
Submitted 28 November 2020
Accepted 18 April 2021
Published 14 May 2021

Corresponding author
Renfu Quan, quanrf@yeah.net

Academic editor
Kumari Sonal Choudhary

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.11427

Copyright
2021 Ren et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Identification of diagnostic genes and
vital microRNAs involved in rheumatoid
arthritis: based on data mining and
experimental verification
Conglin Ren1,*, Mingshuang Li2,*, Yang Zheng1, Fengqing Wu1, Weibin Du3 and
Renfu Quan1,3

1The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
2The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
3Department of Orthopedics, Xiaoshan Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
*These authors contributed equally to this work.

ABSTRACT
Background. The pathogenesis of rheumatoid arthritis (RA) is complex. This study
aimed to identify diagnostic biomarkers and transcriptional regulators that underlie
RA based on bioinformatics analysis and experimental verification.
Material andMethods. We applied weighted gene co-expression network analysis
(WGCNA) to analyze dataset GSE55457 and obtained the key module most relevant to
the RA phenotype. We then conducted gene function annotation, gene set enrichment
analysis (GSEA) and immunocytes quantitative analysis (CIBERSORT). Moreover, the
intersection of differentially expressed genes (DEGs) and genes within the key module
were entered into the STRING database to construct an interaction network and to
mine hub genes. We predicted microRNA (miRNA) using a web-based tool (miRDB).
Finally, hub genes and vital miRNAs were validated with independent GEO datasets,
RT-qPCR and Western blot.
Results. A total of 367 DEGs were characterized by differential expression analysis.
The WGCNAmethod divided genes into 14 modules, and we focused on the turquoise
module containing 845 genes. Gene function annotation and GSEA suggested that
immune response and inflammatory signaling pathways are the molecular mechanisms
behind RA. Nine hub genes were screened from the network and seven vital regulators
were obtained using miRNA prediction. CIBERSORT analysis identified five cell types
enriched in RA samples, which were closely related to the expression of hub genes.
Through ROC curve and RT-qPCR validation, we confirmed five genes that were
specific for RA, including CCL25, CXCL9, CXCL10, CXCL11, and CXCL13. Moreover,
we selected a representative gene (CXCL10) for Western blot validation. Vital miRNAs
verification showed that only the differences in has-miR-573 and has-miR-34a were
statistically significant.
Conclusion. Our study reveals diagnostic genes and vital microRNAs highly related
to RA, which could help improve our understanding of the molecular mechanisms
underlying the disorder and provide theoretical support for the future exploration of
innovative therapeutic approaches.
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INTRODUCTION
Rheumatoid arthritis (RA) is a disorder characterized by symmetrical, aggressive joint
inflammation (Smolen, Aletaha & McInnes, 2016). The prevalence of RA varies somewhat
by ethnicity and geographic region. According to the literature, African Americans have
a higher prevalence of the disease by approximately 1.02%, compared to Hispanic
Americans, who have a much lower risk of this disease at only 0.45% (Kawatkar et al.,
2012). The etiology of RA is unclear, and current research suggests that it may result from a
combination of factors, including genetics, infection, and sex hormones. A study on twins
showed that the genetic probability of RA is approximately 60% and is not influenced by sex,
age of onset, or disease severity (MacGregor et al., 2000). The changes in the composition
and function of gut microbes are closely related to infection by autoimmune diseases. The
microbial diversity of the gut is significantly reduced in RA patients compared to healthy
individuals, and the proportion of certain rare bacteria like Actinobacteria is elevated
(Chen et al., 2016). More interestingly, oral infections whose clinical manifestations seem
unrelated to RA have also been identified as risk factors in recent studies (Hajishengallis,
2015; Kharlamova et al., 2016). The pathogenesis of RA is complex and clinical symptoms
vary considerably between individuals. There have been no reliable biomarkers identified to
date, despite the discovery of multiple susceptibility genes associated with RA (e.g., IL2RA
and MMP9) and new advances in the development of therapeutic drugs.

microRNA (miRNA) has become a key node in biomedical research as an important
factor regulating gene transcription and post-transcriptional regulation. Numerous
findings support the idea that miRNAs are essential for maintaining immune system
homeostasis, including the regulation of T-cell activation, immune tolerance and the
inflammatory response, and the aberrant expression of miRNAs may lead to increased
susceptibility to autoimmune diseases (O’connell et al., 2010; Simpson & Ansel, 2015).
Recently, the deregulation of endogenous miR-155 has been shown to be involved in
malignant tumorigenesis and in abnormal autoimmune conditions such as RA and
systemic sclerosis (Leng et al., 2011). Using miRNA profiling, Pan et al. (2010) found that
miR-21 and miR-148a were highly expressed in T cells from lupus patients and animal
models, which inhibited DNMT1 gene expression to induce cellular hypomethylation (Pan
et al., 2010). Therefore, an in-depth study of the functional links between miRNAs and
mRNAs may reveal the pathogenesis of diseases and develop new therapeutic approaches.

With the advent of microarray and high-throughput sequencing technologies,
bioinformatics is becoming a popular discipline in biomedical research, and analysis
tools are constantly being developed and upgraded. Weighted gene co-expression network
analysis (WGCNA) is an algorithm for detecting correlation between genes (Langfelder
& Horvath, 2008; Langfelder & Horvath, 2012), which facilitates network-based genetic
screening methods and is helpful to uncover potential biomarkers and therapeutic
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targets for diseases. WGCNA has been successfully practiced in studies of autoimmune
diseases, such as juvenile dermatomyositis (Zhong et al., 2020), lupus nephritis (Yang & Li,
2019), ulcerative colitis (Zhang et al., 2020) and Sjögren’s syndrome (Yao et al., 2019). We
integrated multiple bioinformatics methods to analyze microarray datasets derived from
the Gene Expression Omnibus (GEO) repository and validated the data mining results
in three ways in order to identify diagnostic genes and transcriptional regulators of RA.
Figure 1 summarized the entire process of our research.

MATERIAL AND METHODS
Data download and processing
Gene expression matrices and the clinical information of GSE55457 based on platform
GPL96 [HG-U133A], were downloaded from the GEO database. Twenty-three samples
were selected for our study. We performed normalization and log2 transformation on
original expression matrices and used a platform annotation file to convert probes into
gene symbols. If a gene was detected by more than one probe, the average expression value
was used for subsequent analysis.

Differentially expressed genes (DEGs) between RA patients and healthy controls were
analyzed by limma, which is a tailored R package for expression profiling studies (Ritchie
et al., 2015). The DEGs filtering thresholds were set to |logFC|>1 and the adjusted p-value
was < 0.05.

Weighted correlation network analysis
Gene co-expression analysis of dataset GSE55457 was performed in R software (version:
3.6.3) based on the WGCNA R package reference manual. We calculated the median
absolute deviation (MAD) for each gene, which reflected the degree of variation in gene
expression across samples, and selected the top 3,000 highly variable genes for network
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construction and modules detection. First, we clustered samples to detect the presence of
outliers. Next, optimal soft-thresholding power (β) was selected, which was a pivotal step
in the entire analysis process. In order to reduce interference from spurious correlations,
the adjacency matrix was replaced by a topological overlap matrix (TOM), and then the
hclust function was used to generate a hierarchical clustering tree (dendrogram) of genes.
The detailed parameters used for modules detection were as follows: minModuleSize was
set to 30 to obtain large modules; modules with a correlation of 0.75 were merged using
mergeCloseModules function. We also quantified module–trait associations and their
p-values, which allowed us to pick out modules that were closely related to the trait of
interest for next step analysis. The absolute value of correlation coefficient > 0.6 and p-value
< 0.05 were cutoffs for module screening. Finally, we measured the gene significance (GS)
and module membership (MM) of individual genes and scatterplots were drawn.

Functional annotation and GSEA
R package clusterProfiler (Yu et al., 2012) and its dependency annotation package
org.Hs.eg.db, sourced from Bioconductor, were used to analyze and visualize the functional
profiles (GO and KEGG) of key module genes. To obtain highly credible analysis results,
only enrichment items satisfying both p-value < 0.05 and q-value < 0.05 were outputted.
Moreover, gene set enrichment analysis (GSEA) (Mootha et al., 2003; Subramanian et al.,
2005), which can be used to determine whether an already-defined gene set exhibits a
statistically significant difference in two different traits (e.g., RA patients and healthy
individuals), was conducted to explore biological processes and pathways that may be
involved in the pathogenesis of RA. The complete gene expression matrix and phenotype
information of dataset GSE55457 were uploaded to GSEA and analyzed with hallmark
gene sets that are stored in molecular signatures database (MSigDB) (Liberzon et al., 2015;
Liberzon et al., 2011). Gene sets enriched at FDR < 0.25 and p-value < 0.01 were retained.

Building PPI network and mining hub genes
The intersection of DEGs and key module genes was entered into the STRING database
to find interrelationships (Szklarczyk et al., 2015; Szklarczyk et al., 2019; Szklarczyk et al.,
2017). Due to the large size of the initial protein-protein interaction (PPI) network, we hid
isolated nodes and limited the minimum interaction score to 0.7. Then, the network was
exported and further optimized in Cytoscape software (Cline et al., 2007;Otasek et al., 2019;
Shannon et al., 2003). The MCODE plugin was installed in Cytoscape to find clusters made
up of highly related genes in the network (Bader & Hogue, 2003). The parameters used in
our analysis were default values. Genes in the highest scoring cluster were considered to
be hub genes of RA and were re-performed for KEGG analysis to explore vital biological
pathways.

Estimating proportion of immune cells in synovial tissue
Understanding the immune microenvironment in RA may provide new insights into the
immunotherapy of the disease. The CIBERSORT tool used for estimating the immune
cell contents of different samples in a gene expression admixture has a wide range of
applicability and high sensitivity, which is important for disease diagnosis and therapeutic
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target predictions (Newman et al., 2015). A mixture file was generated according to
the input format requirements, and we selected default LM22 as signature gene file to
distinguish the hematopoietic populations and activation states. The analysis results were
filtered based on a threshold of p-value < 0.05 to remove samples with a low confidence
level. We conducted correlation analysis between the hub genes and immune cell subtypes
significantly enriched in RA samples according to Pearson’s algorithm.

Prediction of gene-miRNA relationships
MiRNAs are a class of non-coding RNAs that regulate gene expression by making mRNA
unstable and inhibiting translation, a process by which mRNA is converted into protein.
Here, MCODE-identified hub genes were uploaded to the online analysis tool miRDB; we
searched for miRNAs that have regulatory roles in the development of RA (Chen & Wang,
2020; Liu & Wang, 2019). The parameters were set as follows: only functional miRNAs
were considered; gene targets with a score below 60 and miRNAs with more than 2,000
targets were excluded. Cytoscape was then used to construct a gene-miRNA network in
which miRNAs targeting two or more genes were considered to be vital regulators involved
in RA pathogenesis.

Validating hub genes and miRNAs with independent microarray
datasets
The expression matrix GSE12021 was selected as the validation dataset for hub genes. We
plotted ROC curves in R software based on the pROC package to test whether screened
hub genes have good diagnostic value for RA (Robin et al., 2011). The area under the
curve (AUC) was computed according to the trapezoidal rule and genes with AUC >
85% were further validated by RT-qPCR. To understand the differences in transcriptional
regulators between RA patients and healthy individuals, we validated vital miRNAs with
GEO dataset GSE37425, which focused on the expression of miRNAs in synovial tissue
using the TaqMan probe approach. The entire gene expression matrix was normalized and
then transformed with log2.

Validating hub genes and miRNAs with RT-qPCR
Five RA patients and three healthy individuals who attended the health examination center
of Xiaoshan Traditional Chinese Medicine Hospital were included and all subjects signed
consent forms. This study was approved by Ethics Committees of Xiaoshan Traditional
Chinese Medicine Hospital (NO. 2020012). We collected blood samples from each test
subject and isolated the peripheral blood mononuclear cells (PBMCs) using human
lymphocyte separation medium (Solarbio, China). Next, the total RNA of PBMCs was
extracted using the TRIzol reagent (Invitrogen, USA) and its purity was assessed by
NanoDrop (Thermo Scientific, USA). We used a cDNA synthesis kit (Thermo Scientific,
USA) to generate the first strand cDNA and cDNA amplification was performed on a
7500 real-time PCR instrument (Applied Biosystems, USA). For the quantitative analysis
of miRNA expression, Hairpin-it miRNAs qPCR quantitation kit (Genepharma, China)
was applied. We chose GAPDH and U6 as internal reference genes and compared relative
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Table 1 RT-qPCR primers used in this study.

Gene symbol Sequence (5′ to 3′)

CCL25 forward: TATTCTACCTCCCCAAGAGACA
reverse: GATGGGATTGCTAAACTTGGAC

CXCL10 forward: CTCTCTCTAGAACTGTACGCTG
reverse: ATTCAGACATCTCTTCTCACCC

CCL5 forward: CAGCAGTCGTCCACAGGTCAAG
reverse: TTTCTTCTCTGGGTTGGCACACAC

CXCL9 forward: AAGACCTTAAACAATTTGCCCC
reverse: TGCTGAATCTGGGTTTAGACAT

CXCL13 forward: CAAGGTGTTCTGGAGGTCTATT
reverse: TGAATTCGATCAATGAAGCGTC

CXCL11 forward: GCTGTGATATTGTGTGCTACAG
reverse: TTGGGTACATTATGGAGGCTTT

GAPDH forward: CGGACCAATACGACCAAATCCG
reverse: AGCCACATCGCTCAGACACC

miR-34a-5p forward: TCTGTCTCTCTTGGCAGTGTCTTA
reverse: AATGGTTGTTCTCCACTCTCTCTC

U6 forward: CAGCACATATACTAAAATTGGAACG
reverse: ACGAATTTGCGTGTCATCC

mRNA or miRNA expression based on the 2−11CT method. The primer sequences are
available in Table 1.

Western blot
Total proteins were extracted from PBMCs using RIPA lysis buffer (Beyotime
Biotechnology, China), followed by concentration detection with the BCA protein assay kit
(Sangon Biotech, China). Equal amounts of protein were separated by 8–20% SDS-PAGE
and transferred onto polyvinylidene difluoride membranes. Afterwards, membranes were
blocked with 5% skim milk for 1 h and then incubated with primary antibodies including
β-actin (1:1000, Cell Signaling Technology (CST), #3700), and CXCL10 (1:1000, CST,
#14969) at 4 ◦C overnight. Anti-mouse IgG (1:2000, CST, #7076) and anti-rabbit IgG
(1:2000, CST, #7074) were used to bind the primary antibodies. Finally, membranes were
scanned using FluorChem Q (Proteinsimple, USA). Image J software was used for the
quantitative analysis of protein bands.

Statistical analysis
Statistical analysis was performed in GraphPad Prism 7.0. Data satisfying normal
distribution were analyzed by unpaired t -test; the Mann–Whitney test was used for
data that were not normalized. P-value < 0.05 was considered significant.

RESULTS
Screening for DEGs
Our differential expression assessment of dataset GSE55457 identified 367 DEGs, of which
186 genes were highly expressed and 181 genes had low expression levels in RA patients.
We created a volcano map and heat map for DEGs as shown in Fig. 2.
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Identification of key module closely related to RA
Two samples (GSM1337307 and GSM1337308) were identified as outliers and were
excluded by the cutreeStatic function with parameter cutHeight = 90 (Fig. 3A). The
soft-thresholding power (β) was set to 5, for which the scale-free topology fit index (R2)
reached 0.90 (Fig. 3B). Co-expression analysis resulted in 14 modules, and the size of each
module is shown in Figs. 3C and 3D. Figure 3E showed the relationships between modules
and traits, with four modules (black, turquoise, blue, and purple) having strong positive or
negative correlations with disease status (presence or absence of RA). Taking into account
gene numbers, correlation coefficients, and p-values of the above four modules, we focused
on the turquoise module containing 845 genes and performed an in-depth analysis. The GS
andMM plot of the turquoise module (correlation coefficient= 0.79, p-value= 2.7e−181)
demonstrated that the closer the gene is to the trait, the more important it is in the module
(Fig. 3F).

Functional annotation of turquoise module genes and GSEA
The top 10 results for GO enrichment are shown in Fig. 4A and mainly involved leukocyte
activation and cell adhesion. To associate a specific gene with its assigned GO terms,
we adopted the GOChord function to generate a circle diagram (Fig. 4B). Figure 4C
pointed out that inflammation-related signaling pathways, such as chemokine signaling
pathway, NF-kappa B signaling pathway, Th17 cell differentiation and T cell receptor
signaling pathway, were significantly linked to the pathogenesis of RA. Similarly, a circle
plot was displayed to visualize the correspondence between genes and pathways (Fig. 4D).
We identified five gene sets based on a reference database derived from MSigDB using the
GSEAmethod. These were associated with the immune response or inflammatory pathways
that were highly enriched in RA, which verified the GO and KEGG results (Figs. 5A–5E).
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Constructing PPI network to find hub genes
A total of 171 intersection genes were entered into the STRING database to establish the
network (Fig. 6A). The network was adjusted using Cytoscape software, resulting in 52
nodes and 169 relationship pairs. The MCODE plugin uncovered five clusters, with the
highest scoring cluster containing nine nodes, which were potential hub genes for RA
(Fig. 6B, Table 2). Furthermore, we re-performed KEGG analysis on the nine genes to
investigate the signaling pathways in which they were involved. As shown in Fig. 6C, we
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Table 2 Detailed information of each cluster.

Cluster Score Nodes Edges Node IDs

1 9.000 9 36 CCL25, CCL5, CXCL10, CXCL11, CXCL13, CXCL9,
CXCR6, GPR18, PNOC

2 6.286 8 22 BLNK, CD19, CD72, CD79A, CD79B, IGLL5, ITK, PLCG2
3 4.400 6 11 CD8A, MAP4K1, CD247, TRAT1, CD3D, GZMA
4 4.000 4 6 BIRC3, PSMB10, PSMB9, TNFSF11
5 3.000 3 3 CD2, CD48, CD52

found that nine hub genes played important roles in inflammatory or immune-related
pathways, including the chemokine signaling pathway, toll-like receptor signaling pathway,
and TNF signaling pathway.

Immune infiltration and Pearson correlation analysis
One sample (GSM1337307) was excluded from analysis results because its p-value did
not meet the threshold we set. The contents of various immune cells in each sample were
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presented by stacked bar chart (Fig. 7A). M2 macrophages accounted for the highest
proportion in both RA and normal tissue. We conducted a Wilcoxon test to further
clarify whether the level of each immune cell type was statistically different between
two groups. From the violin plot (Fig. 7B), we inferred that five cell types, including
plasma cells, CD8 T cells, follicular helper T cells, γ δ T cells, and M1 macrophages,
were abundant in RA synovial tissue compared to the normal group. More importantly,
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Pearson correlation analysis confirmed that, in addition to CCL25, eight other hub genes
identified by MCODE played pro-inflammatory roles. Their overexpression may recruit
large numbers of inflammatory cells to lesion sites, which is a critical pathological basis for
RA (Fig. 7C).

Predicting miRNAs that regulate nine hub genes
Normally, miRNAs can fine-tune gene expression to maintain the homeostasis of life, while
abnormal miRNAs expression is thought to be associated with diseases, including benign
or malignant tumors, and immune system dysfunction. Our prediction of miRNAs was
made in the miRDB database and 72 miRNA-gene regulatory relationships were obtained.
We then created an interactive network in Cytoscape and analyzed the number of genes
targeted by each miRNA (Fig. 8). The miRNAs possessing two target genes are listed in
Table 3 and were vital regulators in the pathogenesis of RA.

Validation of hub genes by ROC curves
The expressionmatrix of dataset GSE12021 was chosen to test the diagnostic efficacy of hub
biomarkers for RA. Probability curves (ROC curves) were plotted and the AUC reflected
the degree or measure of separability. A higher AUC indicated that the gene is better at
discriminating between diseased and non-diseased individuals. As shown in Fig. 9, six genes
had AUC values greater than 85%, including CCL25, CXCL10, CCL5, CXCL9, CXCL13,
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Table 3 Vital miRNAs and its target genes.

miRNA Target genes Count

hsa-miR-297 CXCL9, CXCL10 2
hsa-miR-573 CXCL9, GPR18 2
hsa-miR-203a-3p GPR18, PNOC 2
hsa-miR-449b-5p PNOC, CXCL10 2
hsa-miR-34c-5p PNOC, CXCL10 2
hsa-miR-449a PNOC, CXCL10 2
hsa-miR-34a-5p PNOC, CXCL10 2

and CXCL11, indicating that these genes were potential biomarkers for the diagnosis of
RA.

Validation of hub genes by RT-qPCR and Western blot
We collected peripheral blood from subjects for RT-qPCR validation to further evaluate the
six geneswithAUC>85% identified byROCcurves. Five geneswere differentially expressed
between RA patients and normal subjects (Fig. 10A). Among them, CXCL9, CXCL10,
CXCL11, and CXCL13 were up-regulated genes, while CCL25 was down-regulated.
Moreover, to detect the expression of genes in protein level, we chose a representative gene
(CXCL10) for Western blot validation. As shown in Figs. 10B and 10C, the protein and
mRNA level of gene expression were consistent.

Vital miRNAs verification
The vital miRNAs possessing two target genes were validated with GSE37425. Among the
six miRNAs investigated, has-miR-449b, has-miR-573, and has-miR-203 expression was
suppressed in RA patients (Figs. 11A–11F). It is worth noting that only the differences in
has-miR-573 and has-miR-34a were statistically significant. Previous studies have reported
that miR-34a played an important role in the pathogenesis of RA, but the findings were
controversial (Niederer et al., 2012; Xie et al., 2019). Hence, we analyzed the expression
of miR-34a-5p in PBMCs using RT-qPCR and found that miR-34a-5p was significantly
down-regulated in RA patients compared to health controls (Fig. 11G).

DISCUSSION
We integrated multiple bioinformatics analysis methods to attain diagnostic genes and vital
microRNAs of RA. A total of 14 modules were identified using the WGCNA algorithm. Of
these, the turquoise module was large in size (containing 845 genes) and highly correlated
with RA, and was selected for further study.We found that themain functions of genes were
to participate in leukocyte activation and regulate cell–cell adhesion by performing GO
annotation on the turquoise module. KEGG results showed that these genes were highly
focused on cytokine-cytokine receptor interaction, chemokine signaling pathway, NF-
kappa B signaling pathway, and T cell receptor signaling pathway, in addition to regulating
helper T (Th) cell differentiation. Cytokines are small peptides or glycoproteins produced
by stimulated immune cells and some stromal cells (e.g., endothelial cells) with a wide range
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Figure 9 Validation of hub genes by ROC curve analysis. AUC value of each plot was calculated. Genes
with AUC values greater than 85% were considered as potential biomarkers for the diagnosis of RA. (A)
CCL25, (B) CXCL10, (C) CCL5, (D) GPR18, (E) CXCL9, (F) PNOC, (G) CXCL13, (H) CXCL11, (I)
CXCR6.

Full-size DOI: 10.7717/peerj.11427/fig-9

of biological activities (Lackie, 2010). They can mediate long-lasting tissue inflammation
and injury by autocrine or paracrine systems and have been shown to be implicated in the
pathogenesis of many host autoimmune diseases, such as RA, inflammatory bowel disease,
and ankylosing spondylitis (Schett et al., 2013). It is believed that TNF and IL-6 are critical
pro-inflammatory cytokines that promote osteoclast maturation leading to cartilage
degeneration and matrix degradation, and can induce the release of other stimulating
factors (such as IL-1), resulting in a vicious cycle of unrelieved synovitis in RA (Bertolini
et al., 1986; Ohshima et al., 1998). The NF-kappa B signaling pathway, activated by the
receptor activator of nuclear factor κB ligand (RANKL), is also worthy of attention for
its pathogenic effect on RA. Hirayama et al. (2005). found that blocking the NF-kappa
B pathway with STAT-6 fusion protein significantly alleviated joint inflammation and
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bone destruction in mice (Hirayama et al., 2005). Moreover, GSEA analysis identified five
inflammation-associated gene sets that were up-regulated in the RA phenotype, such as
IL6-JAK-STAT3 signaling, interferon α/ γ response and complement, which were highly
consistent with the results of GO and KEGG annotation. The Janus kinase (JAK) family,
consisting of four JAK proteins, transduces inflammatory cytokines signals (e.g., IL-6
and interferon) through the JAK-STAT pathway. A double-blind clinical study showed
promising clinical improvement in RA patients after oral administration of tofacitinib, a
drug that blocks the JAK1-mediated cytokine signaling and inhibits STAT phosphorylation
(Boyle et al., 2015). We used CIBERSORT to quantify the composition and content of
immune cells in synovial tissue to further understand the immune microenvironment
of RA. We found that the RA specimens contained higher levels of leukocyte subtypes,
such as plasma cells and CD8 T cells, than normal tissue using the Wilcox test. The influx
of immune cells into joint forms a complicated inflammatory network that activates
fibroblast-like synoviocytes (FLS), inducing synovial vascular proliferation, and recruiting
more immune cells to inflammatory sites (Chen et al., 2019).
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relative to U6 expression. * p-value< 0.05, *** p-value< 0.001.

Full-size DOI: 10.7717/peerj.11427/fig-11

We identified five clusters in the PPI network and the most significant one contained
nine hub genes, five of which were confirmed by ROC curves analysis and RT-qPCR,
including CCL25, CXCL9, CXCL10, CXCL11, and CXCL13. Chemokines can be divided
into homeostatic subgroup (e.g., CXCL12) and inflammatory subgroup (such as CXCL9,
CXCL10) depending on their function(Vergunst & Tak, 2005). However, this functional
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classification is not static, and chemokines act in a context-dependent manner based on
different tissues and disease stages. A recent study found that plasma levels of chemokines,
such as CXCL9, CXCL10, and CXCL13, are much higher in patients with early untreated
RA than in normal subjects. Among these discriminators, CXCL10 is associated with
indicators of disease activity (e.g., DAS28), which may help determine whether RA patients
are in an active phase of the disease (Pandya et al., 2017). CXCL10 is mainly produced by
interferon-γ stimulated T lymphocytes, neutrophils, and monocytes, and is therefore also
known as 10 kDa IP-10, which exerts its biological function by binding to the receptor
CXCR3 (Antonelli et al., 2014). High levels of CXCL10 in humoral components, such as
peripheral blood and joint fluid, are typical of various autoimmune diseases, especially
those with a predominance of Th1 cells (Lee, Lee & Song, 2009). On the one hand, CXCL10
and CXCR3 play an important role in the homing of leukocytes to inflamed tissues
(Romagnani et al., 2002); on the other hand, the massive accumulation of inflammatory
cells, especially Th1 lymphocytes, enhances the secretion of IFN-γ and TNF-α, which in
turn stimulates CXCL10 production, thus amplifying the feedback loop and leading to
persistent inflammation and tissue damage (Antonelli et al., 2008). Chemokine receptors,
which bind to chemokines, have also been shown to be involved in Th1-type and Th2-
type inflammatory responses (Norii et al., 2006). Specific or non-specific targeting of
chemokines and their receptors can be used to treat RA, and many targeted therapeutics
have been tested in clinical trials with satisfactory results. For instance, patients taking both
methotrexate and MDX1100, an antagonist of CXCL10, achieved reduced disease activity
and improved symptom relief (Yellin et al., 2012). The application of drugs targeting
chemokine receptors, such as CP481,715, showed promising results by reducing the
number of macrophages in synovial tissue to ameliorate inflammatory response (Clucas et
al., 2007).

We obtained 72 miRNA-gene regulatory relationships in our analysis of miRNA-gene
interaction, of which seven miRNAs possessed two target genes, including hsa-miR-449a,
hsa-miR-297, hsa-miR-203a-3p, hsa-miR-449b-5p, hsa-miR-34c-5p, hsa-miR-573, and
hsa-miR-34a-5p. miRNAs belong to non-coding RNAs, which regulate cellular activity by
degrading mRNA or inhibiting transcriptional processes (Esmailzadeh et al., 2017). It has
been reported that about 60% of genes in the human body are regulated by miRNAs, and
a single miRNA usually possesses thousands of target genes, which means that abnormal
miRNA function may cause pathological consequences such as immune-related diseases
and certain types of tumor (Baltimore et al., 2008;O’Connell et al., 2010). Widely expressed
in a variety of immune cells (dendritic cells, monocytes, lymphocytes, etc.), miR-34a
plays an important role in regulating cell development, function and survival, which is
an important hub in the regulatory network of T cells (Taheri et al., 2020). In this study,
we found that miR-34a-5p was significantly down-regulated in RA patients compared
to health controls. Similarly, it has been shown that miR-34a was not well-expressed
in RA synoviocytes, which contributed to their resistance to apoptosis and thus caused
persistent inflammation of synovial tissue (Hou, Wang & Zhang, 2019; Niederer et al.,
2012). In addition, Wu et al. (2021) found that miR-34a in extracellular vesicles (Evs) was
also involved in the development of RA (Wu et al., 2021). Elevated expression of miR-34a
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in BM-MSC-derived Evs activated the p53 signaling pathway by inhibiting cyclin I (CCNI)
expression, which in turn inhibited FLS proliferation and promotes apoptosis, and thus
had a positive effect on alleviating the inflammatory state of RA. However, some scholars
hold the opposite view. It has been shown that miR-34a expression was up-regulated in
PBMCs from RA patients (Ebrahimiyan et al., 2019; Xie et al., 2019), and silencing miR-34a
markedly reduced release of inflammatory mediators (Kurowska-Stolarska et al., 2017). In
other autoimmune diseases, such as Sjögren Syndrome, the level of miR-34a was also
significantly elevated in patients (Kim et al., 2019). This controversy suggests that research
on miR-34a should continue. miR-449a has recently been identified as an important
regulator of RA pathogenesis by suppressing HMGB1 and YY1 expression, thereby
attenuating synovial hyperplasia, FLSmigration, and the release of inflammatory mediators
(Cai et al., 2019). Jin et al. (2018) found thatmiR-34c expressionwas significantly decreased
in serumof Treg-depletedmice, an animalmodel commonly used in studies of autoimmune
diseases (Jin et al., 2018).

Our study has limitations, including our focus on the most critical turquoise model in
the process of co-expression network analysis, without adequate discussion of the black,
blue, and purple modules, which were also strongly associated with RA. Our study size was
small, and in-depth clinical studies are needed to support our findings.

CONCLUSIONS
In summary, we identified diagnostic genes and vital microRNAs associated with RA,
which can help us to better understand the pathogenesis behind this disorder and provide
theoretical support for exploring more effective therapies.
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