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ABSTRACT
The Mahalanobis distance is a statistical technique that has been used in statistics and
data science for data classification and outlier detection, and in ecology to quantify
species-environment relationships in habitat and ecological nichemodels.Mahalanobis
distances are based on the location and scatter of a multivariate normal distribution,
and can measure how distant any point in space is from the centre of this kind of
distribution. Three different methods for calculating the multivariate location and
scatter are commonly used: the sample mean and variance-covariance, the minimum
covariance determinant, and theminimumvolume ellipsoid. Theminimum covariance
determinant and minimum volume ellipsoid were developed to be robust to outliers
by minimising the multivariate location and scatter for a subset of the full sample, with
the proportion of the full sample forming the subset being controlled by a user-defined
parameter. This outlier robustness means the minimum covariance determinant and
the minimum volume ellipsoid are highly relevant for ecological niche analyses, which
are usually based on natural history observations that are likely to contain errors.
However, natural history observations will also contain extreme bias, to which the
minimum covariance determinant and the minimum volume ellipsoid will also be
sensitive. To provide guidance for selecting and parameterising a multivariate location
and scatter method, a series of virtual ecological niche modelling experiments were
conducted to demonstrate the performance of each multivariate location and scatter
method under different levels of sample size, errors, and bias. The results show that
there is no optimal modelling approach, and that choices need to be made based on the
individual data and question. The sample mean and variance-covariance method will
perform best on very small sample sizes if the data are free of error and bias. At larger
sample sizes the minimum covariance determinant and minimum volume ellipsoid
methods perform as well or better, but only if they are appropriately parameterised.
Modellers who are more concerned about the prevalence of errors should retain a
smaller proportion of the full data set, while modellers more concerned about the
prevalence of bias should retain a larger proportion of the full data set. I conclude that
Mahalanobis distances are a useful niche modelling technique, but only for questions
relating to the fundamental niche of a species where the assumption of multivariate
normality is reasonable. Users of the minimum covariance determinant and minimum
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volume ellipsoid methods must also clearly report their parameterisations so that the
results can be interpreted correctly.

Subjects Biogeography, Ecology, Environmental Sciences, Statistics, Data Science
Keywords Habitat suitability modelling, Minimum volume ellipsoid, Minimum covariance
determinant, Resource selection functions, Species distribution modelling

INTRODUCTION
The Mahalanobis distance (Mahalanobis, 1936) is a statistical technique that can be used
to measure how distant a point is from the centre of a multivariate normal distribution.
Mahalanobis distances are commonly applied to problems such as classifying data into
groups and determining differences between groups (Manly, 2005). Mahalanobis distances
have also been used to quantify species-environment relationships through habitat and
ecological niche models (Dettmers, Buehler & Bartlett, 2002; Johnson & Gillingham, 2005;
Tsoar et al., 2007; Etherington et al., 2009). In this context Mahalanobis distances are
classified as a presence-only technique because they do not require species absence or
background environmental data (Peterson et al., 2011) and simply require a data matrix

A=


x1,1 x1,2 x1,3 ... x1,n
x2,1 x2,2 x2,3 ... x2,n
x3,1 x3,2 x3,3 ... x3,n
...

...
...

. . .
...

xm,1 xm,2 xm,3 ... xm,n


that has m rows of species occurrences for which n columns of environmental variables
have been obtained. The multivariate location and scatter of the data are defined by
an n-dimensional vector µ̂ containing the sample means for each column of variables,
and a sample variance-covariance matrix 6̂ of dimensions n×n that contains variances
for each column along the main diagonal and pair-wise column covariances values
elsewhere (Manly, 2005).

The Mahalanobis distance

D2(x)= (x− µ̂)T6̂−1(x− µ̂) (1)

can then be calculated for any vector x= [x1,x2,x3,...,xn] that represents a position in
environmental space as defined by the n environmental variables. As D2 is essentially
the sum of n independent standard normal variables, the D2 values from a multivariate
normal population will follow a chi-squared distribution with degrees of freedom equal
to the number of dimensions n (Manly, 2005). This means that a chi-squared cumulative
distribution function Fχ2

n
(x) can be used to convert D2 into a probability P(χ2

n ≤D2) that
indicates if a location in environmental space has aD2 that is greater thanwould be expected
by chance (Etherington, 2019). For example, when applied tom= 20 hypothetical points in
n= 2 dimensions, the calculated P(χ2

n ≤D2) values follow a characteristic elliptical pattern
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Figure 1 Hypothetical two-dimensional example of Mahalanobis distanceD2 with three different
methods of defining the multivariate location and scatter of the data. For each method the ellipses show
contours of probability P(χ 2

n ≤ D2) that indicate if a location in environmental space has a D2 that is
greater than would be expected by chance. The sensitivity of the sample mean and variance-covariance
matrix method to outlying data can be seen, which contrasts with both the minimum covariance determi-
nant and minimum volume ellipsoid methods, which both focus on where data is concentrated.

Full-size DOI: 10.7717/peerj.11436/fig-1

centred at the mean of each environmental variable, with P(χ2
n ≤D2) increasing from

the centre outwards in a manner that accounts for the variability within and correlation
between each environmental variable (Fig. 1).

The elliptical form of Mahalanobis distances fits well with the theoretical concept of
the fundamental niche, which Hutchinson (1957) p. 416 defined as ‘‘an n-dimensional
hypervolume . . .which corresponds to a state of the environment which would permit
the species . . . to exist indefinitely’’. Hutchinson (1957) used a rectangular model to define
environment limits of the fundamental niche, but also stated that ‘‘If the variables are
independent in their action on the species we may regard this area as the rectangle . . .but
failing such independence the area will exist whatever the shape of its sides’’. So any convex
shape, which includes the elliptical shape of P(χ2

n ≤D2), would be an appropriate model
of the fundamental niche. Indeed, we see the use of ellipses alongside other convex shapes
in later development of the niche concept (Hutchinson, 1978). In this context µ̂ represents
the optimal environmental conditions at the centre of the fundamental niche, and 6̂
represents both the range of and interaction between environmental conditions within the
fundamental niche.

While P(χ2
n ≤D2) is usually inverted to P(χ2

n >D2) for use in ecological nichemodelling
to estimate the probability of an environmental location being within a fundamental niche
(Etherington, 2019), P(χ2

n ≤D2) is also commonly used in statistics and data science to
detect outliers (Aggarwal, 2017). However, when applied to detect outliers, the use of
sample means and variance-covariance to estimate D2 can be problematic because these
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measures of multivariate location and scatter are sensitive to outliers (Fig. 1). So for outlier
detection,D2 can be calculatedwith differentmethods for defining themultivariate location
and scatter of data, such as the minimum covariance determinant (MCD) and minimum
volume ellipsoid (MVE), which are much more insensitive to outliers (Rousseeuw, 1985).

The MCD approach estimates multivariate location µ̂MCD and scatter 6̂MCD from
a subset numbering h data points that has the smallest variance-covariance matrix
determinant (Hubert & Debruyne, 2010). The MVE approach is similar to the MCD in
that it works with a subset of size h data points, but the MVE estimates multivariate
location µ̂MVE and scatter 6̂MVE from the ellipsoid of minimal volume that encapsulates
the h data points (Van Aelst & Rousseeuw, 2009). D2 can then be calculated using either the
MCD measures of multivariate location and scatter

D2(x)= (x− µ̂MCD)
T6̂
−1
MCD(x− µ̂MCD) (2)

or the MVE measures of multivariate location and scatter

D2(x)= (x− µ̂MVE)
T6̂
−1
MVE(x− µ̂MVE) (3)

for any vector x = [x1,x2,x3,...,xn] that represents a position in n-dimensional
environmental space.

The utility of the MCD and MVE methods for defining the multivariate location and
scatter of data is highly relevant for ecological niche modelling based on digitally mobilised
data through data-sharing networks such as the Global Biodiversity Information Facility
(Edwards, Lane & Nielsen, 2000). These networks are reliant on natural history observation
data that are likely to contain errors such as taxonomic misidentification or incorrect and
imprecise georeferencing (Graham et al., 2004), which can result in species occurrences
that are outliers in environmental space. Returning to our hypothetical example (Fig. 1),
we can see that both the MCD and MVE methods ignore the apparent outlier and produce
measures of multivariate location and scatter that are focussed on where the data are more
concentrated. Given the robustness of MCD and MVE methods to outliers resulting from
errors in natural history observation data, it is perhaps no surprise that both methods
have been adopted recently for ecological niche modelling (Norris, Jackson & Betancourt,
2006; Liu, White & Newell, 2018; Soberón, Peterson & Osorio-Olvera, 2018; Yañez-Arenas
et al., 2018; Qiao et al., 2019; Altamiranda-Saavedra et al., 2020; Osorio-Olvera et al., 2020;
Castaño-Quintero et al., 2020).

On the other hand, natural history observation data will also contain sampling bias
(Graham et al., 2004) that can be extreme and result in greater amounts of data for more
charismatic species, more accessible places, more developed countries, and more recent
times (Meyer, Weigelt & Kreft, 2016). If unaccounted for this could skew models results.
Therefore, returning to our hypothetical example (Fig. 1), we may also have a situation
in which the apparent outlier only appears to be an outlier due to sampling bias at
environments with lower temperatures and rainfall. If this were the situation then the
MCD and MVE methods would be providing a poorer estimate of multivariate location
and scatter because they are both focussing on the data bias, whereas the method based
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on the sample mean and covariance provides a better estimate that relates to all the data
points.

Unfortunately, the differing effects of errors and bias means there is unlikely to be a best
method for estimating the multivariate location and scatter of data in all situations, but this
is consistent with ecological niche modelling more generally (Qiao, Soberón & Peterson,
2015). Therefore, this paper uses a virtual ecology approach (Zurell et al., 2010) to simulate
a series of ecological niche modelling experiments to understand when different methods
of defining the multivariate location and scatter of the data are more appropriate as sample
size, errors, and bias vary.

MATERIALS & METHODS
The virtual species used in the experiments is the Antipodean opaleye dragon, which
is imagined to live in the mountain valleys of New Zealand (Scamander, 2001). I have
defined the species’ fundamental niche in terms of population growth rates (Maguire,
1973) measured as the finite rate of increase λF of a population in a two-dimensional
environmental space of temperature and rainfall. The fundamental niche is defined by
three parameters: λmax, the maximum finite rate of increase at the fundamental niche
optimum; µ, a 2× 1 column vector of means that gives the optimal temperature and
rainfall condition; and 6, a 2×2 variance-covariance matrix that determines the size and
orientation of the fundamental niche in each dimension. With

λmax= 2.5, µ=

[
7.5
1800

]
, and 6=

[
2 −950
−950 800000

]
the fundamental niche finite rate of increase λF (x) of a virtual species for any vector x of
environmental space coordinates is then calculated as

λF (x)= λmax×e−
1
2 (x−µ)

T6−1(x−µ) (4)

that results in an elliptically shaped fundamental niche (Fig. 2A).
Generating samples of species occurrences begins with an idealised virtual sampling of

the niche space. An initial set of sampling locations S={x1,x2,...,xi} consisted of a series
of locations in environmental space. S was randomly generated from a two-dimensional
normal distribution S∼N2(µ,6) with the same vector ofmeansµ and variance-covariance
matrix 6 as defined the fundamental niche. Then the probability that a sampled location
xi resulted in the species being both present and detected Pd(xi) was described as a logistic
function

Pd(xi)=
1

1+e−10(λF (xi)−0.5)
(5)

which was parameterised so that Pd(xi) increases as λF (xi) increases, but with Pd(xi)≈ 0
where λF (xi)≈ 0 because the virtual species population is unlikely to exist under these
environmental conditions, and Pd(xi)≈ 1 where λF (xi)∼> 1 because above this population
growth rate the population should always be present.

Using this idealised sampling, a sample of m= 100 occurrence locations can be
produced that are concentrated towards the centre of the fundamental niche, and for

Etherington (2021), PeerJ, DOI 10.7717/peerj.11436 5/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.11436


Temperature (°C)

0.0

0.5

1.0

1.5

2.0

2.5

Fu
nd

am
en

ta
l n

ic
he

 (
λ

F
)

R
ai

nf
al

l (
m

m
)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.5 7.5 10.5
0

800

1600

2400

3200

4000

 0.8 

 0.4 

 0.2 

 0.1 

 0.8 

 0.4 

 0.2 

 0.1 

 0.8 

 0.4 

 0.2 

 0.1 

P(χ2
2 > D2)

0.8
0.4
0.2
0.1

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Fundamental niche (λF)

P
(χ

22
>

D
2 )

r = 0.97

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

r = 0.96

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

r = 0.97

Sample means and 
variance−covariance
Minimum covariance 
determinant
Minimum volume 
ellipsoid

(b)

Figure 2 Modelling the fundamental niche λF of a virtual species withMahalanobis distancesD2

based on three multivariate location and scatter methods. (A) Given an idealised sample of 100
occurrences across the virtual fundamental niche, the probabilities P(χ 2

2 > D2) of the environmental
space being within the niche are calculated for three multivariate location and scatter methods: the
sample means and variance-covariance, the minimum covariance determinant, and the minimum
volume ellipsoid. (B) With this idealised sample all three methods perform very well, producing very high
correlations between the sample occurrences known λF and estimated P(χ 2

2 >D2).
Full-size DOI: 10.7717/peerj.11436/fig-2

which P(χ2
2 >D2) estimates for all three methods of multivariate location and scatter align

with the elliptical shape of the fundamental niche (Fig. 2A). Under these idealised sampling
conditions we can see that the actual λF values and the estimated niche probabilities
P(χ2

2 >D2) for the occurrence samples are very highly correlated, and that all three
methods of determining the multivariate location and scatter of the niche perform equally
well (Fig. 2B).

Of course this idealised virtual sampling is completely unrealistic, but does serve to
demonstrate that it is possible to produce useful models with enough accurate data. What
is of interest is understanding under what conditions of sample size, error, and bias the
predictive ability of the various multivariate location and scatter methods begin to break
down. Therefore, to explore this, a series of virtual experiments were conducted.

All experiments were done using R (R Core Team, 2019) with the MASS (Venables &
Ripley, 2002), virtualNicheR (Etherington & Omondiagbe, 2019), fields (Nychka et al.,
2017), raster (Hijmans, 2020), and extrafont (Chang, 2014) packages.

Sample size
It is common for many species to have as few as seven unique occurrence locations within
the Global Biodiversity Information Facility (Meyer, Weigelt & Kreft, 2016). However, as
theMCD approach needsm≥ n×5 (Hubert & Debruyne, 2010), and given the experiments
are two-dimensional, the smallest value of m that could be analysed is 10. Therefore, to
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Full-size DOI: 10.7717/peerj.11436/fig-3

explore the effects of sample size, the idealised sampling approach was applied, but varying
the sample sizem from 10 to 160 in increments of 15. Asm increases, the idealised samples
increasingly represent the elliptical shape of the fundamental niche (Figs. 3A–3C)

Regarding the choice of sample subset h used by the MCD and MVE methods, the
standard choice is h= b(m+n+1)/2c for both the MCD and MVE methods, because
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this produces themost robust estimates (Hubert & Debruyne, 2010;Van Aelst & Rousseeuw,
2009). This standard choice uses just over half the sample, so for sample sizes from 10 to 160
this would mean a standard choice of h from 6 to 81 as the sample size increases. Because
h varies as a function of sample size, for experimental consistency and to aid interpretation
I specified the sample subset used by the MCD and MVE methods as a proportion k of the
sample size, such that h=bk×mc. The standard choice of h was represented by k = 0.55,
and with k = 0.75 and k = 0.95 used to explore the effect of increasing k, and therefore h,
on the performance of the MCD and MVE methods.

Each sample of size m was replicated 500 times, and was applied to each multivariate
location and scattermethod, with theMCD andMVEmethods applied at the three different
k values. The performance of each multivariate location and scatter method was measured
as the correlation between the actual λF and estimated P(χ2

2 >D2) values.

Sample error
The virtual experiments to explore the effects of sample error followed the same process
as the sample size experiments except that the sample size was fixed at m= 100, and each
sample was contaminated with various levels of errors.

In generating errors I assumed that extreme errors can be identified using commonly
used data checking processes (Zizka et al., 2020), so errors were limited to locations within
New Zealand that comprise the core range of our virtual species. The climate space of New
Zealand was described in terms of mean annual temperature and annual precipitation
climatologies for the period 1979-2013 with a 30 arc second (around 1 km) grid resolution
(Karger et al., 2017). An error was generated simply as a random location within New
Zealand, and the amount of error within each sample was varied from 0% to 50% in
increments of 5%. As error increases, the samples with error reflect the fundamental niche
less and the New Zealand climate space more (Figs. 3D–3F).

Sample bias
The sample bias experiments followed the same process as the sample error experiments,
except that when selecting a random location within New Zealand the probability of the
species being both present and detected (Eq. 5) was applied to limit bias to environments
that are part of the fundamental niche. The amount of bias within each sample was varied
from 0% to 100% in increments of 10%. As bias increases, the biased samples become
concentrated at the more commonly occurring climate space of New Zealand that overlaps
with the fundamental niche (Figs. 3G–3I).

RESULTS
There were obvious consistencies and trends amongst all the experiments. First, the results
for the MCD and MVE methods were very similar, making it hard to differentiate the
performance of these two methods (Figs. 4–6). Second, in all cases, as k increases the MCD
and MVE methods become more similar to the sample means and variance-covariance
method (Figs. 4–6).

Regarding the effects of sample size, the sample means and variance-covariance method
performed better, but this difference only became notable when m ∼< 50 and was less
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Figure 4 The effect of species occurrence sample size on the performance of Mahalanobis distance
niche models based on three different multivariate location and scatter methods: sample means and
variance-covariance, minimum covariance determinant, andminimum volume ellipsoid. The median
and inter-quartile range of the correlation between the known niche value and the Mahalanobis distance
probability for the occurrence sample from 500 replications are plotted for each method. The proportion
k of occurrences used for the minimum covariance determinant and the minimum volume ellipsoid were
set at (A) k= 0.55, (B) k= 0.75, and (C) k= 0.95.

Full-size DOI: 10.7717/peerj.11436/fig-4

pronounced as k increased (Fig. 4). The fact that m= 100 gives good results regardless of
the method is important to recognise, because as we can be confident that any performance
effects in the error and bias experiments that usedm= 100 will be a function of the imposed
error or bias rather than the sample size.

Considering errors, in all cases the MCD and MVE methods performed better than the
sample means and variance-covariance method, though this difference was only evident
at lower error levels for higher k values (Fig. 5). The pattern of response to bias was more
subtle, with the sample means and variance-covariance method performing better when
bias was ∼> 50%, but with this effect being very prominent when k = 0.55, less obvious
when k= 0.75, and no longer present when k= 0.95 (Fig. 6).

DISCUSSION
Methodological differences
Errors and bias are inevitable in natural history data (Graham et al., 2004), and it is unlikely
that an error-free and unbiased set of data can be produced. Also, as the fundamental niche
becomes less similar to the sampling space, the potential effect of errors and bias should
increase. This means that ecological niche modellers must consider how to minimise the
effects of error and bias in their analyses. For those modellers using D2 for niche modelling
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Figure 5 The effect of species occurrence sample errors on the performance of Mahalanobis distance
niche models based on three different multivariate location and scatter methods: sample means and
variance-covariance, minimum covariance determinant, andminimum volume ellipsoid. The median
and inter-quartile range of the correlation between the known niche value and the Mahalanobis distance
probability for the occurrence sample from 500 replications are plotted for each method. The proportion
k of occurrences used for the minimum covariance determinant and the minimum volume ellipsoid were
set at (A) k= 0.55, (B) k= 0.75, and (C) k= 0.95.

Full-size DOI: 10.7717/peerj.11436/fig-5

or outlier detection, the results from these virtual ecology experiments demonstrate that
MCD andMVEmultivariate location and scatter methods provide an opportunity to avoid
the influence of errors, but this must be balanced against the influence of bias. Therefore,
modellers more concerned about the prevalence of errors should choose lower values for k,
while modellers more concerned about the prevalence of bias should choose higher values
for k. This finding supports the advice of Qiao, Soberón & Peterson (2015), who advise that
there is no optimal modelling approach, and that choices need to be made based on the
individual data and question.

As h is a free parameter that can vary b(m+n+1)/2c ≤ h≤m (Hubert & Debruyne,
2010), or in proportional terms 0.5 ∼< k ≤ 1, it is critical that users of both MCD and MVE
clearly report the value of h or k used. Specifying h or k is important for interpreting results,
because when h→m or k→ 1 the MCD method becomes equivalent to the conventional
sample means and variance-covariance method, and theMVEmethod produces ever larger
ellipses that will eventually encapsulate all the data (Rousseeuw, 1985). Therefore, studies
that do not specify the h or k parameter (Norris, Jackson & Betancourt, 2006; Liu, White
& Newell, 2018; Qiao et al., 2019) are not accurately reporting their methods. Also, given
that the default value in software such as MASS (Venables & Ripley, 2002) is very close to
k = 0.55, then based on the results here, if authors are not reporting a choice of h or k
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Figure 6 The effect of species occurrence sample bias on the performance of Mahalanobis distance
niche models based on three different multivariate location and scatter methods: sample means and
variance-covariance, minimum covariance determinant, andminimum volume ellipsoid. The median
and inter-quartile range of the correlation between the known niche value and the Mahalanobis distance
probability for the occurrence sample from 500 replications are plotted for each method. The proportion
k of occurrences used for the minimum covariance determinant and the minimum volume ellipsoid were
set at (A) k= 0.55, (B) k= 0.75, and (C) k= 0.95.

Full-size DOI: 10.7717/peerj.11436/fig-6

because they are relying on the default value, then they are potentially applying methods
that do not perform well with the small sample sizes (Fig. 4A) and high levels of bias (Fig.
6A) that are prevalent in natural history data (Meyer, Weigelt & Kreft, 2016). This supports
the statement of Peterson et al. (2011) p. 113 that ‘‘it is generally poor practice to use default
settings provided by software without justification, testing, and exploration of these values
for a particular application’’, and hopefully the results presented here can provide some
guidance for choosing the h value.

Those studies that have reported their choice of parameter have used values of k= 0.95
(Soberón, Peterson & Osorio-Olvera, 2018; Altamiranda-Saavedra et al., 2020; Castaño-
Quintero et al., 2020), k = 0.975 (Osorio-Olvera et al., 2020; Castaño-Quintero et al., 2020),
and k = 0.99 (Yañez-Arenas et al., 2018). These seem to be sensible choices based on the
virtual experiments conducted here, as in comparison to the sample means and variance-
covariance method, when k= 0.95 the MCD and MVE methods will not be too negatively
affected by small sample sizes (Fig. 4C), are an improvement when errors ∼< 20% (Fig. 5C),
and will not perform worse at any level of bias (Fig. 6C).

In terms of choosing between MCD and MVE, while both were introduced
simultaneously (Rousseeuw, 1985), MVE was initially more readily used due to its
computational simplicity, but with the development of better algorithms MCD has
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been suggested as the preferred option due to its statistical efficiency (Rousseeuw & Van
Driessen, 1999). However, the results of the experiments conducted here might indicate
a slight preference for the MVE method as the MCD only performed slightly better in
the error tests when the error percentage was above 30% (Fig. 5B), which is probably
unrealistically large, while the MVE performed slightly better for all the bias tests (Fig. 6).
Ultimately I do not think there is much difference between the MCD and MVE methods,
so the choice of either for ecological niche modelling is equally justifiable.

Reducing errors and bias in natural history observation data
The advantage of virtual experiments is that we can know the exact conditions of the data,
but in reality the actual levels of error and bias remain unknown and can only be estimated
based on experience with the data. This makes it hard to choose whichmultivariate location
and scatter method is optimal in any given situation. However, the performance of all the
multivariate location and scatter methods will improve with reduced errors and bias, so all
ecological niche modellers should give this serious consideration.

Automated approaches can be tailored to rapidly detect likely errors within natural
history observation data by checking for internal consistency of the meta-data and by
comparison with complementary datasets (Zizka et al., 2020). In contrast, bias is harder
to detect and correct (Graham et al., 2004), but is almost guaranteed to exist as this
study has shown that even random sampling in geographical space leads to a biased
sample of a niche in climatic space. This finding is supported by other research that also
demonstrated that sampling bias is likely to become even worse as geographic sampling
is further constrained to more accessible areas such as around roads (Albert et al., 2010)
that is a common feature of natural history observation data (Reddy & Dávalos, 2003).
This issue of bias is of particular importance for presence-only methods such as D2 that
are particularly attractive when working with natural history observation data that have
no absences and that are sufficiently unstructured to reliably define the background
environmental data (Etherington et al., 2009). However, while presence-only techniques
have minimal data requirements, it becomes harder to detect and manage bias because the
absence and background data can provide useful contextual information. When absence
data are available, then presence-absence methods such as logistic regression may be
expected to suffer less from bias, because biases in presence data can be balanced out
by similar biases in absence data (Zadrozny, 2004). Similarly, with presence-background
methods, the background data can be created to have similar bias to the presence data
to minimise the effects of bias (Phillips et al., 2009). Effective bias reduction options for
presence-only methods include spatial filtering to reduce the intensity of the bias, either
in geographic (Boria et al., 2014) or more optimally in environmental space (Varela et al.,
2014; Castellanos et al., 2019). Spatial filtering has been shown to be more effective than
background manipulation for presence-background methods (Kramer-Schadt et al., 2013),
and so it should be an effective bias reduction technique for presence-only methods such
as D2, assuming the filtered sample sizes do not become problematically small (Fig. 4).

In summary, there are methods to reduce error and bias, but what level of errors and
bias remain will be unknown. Therefore, given bias is harder to detect than errors, and that
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there are reduced options to control bias for presence-only models, I would suggest that
ecological niche modellers err towards multivariate location and scatter methods that are
less sensitive to bias.

The assumption of normality
Regardless of the choice of multivariate location and scatter method used to calculate D2,
it is important to consider if the fundamental niche can be reasonably approximated by
the elliptical shapes resulting from the underlying multi-dimensional normal distribution.
Field studies of abundance or occurrence along environmental gradients have shown some
normally distributed species responses, but most responses, while unimodal, are skewed,
and some even show bimodal responses (Whittaker, 1952; Whittaker, 1956; Whittaker,
1960; Terborgh, 1971; Austin, 1987). However, we need to recognise that it is ultimately
impossible to truly measure the fundamental niche in the real world, as biotic interactions
mean that only the realised niche can be measured, and realised niches may well take on
very complex shapes that are quite different to the fundamental niche (Austin & Smith,
1989; Blonder, 2016; Soberón & Peterson, 2020). In fact, the real world situation is even
more limited because the environmental space that can be sampled is actually a complex
interaction of the environments that currently exist, biotic interactions, and dispersal
limitations (Soberón & Peterson, 2005), and even the view of this limited environmental
space is warped by the sampling bias inherent in natural history observation data (Meyer,
Weigelt & Kreft, 2016). Given these complexities of sampling from the real world, the
fundamental niche can only really be measured through experimental manipulations.
However, there is very little of this experimental evidence (Soberón & Peterson, 2020), so
the expected shapes of fundamental niches remain unclear.

Ultimately, the inability to collect normally distributed data from the real world does not
preclude the use ofD2 as a fundamental nichemodel.Means and variances can be calculated
from any distribution of data, and the fact that D2 models compare favourably with other
modelling approaches (Dettmers, Buehler & Bartlett, 2002; Johnson & Gillingham, 2005;
Tsoar et al., 2007) suggests the fundamental niche can be approximated as elliptical in
at least some settings. Even when it is not desirable to assume a fundamental niche is
normally distributed, D2 can still be a used to eliminate outliers. This could support other
fundamental niche modelling methods, such as convex hulls (Pironon et al., 2019), that are
not limited to the assumption of normality but are sensitive to outliers (Blonder, 2018).

CONCLUSIONS
When using D2 for ecological niche modelling and outlier detection, the performance of
multivariate location and scatter methods varies based on sample size, error, and bias.
Comparison of the sample means and variance-covariance, MCD, and MVE multivariate
location and scatter methods provides the clear conclusion that none of the methods,
or individual parameterisations of any methods, can be considered universally the best.
Rather, any ecological niche modeller using these techniques needs to think carefully
about their data and objective to choose the method and parameterisation that are most
appropriate to their individual circumstances. For those modellers who wish to explore
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the potential of the MCD and MVE methods, given these methods have been used widely
in statistical analyses for some time, these methods should be widely available in statistical
software. However, modellers using the MCD andMVEmethods should carefully consider
and clearly state the h or k parameter used in their analyses.
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