite mechanics (Erickson et al., 1996; Meers, 2002; 

44 Barret and Rayfield, 2006; Bates and Falkingham, 2012; Gignac and Erickson, 2017; Rowe and 

45 Snively, 2021; Therrien et al., 2021). These studies have relied on several methods for estimating 

46 bite forces, including multi-body dynamic analysis (MDA) (Bates and Falkinham, 2012), finite 

47 element analysis (Rayfield et al., 2005; Rayfield et al., 2007; Maiorino et al., 2015), and 

48 actualistic studies.

49 However, bite force estimates have largely focused on adult specimens with few studies 

50 providing estimates for juveniles or subadult Tyrannosaurus rex, leaving a considerable gap in 

51 the understanding of tyrannosaur ontogenetic dietary partitioning and paleoecology. Bates and 

52 Falkingham (2012) based their bite force estimate of a late-stage juvenile T. rex on multi-body 

53 dynamic analysis (MDA), suggesting allometric growth in bite force from juvenile to adult. The 

54 juvenile specimen used in that study (BMRP2002.4.1) was also found to possess conspecific bite 

55 marks through the left maxilla and nasal (Peterson et al., 2009) (Figure 1A-E). Similarly, 

56 Peterson and Daus (2019) identified feeding traces on a proximal caudal vertebra from an 

57 Edmontosaurus likely produced by a T. rex of a similar ontogenetic stage (Figure 2A-E). The 

58 trace on BMR P2002.4.1 penetrates through 7.5 mm of cortical bone, while the traces on BMR 

59 P2007.4.1 penetrates through 0.4 mm of cortical bone. Both sets of puncture marks are 

60 approximately 10-19 mm in length, and 4-9 mm in width (Peterson et al, 2009; Peterson and 

61 Daus, 2019).
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62 The presence of two sets of puncture marks attributable to a late-stage juvenile 

63 Tyrannosaurus rex provides the opportunity to test previously derived juvenile T. rex bite force 

64 estimates from multi-body dynamic analyses with actualistic methods (Gignac et al., 2010). 

65 Comparisons between the bite forces of adult and juvenile Tyrannosaurus rex has the potential to 

66 reveal ontogenetic niche partitioning (Woodward et al., 2020) and illuminate the impact of 

67 Tyrannosaurus rex ontogeny in terrestrial Cretaceous ecosystems.

68

69 Materials & Methods

70 Gignac et al. (2010) reported on bite marks in a specimen of Tenontosaurus tilletti that 

71 were attributed to Deinonychus antirrhopus, and designed indentation experiments to determine 

72 bite force estimates for D. antirrhopus. To estimate the bite force for a juvenile Tyrannosaurus, 

73 we used similar methods. Previous studies of BMR P2002.4.1 and BMR P2007.4.1 suggest that 

74 their respective bite marks were produced by a lateral maxillary tooth of a juvenile to sub-adult 

75 tyrannosaur (Peterson et al., 2009; Peterson and Daus, 2019). To replicate these indentations, a 

76 lateral maxillary tooth of the juvenile Tyrannosaurus specimen BMR P2002.4.1 was digitized 

77 and 3D printed. Triangulated laser texture scans were conducted at the Department of Geology at 

78 the University of Wisconsin-Oshkosh in Oshkosh, WI. Scans were made with a NextEngine 3D 

79 Laser Scanner, capturing data at seven scanning divisions in high definition (2.0k points/in2). 

80 Models were built with the NextEngine ScanStudio HD Pro version 2.02 and finalized as STL 

81 models (Figure 3A). The STL files were then imported into Meshmixer (Autodesk, version 

82 10.0.297), in which the ‘Make Solid’ algorithm was utilized to prepare the model for printing by 

83 filling ‘gaps’ in the model mesh as well as the removal of artifacts from the scanning process 

84 (Peterson and Krippner, 2019). The digital model of the tooth was then fused to a model of an 

85 adapter that allowed the 3D printed model to be mounted onto the test frame (see below) using 
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86 Geomagic Wrap (3D Systems, Cary, NC). The STL file was 3D printed in a dental grade cobalt 

87 chromium alloy [Co(61.0),Cr(25.0),Mo(6.0),W(5.0),Mn(<1.0),Si(<1.0), Fe(<1.0)] with a yield 

88 strength of 47,436 N/cm2 (Figure 3B) by the Argen corporation (San Diego, CA).

89 The cobalt chromium alloy tooth model was mounted to a Shimadzu AGS-X Universal 

90 Electromechanical Test Frame (ETF) equipped with a 10kN load cell, interfaced with the 

91 Shimadzu TrapeziumX software for data collection. Prior experiments on bite force 

92 determination have utilized bovine limb bones for their varying cortical thicknesses and 

93 similarity in microstructure to dinosaurian elements (Erickson et al, 2002; Locke, 2004; Gignac 

94 et al., 2010). While the elements under study include cranial and vertebral elements that may 

95 differ in microstructure than limb elements, the comparable variance in cortical thickness makes 

96 bovid limb elements suitable models for these experiments. 

97 A right bovine humerus and an in-tact left radius/ulna pair, sourced from Moriarty Meats 

98 located at 1650 Elmwood Ave, Buffalo, NY 14207 were used for indent simulations. The bones 

99 were kept frozen upon purchase and thawed overnight at room temperature before testing 

100 proceeded. Epiphyses were left in-tact to reduce the possibility of creating microfractures and 

101 compromising structural integrity during removal. Bones were covered with paper towels soaked 

102 in Hank’s Balanced Salt Solution (HBSS) between tests to maintain moisture. The bones were 

103 secured to the lower stage of the ETF using a series of 1-inch width nylon straps. Testing 

104 parameters including maximum allowed force (10kN), maximum displacement (ranging from 5-

105 45mm depending on depth of the test location on specimen), and speed (1 mm/s) were set. The 

106 tooth model was then pressed into the bones in various locations with differing cortical bone 

107 thicknesses to produce a total of 17 indents (Figure 4A, B). After each individual test, the 

108 resulting indent was measured using Mitutoyo vernier calipers for depth, width, and length to the 
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109 nearest 0.02 mm before proceeding. We plotted load-displacement relationships of all trials runs 

110 and kept only trials with smooth curves as in Gignac et al. (2010); curves that exhibited sudden 

111 drops in measured load indicate presence of fractures at and around the indentation site, and 

112 those curves were excluded from subsequent analyses. Post-indent testing, all specimens were 

113 scanned at 0.6 mm slice thickness using a GE Discovery 690 PET-CT scanner in the University 

114 at Buffalo Clinical and Translational Science Institute Image Center (Figure 5). 

115 To estimate the indentation forces required to make the specific puncture marks observed 

116 on BMR P2007.4.1 and BMR P2002.4.1, we used linear regression to model the relationship 

117 between per trial maximum recorded indentation force and puncture site cortical bone thickness, 

118 as in Gignac et al. (2010). We then used the linear regression model to calculate the indentation 

119 forces required to make puncture marks with the measured cortical thickness values from BMR 

120 P2007.4.1 (0.4 mm) and BMR P2002.4.1 (7.5 mm). Additionally, we estimated the uncertainty 

121 around the calculated indentation forces using 95% confidence intervals around the linear 

122 regression model equation. These calculations were conducted in the R programming 

123 environment using the core functions lm and predict.

124

125 Results

126 The trial data were analyzed using linear modeling of bovine specimen cortical thickness 

127 and indentation force values and derived predictive formulae (1) with the full data set and (2) 

128 with fractured trial values excluded (Fig. 6A-B). The results indicate a mean force of 1,412.79-

129 2,292.46N for the indentation on BMR P2007.4.1 (“Constantine”) and 4,921.08-6,105.68N for 

130 the indentations on BMR P2002.4.1 (“Jane”) (Table 1).

131 The maximum force recorded by the 10kN load cell was 10,448.60 N, and minimum 

132 782.93 N (mean force: 4,430.63 N). Summary of each trial and raw force-displacement time 
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133 series data are available as supplemental data (S1-S2). A video of one of the experimental trials 

134 and CT images of the experimentally punctured cow elements are available on MorphoSource 

135 (S3-S4) (https://www.morphosource.org/Detail/ProjectDetail/Show/project_id/1117).

136

137 Discussion

138 Estimated bite forces of adult Tyrannosaurus rex have yielded a wide range of results, 

139 and our study provides the first experimentally derived juvenile bite force estimates to 

140 contextualize the assessment of adult bite force estimates. Modelled muscle volume estimates for 

141 adult T. rex bite correspond to forces between 8,526 and 34,522 N (Barrett and Rayfield, 2006; 

142 Bates and Falkingham, 2012). However, estimates incorporating likely muscle fiber length 

143 produced results over 64,000 N for adult T. rex (Bates and Falkingham, 2018). Furthermore, the 

144 unique tooth morphology and arrangement in adult T. rex promote fine fragmentation of bone 

145 during osteophagy (Gignac and Erickson, 2017). Juvenile T. rex such as BMR P2002.4.1 have 

146 much narrower and blade-like tooth morphologies (Carr, 2020) and were unlikely to have been 

147 able to withstand similar bite forces at this ontogenetic stage. Bates & Falkingham (2012) 

148 estimated a maximum bite force for BMR P2002.4.1 at 2,400-3,850 N and hypothesized that 

149 ontogenetic increases in bite force could indicate a change in dietary partitioning and feeding 

150 behavior while approaching adulthood. Our experimentally derived linear models suggest bite 

151 forces of 4,921.08-6,105.68 N from cortical bone thickness estimated from puncture marks on 

152 Edmontosaurus (BMR P2007.4.1) and a juvenile Tyrannosaurus (BMR P2002.4.1).  These 

153 results suggest indentation forces substantially greater than previous estimates for juveniles.

154 The testing equipment used in this study has a limit of 10,000 N. However, most of the 

155 results were well below this limit, suggesting that mechanical limits of the equipment were not a 

156 factor in the results. Furthermore, the load cell on the test frame is rated for 10,000 N, with a 
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157 built-in safety factor of ~5% over the listed limit. Therefore, it is possible that the values at and 

158 over 10,000 N may be truncated. To assess the effect of potential truncation bias on our linear 

159 model estimates of indentation force, we repeated the analysis by excluding force values at and 

160 over 10,000 N; the resulting indentation force estimates for the fossilized bite marks vary by 16-

161 17% (higher in the “Constantine” specimen with trimmed data, lower in the “Jane” specimen 

162 with trimmed data). Conservative adjustment of all model-predicted indentation forces by a 

163 factor of 17% on both ends still returns values higher than previous estimates (4084.50-5067.71 

164 N with 17% adjustment vs.  2,400-3,850 N reported by Bates & Falkingham).

165 Bone mechanical behavior is loading rate-dependent, with increasing strength at higher 

166 loading rates (McElhaney 1966). To gain a broader context for the standardized loading rate used 

167 in our experiments (1 mm/s), we conducted a limited number of bone puncture trials at 10 mm/s 

168 (n = 3 trials) and 16 mm/s (n = 2 trials, presenting the maximum speed permitted on the 

169 equipment used). The resulting relationships between puncture force and cortical thickness at 

170 puncture site in this small sample of additional trials are consistent with those obtained from the 

171 1 mm/s trials. At 10 mm/s, cortical thicknesses ranging from 3.7 to 5.3 mm required forces of 

172 2930.4 to 10,448.6 N. At 16 mm/s, a cortical thickness of 4.5 mm correlated with a puncture 

173 force of 3248.8 N, and a thickness of 9 mm correlated with 9024.41 N. The range of material 

174 properties present (not quantified) throughout the test samples may be partially responsible for 

175 the variability in puncture forces measured at a given cortical thickness, and explain the similar 

176 results obtained in this study using different puncture rates (i.e., higher loading rates at less stiff 

177 locations may result in similar required puncture forces as low loading rates at stiffer locations 

178 on the bone sample).
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179 Most of the force-displacement curves from experimental trials exhibit a stereotypical 

180 linear or near-linear initial portion, consistent with expectations from first principles of bone 

181 mechanics within the elastic region of a material force-displacement or stress-strain curve. In 

182 contrast, all but three of the force-displacement curves exhibited no clear peak force/stress; 

183 instead, the bone puncture continued to enlarge with additional penetration depth, with 

184 oscillating force magnitudes (data not shown) (Erickson et al., 2004; Gignac et al.,2010). While 

185 these results do not permit absolute determination of whether the bites studied were made with 

186 the animals’ highest possible bite force, they do offer insight into the minimum boundary for the 

187 bite force capabilities of a late-stage juvenile Tyrannosaurus rex. 

188 We observed that the irregularly shaped epiphyses of the bovine bone specimens 

189 sometimes generated minor to substantial movements of the test specimen relative to the testing 

190 frame during bite trials, despite the use of nylon straps to secure the specimens. Test trials that 

191 exhibited visible movements of the bone were removed from data analysis, but it is likely that 

192 minute movements took place during some of the bite force experiments. Consequently, we did 

193 not discuss the bite force trials individually, and we instead relied on mean and range values as 

194 more robust estimates of the bite force values used in our linear model-based estimates of bite 

195 force, which were in turn based on cortical bone thickness at puncture mark sites of fossil 

196 specimens. The possible movement of bone specimens during a given bite experiment is not an 

197 unrealistic factor in the actual feeding and predatory behavior being studied, as movements of 

198 multiple bodies are involved in generating puncture marks from agonistic or hunting behavior in 

199 predators. Future studies that include a more formalized consideration of potential multibody 

200 dynamics of a particular bite would provide further refinement on such bite force estimates. We 

201 opted to maintain the unmodified state of bone specimens in our trials, rather than processing 
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202 those samples into standardized shapes (e.g., cubes, cylinders), in order to minimize inadvertent 

203 damage to samples from cutting and to maximize the number of testing locations on each 

204 specimen. As such, the flexure of specimens is considered alongside flexures of the components 

205 of the testing frame itself as systematic errors in the study design that added variability to our 

206 measured values. Accordingly, the reported findings should be considered in this context.

207 The tooth marks observed on BMR P2002.4.1 and BMR P2007.4.1 are Type 1 punctures 

208 (Jacobsen, 1998; Tanke and Currie, 1998), described as “punctures (partial and full penetration) 

209 are circular to oval in outline. In unhealed examples, plates of bone are folded down and 

210 inwards into the puncture hole. The tooth/teeth are pushed into the bone and extracted with no 

211 additional damage” (Jacobsen, 1998). Erickson and Olson (1996) note that the tooth marks most 

212 attributed to T. rex are classified as Type 1 and Type 2 (“Transverse gouges, scores or tooth 

213 drag imprints are elongate, gently curving lesions with ragged (or healing) margins” which are 

214 also known as “pull and puncture”) (Erickson et al., 2004; Carr, 2020).

215 Similar Type 1 punctures have been observed on the skulls of fossil and extant crocodiles 

216 (Buffetaut, 1983; Katsura, 2004; Peterson et al., 2009) and attributed to intraspecific fighting. 

217 Intraspecific facial biting in crocodylians involves rapid single bites to the face with quick 

218 inertial movements (Kalin, 1939; Webb and Messel, 1977; Webb et al., 1983; Bramble and 

219 Wake, 1985; Lang, 1987; Cleuren and De Vree, 2000; Schwenk, 2000; Njau and Blumenschine, 

220 2006; Hiiemae and Crompton, 2013). Injuries from intraspecific aggression have also been 

221 observed in juvenile Cinereous Vultures (Aegypius monachus) and Griffon Vultures (Gyps 

222 fluvus) (Blanco et al., 1997). 

223 Feeding behaviors in crocodylians involve similar sequences of biting and quick inertial 

224 movements (Cleuren and De Vree, 2000; Njau and Blumenschine, 2006; Noto et al., 2012). 
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225 However, during feeding carcasses are commonly dismembered through more vigorous inertial 

226 movements such as “death-rolling” where the predator will spin its body along the longitudinal 

227 axis while gripping the carcass in its jaws (Schmidt, 1944; Attwell, 1959; Green, 1988; Njau and 

228 Blumenschine, 2006). This method of carcass reduction permits inertial feeding and often 

229 produces abundant and deep-penetrating tooth marks that are morphologically similar to Type 1 

230 and Type 2 tooth marks observed in theropod dinosaurs (Njau and Blumenschine, 2006).

231 Bite marks and feeding traces attributed to theropod dinosaurs have been extensively 

232 studied (Fiorillo, 1991; Carpenter, 1998; Chure et al., 1998; Jacobsen, 1998; Tanke and Currie; 

233 1998;  Farlow and Holtz, 2002; Fowler and Sullivan, 2006; Happ, 2008; Bell and Currie; 2009; 

234 Peterson et al., 2009;Gignac et al., 2010;  Peterson and Daus, 2019; Eberth and Currie, 2010; 

235 Hone and Rauhut; 2010; Hone and Watabe, 2010; Longrich et al., 2010; DePalma et al., 2013; 

236 Hone and Tanke, 2015; McLain, 2018; Drumheller et al., 2020). Whereas most studies discuss 

237 tooth marks attributable to adult theropods, the ability to observe multiple bitten specimens from 

238 a juvenile offer insight into potential ontogenetic shifts in diet and behavior. Bite marks 

239 specifically attributable to intraspecific aggression in theropods include Type 1 and Type 2 tooth 

240 marks to the maxilla, nasal, jugal, and dentary (Tanke and Currie, 1998; Bell and Currie, 2009; 

241 Peterson et al., 2009). In crocodylians, these injuries are produced during rapid biting motions 

242 directed at the face, which is covered in relatively thin integument and tissues, requiring less 

243 resistance from muscle prior to striking bone.

244 Alternatively, traces from feeding can occur in a wide variety of skeletal locations, and 

245 the amount of soft tissue present at the time of the bite can have considerable ramifications for 

246 the morphology of the bite mark. For example, the bitten caudal vertebra of BMR P2007.4.1 is 

247 from the cranial-most part of the tail where substantial muscles such as the M. ilio-ischocaudalis 
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248 and M. caudiofemoralis longus would have been present in life (Snively and Russell, 2007; 

249 Peterson and Daus, 2019). However, the punctures are present on the ventral surface of the 

250 centrum, suggesting that the tyrannosaur was feeding after the haemal complexes and most of the 

251 superficial hypaxial muscles and M. caudofemoralis longus had been removed (Peterson and 

252 Daus, 2019). Despite the inferred later-stage feeding, the punctures on BMR P2007.4.1 still 

253 penetrate approximately 5mm in depth. Similar penetrating marks occur from crocodylians 

254 during the disarticulation of a carcass (i.e. “death-rolling”). The modelled craniocervical 

255 musculature of adult Tyrannosaurus rex (based on analysis of superficial muscular 

256 reconstructions of the M. transversospinalis capitis, M. complexus, and M. longissimus capitis 

257 superficialis) suggest rapid strikes and inertial feeding similar to what is seen in extant 

258 archosaurs (Snively and Russell, 2007). As such, the feeding traces present on BMR P.2007.4.1 

259 may have been the result of dismemberment of the carcass by a juvenile tyrannosaur. 

260 These experimental reconstructions of the punctures present on BMR P2002.4.1 and 

261 BMR P2007.4.1 suggest that late-stage juvenile and subadult tyrannosaurs were capable of 

262 puncturing bone during feeding and intraspecific aggressive bouts despite the absence of the 

263 large, blunt dental crowns of adults (Woodward et al., 2020). The tooth marks present on BMR 

264 P2007.4.1 are consistent with feeding traces during dismemberment, possibly while a significant 

265 amount of soft tissue was still present (Peterson and Daus, 2019). Alternatively, the facial 

266 pathologies on BMR P2002.4.1 involved minimal tissue, thus a quicker, higher-inertia bite is 

267 likely, consistent with intraspecific aggression in crocodylians (Njau and Blumenschine, 2006; 

268 Peterson et al., 2009).  Further identification of tyrannosaur feeding traces from different 

269 ontogenetic stages may reveal more insight into the ecological role and potentially dynamic 

270 dietary trends and of Tyrannosaurus rex throughout ontogeny. 
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Figure 1
Lesions present on the face of BMR P2002.4.1.

A) A line drawing of the lesions (1–4). B) Red arrows indicate the locations of the four lesions
on the left maxilla and nasal of BMR P2002.4.1. C) A dorsal view of the anterior nasal, red
arrow indicating asymmetry resulting from the puncture on the left side. D) The first
puncture (arrow 5 lesion 1) located on the articular surface of the anterior nasal and left
maxilla. E) The three lesions on the left maxilla of BMR P2002.4.1 with a close-up of lesion 4
(F). Scale bars: A–B 5 10 cm; C–E 5 5 cm. Figure modified from Peterson et al., 2009.
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Figure 2
Punctured caudal vertebra of BMR P2007.4.1.

Punctured caudal vertebra of BMR P2007.4.1. BMR P2007.4.1 in (A) anterior, (B) posterior,
and (C) ventral views, including (D, E) the two elliptical punctures on the ventral surface of
the centrum. Modified from Peterson and Daus, 2019.
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Figure 3
Maxillary tooth model of BMR P2002.4.1.

A) digital model, and B) 3D print in cobalt used for bite force simulation experiments.
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Figure 4
Spatial maps showing experimental indentation locations on bovine long bones.

A) Right humerus, B) left radius and ulna.
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Figure 5
Computed tomographic image of bovine right humerus post-indentation.

Computed tomographic image of bovine right humerus post-indentation. Red arrows indicate
location of experimental indentations.
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Figure 6
Indentation force-cortical thickness plots for experimental data.

Indentation force-cortical thickness plots for experimental data. Thick line represents the
fitted linear regression line. Shaded region represents 95% confidence intervals. (A) Analysis
done using full dataset that excluded trials with evidence of bone fractures. (B) Analysis
excluding both indentation forces at or over the 10,000 N threshold, and those trials that
showed evidence of fracture.
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Table 1(on next page)

Puncture dimensions (mm), cortical thickness (mm), and measured force (N) of the 17
indentation trials.
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1 Table 1:  Puncture dimensions (mm), cortical thickness (mm), and measured force (N) of the 

2 17 indentation trials.
3

Puncture Dimensions (mm) Cortical Thickness Force

Length Width Depth (mm) (N)

11 7.7 10 1.4 782.929

7.3 5.7 10 1.9 1844.92

9.5 8 10 2 4690.79

10 8.1 10 3.1 1202.62

6.9 5.2 6.8 3.2 1263.62

6.7 4.1 1 3.5 2562.17

8.8 5.2 10 3.7 2432.3

10.4 5.4 10 3.8 4657.54

2.8 3.7 4 4.42 2931

8.3 5.7 10 4.7 2830.95

8.4 5 10 4.7 3630.72

9.3 5.3 10 5 3509

8.8 5.3 10 5.1 8000

8.5 5.6 10 5.3 6463.85

11.9 3.8 4 8.5 2094.83

6 3.4 8.5 9.9 10028.7

5 5.6 7.9 15 10024.6
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