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Understanding patterns of population differentiation and gene flow in insect vectors of
plant diseases is crucial for the implementation of management programs of disease. We
investigated morphological and genome-wide variation across the distribution range of the
spittlebug Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Auchenorrhyncha
Aphrophoridae), a recently known vector of the plant pathogenic bacterium Xylella
fastidiosa in Europe. We found genome-wide divergence between P. spumarius and a very
closely related species, P. tesselatus Melichar, 1899, at RAD sequencing markers. The two
species may be identified by the morphology of male genitalia but are not differentiated at
mitochondrial COI, making DNA barcoding with this gene ineffective. We detected
admixture between P. tesselatus from Morocco and P. spumarius from the Iberian
Peninsula, suggesting gene-flow between them. Within P. spumarius, we found a pattern of
isolation-by-distance in European populations, likely acting alongside other factors
restricting gene flow. Varying levels of co-occurence of different lineages, showing
heterogeneous levels of admixture, suggest other isolation mechanisms. The transatlantic
populations of North America and Azores were genetically closer to the British population
analysed here, suggesting an origin from North-Western Europe, as already detected with
mitochondrial DNA. Nevertheless, these may have been produced through different
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colonization events. We detected SNPs with signatures of positive selection associated
with environmental variables, especially related to extremes and range variation in
temperature and precipitation. The population genomics approach provided new insights
into the patterns of divergence, gene flow and adaptation in these spittlebugs and led to
several hypotheses that require further local investigation.
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41 Abstract

42 Understanding patterns of population differentiation and gene flow in insect vectors of plant 

43 diseases is crucial for the implementation of management programs of disease. We investigated 

44 morphological and genome-wide variation across the distribution range of the spittlebug 

45 Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Auchenorrhyncha Aphrophoridae), a 

46 recently known vector of the plant pathogenic bacterium Xylella fastidiosa in Europe. We found 

47 genome-wide divergence between P. spumarius and a very closely related species, P. tesselatus 

48 Melichar, 1899, at RAD sequencing markers. The two species may be identified by the 

49 morphology of male genitalia but are not differentiated at mitochondrial COI, making DNA 

50 barcoding with this gene ineffective. We detected admixture between P. tesselatus from 

51 Morocco and P. spumarius from the Iberian Peninsula, suggesting gene-flow between them. 

52 Within P. spumarius, we found a pattern of isolation-by-distance in European populations, likely 

53 acting alongside other factors restricting gene flow. Varying levels of co-occurence of different 

54 lineages, showing heterogeneous levels of admixture, suggest other isolation mechanisms. The 

55 transatlantic populations of North America and Azores were genetically closer to the British 

56 population analysed here, suggesting an origin from North-Western Europe, as already detected 

57 with mitochondrial DNA. Nevertheless, these may have been produced through different 

58 colonization events. We detected SNPs with signatures of positive selection associated with 

59 environmental variables, especially related to extremes and range variation in temperature and 

60 precipitation. The population genomics approach provided new insights into the patterns of 

61 divergence, gene flow and adaptation in these spittlebugs and led to several hypotheses that 

62 require further local investigation.

63

64 Introduction

65 Speciation involves the evolution of reproductive isolation and the buildup of genetic 

66 differentiation through selection and drift, but gene flow can counteract such divergence, by 

67 homogenizing allelic variation and also by allowing recombination to oppose or break 

68 associations between loci underlying isolating traits (Smadja & Butlin, 2011; Sousa & Hey, 

69 2013). However, several mechanisms may favour divergence in the face of gene flow, such as 

70 ecologically driven selection or sexual selection (Smadja & Butlin, 2011; Nosil, 2012). 

71 According to the genic model of speciation, at the start of the speciation process, and in the 

72 presence of gene flow, a few localized regions in the genome being subject to divergent selection 

73 will differentiate, while the remaining genome continues to be freely exchanged between 

74 populations (Wu, 2001). Genome-wide analyses have allowed the detection of these “genomic 

75 islands” of differentiation in several systems (e.g., Malinsky et al., 2015; Vijay et al., 2017), 

76 although other processes not related to speciation or reproductive isolation may also be 

77 responsible for them, such as linked selection, variable recombination rates and/or density of 

78 targets of selection (Wolf & Ellegren, 2017). As populations diverge through the action of 
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79 selection and drift, a genome-wide differentiation will emerge and eventually lead to full 

80 reproductive isolation and diversification. Designated species may thus lie somewhere in this 

81 ‘speciation continuum’, with different levels of divergence and gene flow (Hendry, Bolnick, 

82 Berner, & Peichel, 2009; Peccoud, Ollivier, Plantegenest, & Simon, 2009; Renaut et al., 2012; 

83 Riesch et al., 2017).

84

85 Distinguishing taxa and understanding the patterns of gene flow and local adaptation in insect 

86 species that transmit diseases is crucial for a better management of those diseases (Busvine, 

87 1980; Pélissié, Crossley, Cohen, & Schoville, 2018; Bahrndorff et al., 2020). Philaenus 

88 spumarius (Linnaeus, 1758) (Insecta, Hemiptera, Auchenorrhyncha, Aphrophoridae), the 

89 meadow spittlebug is a xylem-feeding vector of Xylella fastidiosa Wells et al. 1987, a plant 

90 pathogenic bacterium of South America origin that is emergent in Europe (Saponari et al., 2014). 

91 The olive quick decline syndrome (OQDS), caused by X. fastidiosa, was first detected in Apulia, 

92 southern Italy in 2013 (Saponari et al., 2014; Cornara et al., 2017). Since then, X. fastidiosa has 

93 already been detected in several other European countries and is a cause of major concern (EFSA 

94 et al., 2019). X. fastidiosa is native to the Americas, where it causes important diseases such as 

95 Pierce’s disease of grapevine, citrus variegated chlorosis, almond leaf scorch and several others 

96 in perennial crops and ornamental plants (Baldi & La Porta, 2017). There the main vectors are 

97 sharpshooters (another xylem-feeding Auchenorrhyncha group, the Cicadellidae Cicadellinae), 

98 while spittlebugs have minimal epidemiological importance (Almeida et al., 2019; Cornara et al., 

99 2019). One of the main vectors of Pierce’s disease of grapevines in California is the glassy-

100 winged sharpshooter Homalodisca coagulata (Say). It is native to the southern United States and 

101 it became established in late 1990´s in California, being a costly invasive species to agriculture. 

102 Population genetic structure studies based on DNA fingerprinting and mitochondrial DNA on 

103 this species have revealed highly differentiated geographic groups in the natural range and 

104 indicated the likely sources of the California insects were in Texas (Léon, Jones & Morgan, 

105 2004; Smith, 2005). This result has led, for example, to further work in Texas for a better 

106 understanding of the natural population dynamics (Yoon et al., 2014).

107

108 Potential movements and dispersal of P. spumarius should be included in models of risk 

109 assessment for X. fastidiosa spread in Europe (EFSA Panel on Plant Health, 2015) for which data 

110 on population genetic structure of this insect will be of paramount importance. Since the vectors 

111 are the only means of natural dissemination of X. fastidiosa (Sicard et al., 2018), this information 

112 is crucial for the successful management of this pathogen.

113

114 P. spumarius is a polyphagous xylem-feeding insect, widespread in the Holarctic, whose nymphs 

115 produce a protective foam (spittle masses) from its liquid excretion. Humidity and temperature 

116 are particularly limiting in the earlier nymphal stages (Weaver & King, 1954). This species is 
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117 thought to have a Palaearctic origin having more recently colonised North America, Azorean 

118 islands, Hawaii and New Zealand, probably through accidental man-mediated introductions 

119 (Halkka & Halkka, 1990; Rodrigues et al., 2014), although natural colonisation cannot be 

120 excluded for the S. Miguel island in the Azores (Borges et al., 2018; Rodrigues et al., 2014) as 

121 the populations in this island are restricted to native vegetation. In North America it was reported 

122 as a crop pest (Weaver & King, 1954), but surveys of the spittle masses across coastal California 

123 have revealed a recent population decline of this species, very accentuated in some places 

124 (Karban & Strauss, 2004; Karban & Huntzinger, 2018), including the Wonalancet, new 

125 Hampshire population sampled for this report (VT unpublished observations).

126

127 Previous studies based on mitochondrial and nuclear DNA genes have revealed the major 

128 phylogeographic patterns in Philaenus spumarius (Maryańska-Nadachowska, Kajtoch, & 

129 Lachowska, 2011; Rodrigues et al., 2014). Two main mitochondrial lineages have initially 

130 diverged during the Pleistocene, the “Western”, currently found in the Mediterranean region and 

131 also in Central and Northern Europe, and the “North-Eastern”, currently found from Eastern Asia 

132 to Central and Northern Europe. The “Western” lineage is further differentiated into sublineages: 

133 the ‘‘Western’’, predominant in the Iberian Peninsula but also in western parts of Central and 

134 Northern Europe; and the ‘‘Eastern-Mediterranean’’ present in the Balkans and Middle East and 

135 others around Black Sea and in the Caucasus (Maryańska-Nadachowska et al., 2011; Rodrigues 

136 et al., 2014). Throughout the wide distribution area where the species occurs, there are contact 

137 zones where these lineages co-occur (Lis, Maryańska-Nadachowska, Lachowska-Cierlik, & 

138 Kajtoch, 2014; Rodrigues et al., 2014). The occurrence of different infection rates of the 

139 maternally inherited endosymbiont Wolbachia in the different lineages of P. spumarius, has 

140 pointed to a possible mechanism to explain the maintenance of genetic differentiation in the 

141 Carpathians contact zone (Lis et al., 2015).  Previous studies have also revealed close 

142 relationship and even shared haplotypes between samples from North America, Azores, New 

143 Zealand and those from Great Britain (Rodrigues et al., 2014), indicating a recent human-assisted 

144 colonization, as previously suggested for North America and New Zealand (Hamilton, 1979; 

145 Yurtsever, 2002). 

146

147 Seven other species of the genus Philaenus occur in the Mediterranean area, having a much more 

148 restricted distribution range, and partially overlapping that of P. spumarius (Drosopoulos, 2003; 

149 Maryańska-Nadachowska, Drosopoulos, Lachowska, Kajtoch, & Kuznetsova, 2010). One such 

150 species is P. tesselatus Melichar, 1889, which was originally described from Tunisia and was 

151 later synonymized with P. spumarius (Nast, 1972), being considered a geographic subspecies. 

152 Later the synonymy was re-assessed based on morphological evaluation, with the best diagnostic 

153 characters being the size and shape of the appendages of the male aedeagus (Drosopoulos & 

154 Quartau, 2002). However, geographic variation in the curvature of the aedeagal apical 

155 appendages in P. spumarius has been reported in both Europe and North America (Wagner, 
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156 1955; 1959; Hamilton, 1979). Such variation in aedeagus structure within P. tesselatus is still 

157 largely unexplored (Drosopoulos & Quartau, 2002). Recent genetics studies based on 

158 mitochondrial cytochrome c oxidase I (COI) and cytochrome b (cytB), as well as on nuclear 

159 internal transcribed spacer 2 (ITS2) and elongation factor 1-alpha (EF-1alpha) DNA sequence 

160 analysis have questioned the species status of P. tesselatus, since individuals showing P. 

161 tesselatus-like male genitalia have the same or very similar sequences to P. spumarius 

162 (Maryańska-Nadachowska et al., 2011; Rodrigues et al., 2014). It is expected that genome-wide 

163 markers will provide greater resolution to understand the divergence between these cryptic 

164 species. Delimitation of species boundaries is a difficult taxonomic endeavour but it is now 

165 widely recognised that an integrative taxonomic approach should include phenotypic, genetic 

166 (with a large number of nuclear and mitochondrial markers) and ecological data (Edwards & 

167 Knowles, 2014; Tonzo, Papadopoulou & Ortego, 2019).

168

169 In this study, we applied restriction site-associated DNA sequencing (RAD-seq), a reduced-

170 representation sequencing approach that simultaneously discovers and genotypes thousands of 

171 single nucleotide polymorphisms for a large number of individuals (Baird et al., 2008; Andrews 

172 et al., 2016). We had three main objectives: i) to characterize the morphological (appendages of 

173 male aedeagus) and genome-wide divergence between P. spumarius and P. tesselatus; ii) 

174 characterise the patterns of genome-wide differentiation of P. spumarius populations across the 

175 distribution range of the species; and iii) detect local adaptation by finding genomic regions 

176 under selection and associated with environmental variation. The information on gene flow 

177 between populations and on the environmental factors associated with local adaptation, as well 

178 as on the most appropriate diagnostic methods for the identification of the closely related P. 

179 spumarius and P. tesselatus, will be important for future risk assessment of X. fastidiosa spread 

180 in Europe.

181

182

183 Materials & Methods

184 Sampling 

185 Adults and nymphs of Philaenus spumarius were collected in 2010 and 2011 from eight 

186 populations (Figure 1) across the distribution range of the species: Cerkes, Anatolia, Turkey 

187 (TUR); Mount Parnassus, Greece (GRE); Haapanaki-Keuruu, Finland (FIN); Fitou, South of 

188 France (FRAN); Gouveia/Fontanelas, Sintra, Portugal (POR); Aberdare, South Wales, United 

189 Kingdom (UK); S. Miguel island, Azores (AZO); Wonalancet, New Hampshire, United States of 

190 America (USA). P. tesselatus was sampled in Morocco (MOR), from three main localities, near 

191 Azrou, near Rabat and near Ceuta. A total of 170 specimens were used for sequencing, 20 to 22 

192 from each sampling site, except from Morocco where only 7 specimens were included 

193 (Supplementary Table S1).
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194

195 Morphological characters

196 Philaenus species distinction based on the morphology of male genitalia was accomplished for a 

197 subset of 38 males from across all populations, except the Azores and France, for which only 

198 immature individuals or females were collected. Nine additional males from MOR, POR and 

199 TUR were included to increase morphological sample size, but were not used for genetic 

200 analyses (Supplementary Table S1). Preparation and measurements of male genitalia were done 

201 as detailed in Supplementary Material – Supplementary Information 1. 

202

203 Five variables calculated from the nine previously taken measurements (Figure 2) were used in 

204 the morphometric analysis: total length of aedeagus (TotLen), mean length of lower appendages 

205 (LowLen), mean length of middle appendages (MidLen), mean length of upper appendages 

206 (UpLen), mean curvature of upper appendages (UpCur). The mean value of measurements of 

207 paired structures was considered instead of both left and right measurements individually to 

208 reduce some of the variability and the number of specimens to be dropped out of the analysis due 

209 to missing values related to appendages that were occasionally broken or tilted during aedeagus 

210 removal.

211

212 A Principal Component Analysis (PCA) was used to evaluate if morphological characters of the 

213 aedeagus could separate Philaenus species and/or populations. PCA was applied to standardised 

214 variables (centred by the mean and scaled by the variance), since they were measured in different 

215 units. Three specimens were left out of the analysis due to missing values. The analysis was 

216 performed in R version 3.4.1 (R Core Team, 2017) using the “prcomp” function and figures were 

217 produced using the package “ggplot2” version 3.2.1 (Wickham, 2016).

218

219 DNA extraction and mitochondrial DNA analyses

220 DNA was extracted from the head and thorax of each specimen using DNeasy Blood & Tissue 

221 kit (Qiagen) following the manufacturer's instructions and including RNase A treatment step. 

222 Wings and abdomen were not used for DNA extraction to avoid extracting DNA of 

223 endosymbionts and parasites. The obtained DNA was assessed for the presence of a high 

224 molecular weight band on the agarose gel after electrophoresis, and it was quantified in Qubit 2.0 

225 (Invitrogen), using Qubit dsDNA HS Assay kit.

226

227 A subset of 48 specimens from the nine areas was sequenced for mitochondrial DNA 

228 (Supplementary Table S1) from which we amplified an 800 bp fragment of the 3’-end of the 

229 mitochondrial gene cytochrome c oxidase subunit I (COI) by polymerase chain reaction (PCR). 

230 Primers used were: C1-J-2195 (5’–TTGATTTTTTGGTCATCCAGAAGT–3’) and TL2-N-3014 

231 (5’–TCCAATGCACTAATCTGCCATATTA–3’) (Simon et al., 1994). PCR was performed in a 

232 12.5 uL reaction volume containing: 1x Colorless GoTaq Flexi Buffer, 2 mM MgCl2, 0.2 mM 
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233 dNTPs, 0.6 mg/ml of BSA, 0.5 µM of each primer, 0.0375 U GoTaq DNA Polimerase 

234 (Promega) and approximately 30 ng of DNA. PCR conditions were: an initial denaturation step 

235 at 95ºC for 5 min, followed by 35 cycles of denaturation at 95ºC for 45 s, annealing at 50ºC for 

236 35 s and extension at 72ºC for 2 min, with a final extension period at 72ºC for 10 min.

237

238 Chromatograms were verified and edited using SEQUENCHER v. 4.0.5 (Gene Codes 

239 Corporation), they were aligned using CLUSTAL W on BIOEDIT v. 7.0.9 (Thompson, Higgins, 

240 & Gibson, 1994; Hall, 1999) and subsequently trimmed to the same length. We followed the 

241 designation of haplotypes of Rodrigues et al. (2014). A median-joining haplotype network was 

242 constructed using PopART version 1.7 (Bandelt, Forster, & Rohl, 1999; Leigh & Bryant, 2015).

243

244 RAD libraries preparation and sequencing

245 RAD libraries were prepared using a protocol by Etter et al. (2011) and available at 

246 https://www.wiki.ed.ac.uk/display/RADSequencing/Home, with modifications as in Rodrigues et 

247 al. (2016). The restriction enzyme used was SbfI (New England Biolabs). Six libraries were 

248 prepared, with 28 to 31 individually barcoded samples multiplexed. Paired-end sequencing used 

249 three lanes of Illumina HiSeq 2000 at Genepool (Ashworth Laboratories) 

250 (http://genepool.bio.ed.ac.uk/). The individuals from each population were distributed over the 

251 different libraries and lanes to avoid library or lane-specific biases.

252

253 Assembly and SNP calling

254 The sequence reads from each run were examined by process_radtags from STACKS version 

255 1.45 (Catchen et al., 2013), to remove those with uncalled bases and low quality scores (phred 

256 score lower than 10), to check that the barcode and restriction site were intact in each read and to 

257 demultiplex the samples based on the barcode identification. Reads were trimmed at the 3’ end, 

258 using TRIMMOMATIC v. 0.38, to keep only 87 bases, since preliminary analyses using the 

259 entire read revealed a high number of (possibly false) SNPs at the 3’ end after this number of 

260 bases (data not shown). This may be due to higher sequencing errors towards the end of the reads 

261 characteristic of Illumina sequencing (Dohm et al., 2008). These reads were ran on the Stacks 

262 module ustacks to first assemble de novo the reads into 'stacks' (identical sets of reads, called 

263 loci) for one individual. The minimum depth of coverage to build a stack (-m) was set to 10, the 

264 maximum number of nucleotide differences allowed between stacks to form a locus (-M) was set 

265 to 2. Then the Stacks module cstacks was used to build a catalog by merging stacks (loci) from 

266 multiple individuals, using the default options. Finally, the module sstacks was used to match 

267 loci from an individual against the catalog. Stacks with very high coverage were removed since 

268 they may represent highly repetitive regions and that may include non-orthologous sequences.

PeerJ reviewing PDF | (2020:09:53180:0:1:NEW 30 Nov 2020)

Manuscript to be reviewed

Robin
Sticky Note
consider "...were prepared, with each including 28-31 individually barcoded samples."

Robin
Sticky Note
Consider: "The libraries were sequenced on three lanes of an Illumina HiSeq 2000 in paired-end mode at Genepool..." 

Robin
Sticky Note
also, what read length was used? 2x100?

Robin
Sticky Note
Consider "The trimmed reads were de novo assembled into "stacks".... using the ustacks module."



269

270 The Stacks module populations was used to create a Variant Call Format (VCF) file with the bi-

271 allelic genotypes of each individual for each variable nucleotide position. The minimum number 

272 of populations a locus must be present in to process a locus (-p) was set to the number of 

273 populations analysed (eight or nine, excluding or including Morocco, respectively – see below), 

274 the minimum percentage of individuals in a population required to process a locus for that 

275 population (-r) was set to 0.5 (50%). Only one SNP per locus was kept, using the option –

276 write_random_snp. Other parameters (-M 2, 3 and 6, -m 5 and 10, -n 1 and 4, --min_maf 0.05 or 

277 with no min maf) were tested and the differences were assessed by general patterns in the 

278 Principal Component Analysis.

279

280 The VCF file was then filtered using VCFtools (v 0.1.14) (Danecek et al., 2011), excluding sites 

281 with less than 75% of individuals with genotype (--max-missing 0.75) and/or with minor allele 

282 count of 2 (--mac 2), to exclude singletons (Linck & Battey, 2019). In order to exclude 

283 overclustered loci, we filtered out those with a mean depth (across individuals) higher than 200x 

284 (--max-meanDP 200).

285

286 The filtered VCF file with the SNP genotypes was converted into the file formats needed for the 

287 different analysis programs using PGDSpider 2.0.4.0 (Lischer & Excoffier, 2012). For 

288 conversion of geste format to baypass format, we used the script  

289 https://github.com/CoBiG2/RAD_Tools/blob/master/geste2baypass.py as of commit b99636e.

290

291 VCFtools was used to calculate summary statistics of coverage and percentage of missing data. 

292 Genetix v. 4.05.2 was used to obtain expected and observed heterozygosity, as well as FIS in each 

293 population. Pairwise differentiation between populations (FST) were calculated in Arlequin 

294 3.5.1.3, and the significance of FST was obtained from permutation tests with 10000 repetitions. 

295 Mantel tests between FST/(1-FST) matrices and the natural logarithm of the geographical distance 

296 (Rousset, 1997) were performed with ape package version 5.0 (http://ape-package.ird.fr/) in R 

297 version 3.4.0, using 9999 permutations.

298

299 Population structure

300 Principal Components Analysis (PCA) was used as an exploratory tool of the population 

301 structure (Novembre & Stephens, 2008). Computations of PCA were performed in R using 

302 package SNPRelate version 1.12.0 (Zheng et al., 2012). Population structure was further 

303 examined with model-based clustering algorithm using STRUCTURE v. 2.3.4 (Falush, Stephens, 

304 & Pritchard, 2003; Pritchard, Stephens, & Donnelly, 2000). We obtained the coefficients of 
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305 ancestry using the admixture model and assuming correlated allele frequencies among 

306 populations, and K from 1 to 9, with 10 replicate runs of each, applying 50,000 steps of burnin 

307 and 1,000,000 MCMC steps after burnin. Structure_threader version 1.2.2 (Pina-Martins et al., 

308 2017) was used to parallelize the runs and find the K best explaining the data (Evanno, Regnaut, 

309 & Goudet, 2005; Earl & vonHoldt, 2012). Clumpp version 1.1.2 (Jakobsson & Rosenberg, 2007) 

310 was then used to obtain the optimal alignment of ancestry proportions, by permuting the 10 

311 replicate runs of STRUCTURE for each value of K.

312

313 The complete dataset consisted of 9 populations and 133 individuals. We also analysed a dataset 

314 excluding P. tesselatus individuals from Morocco, which consisted of 8 populations and 127 

315 individuals of P. spumarius. In order to compare morphological variation and genetic variation 

316 in P. spumarius, we used a dataset of the 32 individuals for which we had data for both 

317 morphometry and RAD-seq, we performed PCA for both types of data, as above, and we 

318 calculated Spearman correlation between the Principal Component scores obtained from both 

319 PCAs using R.

320

321 Detection of selection – outlier analyses and environmental associations

322 In order to detect loci with signs of selection for the P. spumarius RAD-seq dataset (without 

323 Morocco), two approaches were taken: one that detects outlier loci departing from expectation 

324 under neutral demographic models (Foll & Gaggiotti, 2008; Vitalis et al., 2014), and another that 

325 detects loci associated with environmental variation between populations (Coop et al., 2010; 

326 Gautier, 2015). 

327

328 Outlier analyses were carried out using Bayescan v. 2.1 (Foll & Gaggiotti, 2008) and SelEstim 

329 v1.1.4 (Vitalis et al., 2014). Bayescan uses a Bayesian approach to estimate the posterior 

330 probability of two alternative models for each locus, with or without selection. Posterior odds are 

331 then obtained and False Discovery Rate calculated to control for multiple testing. The parameters 

332 of the chain and of the model were set to the default values. Outlier SNPs were defined to be 

333 those with q-values lower than 5%. SelEstim v1.1.4 (Vitalis et al., 2014) estimates the intensity 

334 of selection at each locus and the posterior distributions of the locus-specific coefficients of 

335 selection are compared with a distribution derived from the genome-wide effect of selection 

336 using Kullback-Leibler divergence (KLD). KLD is calibrated with simulations from posterior 

337 predictive distribution based on observed data (Vitalis et al., 2014). A total of 50 pilot runs of 

338 length 1,000 were followed by a run of 1,000,000 with burnin of 10,000. The criterion for a 

339 candidate SNP for selection was defined to be the 99% quantile of the KLD distribution.

340
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341 Environmental and geospatial variables used in the association analysis were 19 bioclimatic 

342 variables, as well as longitude and latitude. Bioclimatic variables were mined from WorldClim 

343 version 1.4 (release 3) (http://www.worldclim.org/) and the data was extracted for each location 

344 using DIVA-GIS 7.5.0 (http://www.diva-gis.org). Associations between SNPs allele frequency 

345 differences and the environmental variables were assessed with BayPass v. 2.1 (Gautier, 2015), 

346 using the script Baypass_workflow.R 

347 (https://gitlab.com/StuntsPT/pyRona/blob/master/pyRona/R/Baypass_workflow.R) as of 

348 pyRONA v0.3.7 (Pina‐Martins et al., 2019). Significant associations were assessed with Bayes 

349 Factor (BF) obtained with the auxiliary covariate model, considering a threshold for BF of 15. 

350 We did not exclude any variable at the start of the study based on their correlations, but we tested 

351 for correlation the ones that were significantly associated. Spearman correlations between 

352 variables were calculated using R.

353

354 After finding the candidate SNPs for selection and environmental association, two datasets were 

355 created: a “neutral” dataset, for which we excluded the candidate SNPs, and a “candidate” 

356 dataset, that contained only the candidate SNPs. STRUCTURE analyses were also performed on 

357 these two datasets.

358

359 RAD tags with candidate SNPs were queried against the available P. spumarius partial draft 

360 genome and transcriptome (Rodrigues et al., 2016), using blastn with an e-value threshold of 1E-

361 30. From the genome alignment, a longer sequence, 100 bp extended from each end of the RAD 

362 tag, was obtained and queried against the NCBI nucleotide database (nr/nt) using BLASTN 

363 version 2.9.0 (Altschul et al., 1997), setting a threshold e-value of 1E-5.

364

365 Scripts used in this analysis are available at 

366 https://github.com/seabrasg/popgenom_Philaenus.git.

367

368

369

370

371

372

373

374

375

376
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377 Results

378 Morphology of male aedeagus

379 The analysis of male genitalia revealed strong differentiation of the three Morocco samples, 

380 which showed a characteristic P. tesselatus aedeagus, as originally described in Drosopoulos and 

381 Quartau (2002): with the upper appendages longer and weakly curved, extending beyond the 

382 lateral appendages and the lower appendages longer and more regularly curved than P. 

383 spumarius (Supplementary Figure S1). All the remaining samples showed P. spumarius-like 

384 aedeagus (Supplementary Figure S1). Morphometric analysis confirmed this distinction, with the 

385 segregation of Moroccan samples along the first Principal Component in the PCA (Figure 3A 

386 and 3B), mainly because of variables mean lengths of upper and lower appendages of the 

387 aedeagus (PCA loadings in Supplementary Table S2a; boxplots in Supplementary Figure S2). 

388 The longer appendages in P. tesselatus are expected to be related to the longer body size in 

389 general in this species (Drosopoulos & Quartau, 2002) but, when controlling for the total length 

390 of the aedeagus, the relative size of the lower appendages remained largest in Moroccan samples 

391 (Supplementary Figure S2). 

392

393 Within P. spumarius we also noted variation across samples, mainly due to the morphometric 

394 variables of length and curvature of the upper appendages (Supplementary Figure S2; PCA 

395 loadings in Supplementary Table S2b). In particular, there was some geographical structure, for 

396 example UK and Finland lying on one extreme of PC2 and Greece lying on the other, 

397 corresponding also to the extremes of latitude in this study. A less accentuated curvature and also 

398 smaller length of the upper appendages in the Finnish and British than in the Greek samples may 

399 be behind this differentiation (boxplots in Supplementary Figure S2).

400

401 Mitochondrial DNA

402 The fragment of COI spanned 540 bp and was analysed for 48 specimens, revealing 25 

403 haplotypes, 21 of which had already been described in Rodrigues et al. (2014). The remaining 

404 four (haplotypes UK15, UK18, GR18_13 and FIN9) differed from previously known haplotypes 

405 by 1 or 2 substitutions (Supplementary Figure S3). Two of these new haplotypes (GR18_13 and 

406 FIN9) lay in an intermediate position in the haplotype network between the previously defined 

407 “North-Eastern” and “Western” haplogroups. In fact, the three haplogroups are not completely 

408 distinct but we maintain their designation in order to more easily describe and visualize the 

409 mitochondrial variation in relation to the RAD-seq variation: “Eastern-Mediterranean” (EM) in 

410 red, “Western” (W) in green and “North-Eastern” (NE) in blue (Supplementary Figure S3. We 

411 also attributed similar colours to the groups resulting from RAD-seq for ease of visualization 

412 (see below Figure 6C).

413

PeerJ reviewing PDF | (2020:09:53180:0:1:NEW 30 Nov 2020)

Manuscript to be reviewed



414 All seven specimens from Morocco (MOR) sequenced for mtDNA either showed the most 

415 common haplotype of the “W” haplogroup (H29) or a haplotype differing by only one 

416 substitution (H28 and H37) (Supplementary Figure S3). All haplotypes from the Azores (AZO) 

417 and continental Portugal (POR) belonged to “W”. France (FRAN) haplotypes belonged in “W” 

418 or in between “W” and “EM” (haplotype H49). Haplotypes from Greece (GRE) belonged to 

419 “EM” or in between “W” and “NE” (haplotype GR18_13). Haplotypes from Turkey (TUR) 

420 belonged to “NE”. In Finland (FIN), there were haplotypes from “EM”, “NE” and also one 

421 between “W” and “NE”. The USA population comprised haplotypes from “NE” and the UK 

422 population from “NE” and “W” (Supplementary Figure S3). The four new haplotypes were 

423 submitted to GenBank under accession numbers MT025773-MT025776.

424

425 RAD sequencing

426 A total of 838,730,936 reads was obtained from the Illumina sequencing. The process_radtags 

427 step in Stacks retained 647,870,180 reads. This corresponds to an average of 3,811,001 ± 

428 3,524,799 (standard deviation) reads per individual. Thirty-seven individuals with lower 

429 numbers of reads (<500,000 reads) or large amounts of missing data (>60%) were excluded from 

430 the analysis (Supplementary Table S1), leaving a total of 133 individuals, for which the number 

431 of reads ranged from 736,248 to 23,798,148 (average 4,507,853 ± 3,668,879 sd). Raw reads after 

432 demultiplexing were deposited in SRA database with accession PRJNA606428. The population 

433 Stacks module, followed by filtering, produced 1691 SNPs, with a mean coverage of 105.5 reads 

434 per locus per individual (Supplementary Figure S4) and mean percentage of missing data per 

435 individual of 12.3 % (Supplementary Table S1). We applied relatively stringent filtering criteria 

436 to avoid having large amounts of missing data per individual resulting from the large genome 

437 size in this species. This has produced a relatively small number of SNPs but that have a good 

438 representation across individuals and that are expected to be scattered across the genome. 

439

440 Population structure

441 Principal Component 1 in the PCA clusters Morocco individuals away from the others (Figure 

442 3C and D). When testing other assembly and filter parameters we obtained similar patterns in the 

443 groupings of samples (Supplementary Figure S5). Also, Structure analysis gave support to a 

444 genetic group solely comprising Moroccan samples (Figure 4). The average FST of Morocco 

445 versus other populations was 0.4, much higher than average FST of other populations’ 

446 comparisons (0.13) (Table 1). In all population-pairwise FST calculations involving Morocco, 

447 there were a considerable number of SNPs that were fixed or nearly fixed for one allele in 

448 Morocco and for the other allele in all the other populations, as seen in the relatively high 

449 frequency of high FST values on the histograms in all comparisons and in the high correlations 

450 between FST values among population pairs (Supplementary Figure S6a). There was neither such 

451 a high number of fixed SNPs nor such high correlations between FST values when considering 
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452 the other pairs of populations (Supplementary Figure S6b). Moroccan samples are thus clearly 

453 differentiated, at the genome-wide markers, from the remaining eight populations here analysed 

454 in contrast with mtDNA results that showed no differentiation between Morocco and the Iberian 

455 Peninsula (Supplementary Figure S3).

456

457 The relationship between geographical and genetic distances was significant when considering 

458 European populations (excluding from the dataset USA, Azores and Morocco) (Mantel test, 

459 z=19.49793, p=0.0177; Figure 5). When considering the comparisons involving Morocco, a 

460 positive correlation is seen between genetic and geographical distances, but mainly because of 

461 the lower FST value obtained between Morocco and Portugal (FST = 0.34), than between Morocco 

462 and the other populations (FST > 0.4; Figure 5). This lower differentiation may be the result of 

463 some level of admixture, which was detected in the STRUCTURE analysis, where all individuals 

464 from the Portuguese population show a small contribution from the genetic group present in 

465 Morocco (Figure 4).

466

467 Mean diversity (expected heterozygosity, HE) ranged from 0.0373 (in Morocco) to 0.0808 (in 

468 Greece) and mean observed heterozygosity (HO) from 0.0258 (in Morocco) to 0.0537 (UK). HO 

469 values were generally lower than expected under Hardy-Weinberg equilibrium (HWE) in all 

470 populations (average FIS of 0.346) (Table 1). For Morocco, interpretation of HE should be carried 

471 out carefully, since individuals come from three different locations and thus are not necessarily 

472 expected to be in HWE. Additionally, we found a positive and significant correlation between 

473 observed heterozygosity and sequence read depth (rS=0.686, p=0.0412; Supplementary Figure 

474 S7). This suggests that lower read depths may have led in some cases to allele dropout, 

475 contributing towards false homozygotes. However, in the case of Morocco, the mean read depths 

476 were not the lowest in this dataset, being similar to others (Supplementary Figure S4) and thus 

477 this should not be the main factor contributing to the low observed heterozygosity.

478

479 The dataset without Moroccan samples consisted of 127 individuals and 2083 SNPs. For this 

480 dataset, PCA revealed two distinct clusters along PC1, generally separating Greece and Turkey 

481 from the remaining populations (Figure 6A). The latter were separated along PC2 in three 

482 groups, one including mainly Portugal and France, another including mainly Finland. A third 

483 one, in between these two, including USA, UK and the Azores (Figure 6A). This structure had 

484 already been detected in PC3 of the analysis of the dataset that included Morocco (Figure 3D). 

485 For this dataset, when excluding the USA and the Azores populations, there was again 

486 significant isolation-by-distance for the European populations (Mantel test, z=19.49793, 

487 p=0.0229). However, there were a few individuals that were genetically more similar to others 

488 more distant geographically, which is also seen in the STRUCTURE analysis (Figure 6). In 

489 Greece and Finland, there were no admixed individuals between the two main clusters (“Eastern-
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490 Mediterranean” in red, and “North-Eastern” in blue) – they were either from one or the other 

491 group, with a few exceptions (Figure 6B). An analysis of the Turkish population revealed the 

492 presence of possibly admixed individuals from these two groups (with a smaller contribution 

493 from the “North-Eastern” cluster). In the USA and UK populations, all individuals showed some 

494 level of admixture between the “North-Eastern” (blue) and the “Western” (green) clusters. The 

495 Azores allies a small contribution from the “Western” group to a major one belonging to the 

496 “North-Eastern” group and one individual was admixed between “North-Eastern” and “Eastern-

497 Mediterranean” (also seen in PCA). The admixture in USA, UK and the Azores is also apparent 

498 from their intermediate position between the Portugal+France group and the 

499 Finland+Greece+Turkey group in the PCA (Figure 6A).

500

501 The majority of specimens for which COI sequence was available, had a correspondence 

502 between the mtDNA and the genomic cluster. However, there were some specimens showing a 

503 mismatch consisting of a mtDNA haplotype belonging in a different genomic cluster (Figure 6B 

504 and C; Supplementary Figure S3). For example, one individual from UK (UK6) bearing a 

505 mtDNA haplotype (H24) belonging to “Western” haplogroup (green), turned up “North-Eastern” 

506 (blue) in the genome analysis. Two individuals from France, bearing mtDNA H49 haplotype 

507 (intermediate between “Western” and “Eastern-Mediterranean”), came up as differentiated at 

508 genomic markers, one “Western” (green) and the other intermediate “Western” / “North-

509 Eastern”. In Greece and Finland, COI sequenced individuals show both a mtDNA and genomic 

510 makeup belonging to either “Eastern-Mediterranean” or “North-Eastern”, except two individuals 

511 assessed as “North-Eastern” in genomic markers but with a mtDNA haplotype in intermediate 

512 position in the network, between “Western” and “North-Eastern” haplogroups. The four 

513 individuals from Turkey sequenced for COI belonged in “North-Eastern” haplotypes. While one 

514 of them had full ancestry from “North-Eastern” group, the other three had their largest 

515 proportion of ancestry from “Eastern-Mediterranean”, based on the genome-wide markers.

516

517 For samples for which both morphometric and RAD-seq data was available (N=32), we 

518 computed Principal Components Analysis (Supplementary Figure S8) and calculated the 

519 correlation between PC1 and PC2 scores for both analyses. There was a significant correlation 

520 between PC1 from morphometry and PC2 from RAD-seq (rS=0.63, p=1E-04), while all the 

521 remaining were low and non significant (rS=-0.22, p=0.2194 between PC1 from each; rS=0.1, 

522 p=0.5927 between PC2 from each; rS=0.29, p=0.102 between PC2 from morphometry and PC1 

523 from RAD-seq).

524

525

PeerJ reviewing PDF | (2020:09:53180:0:1:NEW 30 Nov 2020)

Manuscript to be reviewed



526 Detection of selection – outlier analysis and environmental associations

527 Candidate SNPs for positive selection were identified by detection of highly differentiated 

528 outliers: eight were detected by Bayescan (Supplementary Figure S9); and 25 by KLD (quantile 

529 99% KLD 2.037087) in SelEstim (Supplementary Figure S10; Supplementary Table S3). Six 

530 outlier SNPs were common to both analyses. No outlier SNPs for balancing selection were 

531 detected in the Bayescan analysis (Supplementary Figure S9).

532

533 The BayPass analysis detected 163 SNPs associated with environmental variables (BF > 15) 

534 (Supplementary Table S3 and S4; Supplementary Figure S11), one of them common to the 

535 candidate SNPs detected with Bayescan. Variables showing association were: Longitude, 

536 Temperature Annual Range, Precipitation of Driest Quarter, Precipitation of Wettest Quarter, 

537 Mean Temperature of Warmest Quarter, Mean Diurnal Range (Mean of monthly (max temp – 

538 min temp)). Spearman correlations between these 6 variables were generally low (absolute 

539 values below 0.6), with only two values above 0.6 (Supplementary Table S4c).

540

541 When excluding these candidate SNPs (188 in total) from the “full” dataset, creating a “neutral” 

542 dataset, the main pattern of structuring was maintained, differing only in admixture proportions 

543 at higher values of K (4 and 5) (PCA in Supplementary Figure S12 and Structure in 

544 Supplementary Figure S13). When analysing the “candidates” dataset, the PCA showed a 

545 separation that corresponded generally to longitude variation along PC1 and to latitude along 

546 PC2 (Supplementary Figure S12). The STRUCTURE analysis, although artificial for the dataset 

547 of loci under selection, revealed similar structuring when compared to the other datasets, but 

548 with less admixture (Supplementary Figure S13). This is an expected outcome considering that 

549 these candidate loci have similar allelic variation within each population and different allelic 

550 variation between populations. The fact that there are still differentiated individuals within 

551 populations in this dataset, consistently assigned to the same groups as in the other datasets, is a 

552 reflection of the methods for detecting selection, based on population allelic variation.

553

554 Seventy-three candidate SNPs had hits (threshold evalue of 1E-30) with the draft genome of P. 

555 spumarius and seven with the transcriptome (Rodrigues et al 2016). From these, nine had hits 

556 (threshold evalue of 1E-5) with predicted genes in the NCBI nucleotide database (Supplementary 

557 Table S3).

558

559 Discussion

560 RAD sequencing analysis revealed the genetic distinction of North-African relative to other 

561 samples here analysed, which matched the morphological differences at the male genitalia, 
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562 identifying these as Philaenus tesselatus. This genetic differentiation was however not detected 

563 at the mitochondrial DNA level, since P. tesselatus and P. spumarius share mtDNA haplotypes, 

564 as already described in previous studies (Maryańska-Nadachowska et al., 2011; Rodrigues et al., 

565 2014). These results thus reinforce the importance of taking an integrative approach when 

566 studying the taxonomy of a group of species, especially cryptic ones (Edwards & Knowles, 

567 2014; Dejaco et al., 2016; Borges et al., 2017; Tonzo et al., 2019). 

568

569 The fact that there are mitochondrial DNA haplotypes shared between P. tesselatus and P. 

570 spumarius, while the nuclear genome is differentiated, may indicate selection on mtDNA 

571 following introgressive hybridization (Gompert et al., 2008). One possible mechanism for 

572 selection on mtDNA described in several insects, is the occurrence of maternally inherited 

573 endosymbionts associated with certain haplotypes, like Wolbachia. These endosymbionts are 

574 known to manipulate reproductive output, mainly through cytoplasmic incompatibility: no viable 

575 offspring are produced when an infected male fertilizes an uninfected female, or a female 

576 infected with a different strain (Werren, Baldo, & Clark, 2008). Haplotypes associated with the 

577 Wolbachia infection could thus spread, hitchhiking through the population. Mitochondrial 

578 introgression between closely related species caused by Wolbachia has been described in several 

579 species of Diptera and Lepidoptera (Jiggins, 2003; Narita et al., 2006; Rousset & Soulignac, 

580 1995; Whitworth et al., 2007). In these cases, different species share the same mitochondrial 

581 haplotypes, making DNA barcoding ineffective. Such a scenario is plausible as Wolbachia 

582 infection has already been detected in P. spumarius across Europe by Lis et al. (2015) (see 

583 below).

584

585 The admixture from the Moroccan genetic group detected in all the individuals from the 

586 Portuguese population (located in the Central-West part of the Iberian Peninsula), suggests some 

587 level of recent or ongoing gene-flow between P. spumarius and P. tesselatus. Despite previous 

588 doubts about the taxonomic status of these two taxa, our data point towards them being closely 

589 related but independent gene-pools, probably early in the speciation “continuum” (Seehausen et 

590 al., 2014). Both taxa co-occur in some locations in southern Iberian Peninsula (personal 

591 observation by J. A. Quartau and A. C. Neto, based on identification by male aedeagus 

592 morphology) and it will be important to study these sympatric areas. Genital traits are relevant 

593 since they may contribute to reproductive isolation, either structural or sensory, if differences in 

594 genital morphology between species prevent or reduce the success of copulation and 

595 insemination (Masly, 2012). Structural isolation was shown for example in the species pair 

596 Drosophila yakuba and D. santomea (Kamimura & Mitsumoto, 2012), but in many species no 

597 convincing evidence for such isolation has been found so far (Masly, 2012). Morphological 

598 variation in female genitalia, as well as behavioural and physiological responses during mating 

599 may also aid in understanding potential mechanisms of reproductive isolation, particularly in 

600 sympatry. We recognise that species identification based on male genitalia characteristics may be 
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601 insufficient when there is intraspecific variation with some overlap between species. Despite our 

602 limited P. tesselatus samples to fully understand the range of its variation, genomic data allow 

603 higher resolution in detecting genetic differentiation, but this is not enough to infer species status 

604 (Tonzo et al., 2019). A more comprehensive study on morphology, mtDNA and genome-wide 

605 variation of a wider sample from the Mediterranean region of both P. spumarius and P. 

606 tesselatus is required.

607

608 The morphometric geographical variation detected in P. spumarius showed some correlation 

609 with genetic variation, although this was not fully clear. Clinal latitudinal variation, as well as 

610 elevation variation, in the shape of male genitalia had already been described in European 

611 populations of species (Wagner, 1955; 1959). Shorter and less curved upper appendages were 

612 found in the north compared to the south, and in higher than in lower altitudes at the same 

613 geographical regions (Wagner, 1955; 1959). RAD sequencing data permitted detection of finer 

614 population genetic structure within P. spumarius than previously known with mtDNA and a 

615 limited number of nuclear genes. Although there was a pattern of isolation-by-distance in 

616 European populations, there were clear distinctions between groups in the PCA and 

617 STRUCTURE analyses, not related to geographical distance. The most likely K of three in 

618 STRUCTURE corresponded loosely to the three mitochondrial haplogroups already described in 

619 Rodrigues et al. (2014) and Maryańska-Nadachowska et al. (2011) but we detected some degree 

620 of admixture along contact zones. We found admixed individuals in France, Turkey and Finland, 

621 and several other individuals belonging to a different genetic group, with no admixture. This may 

622 suggest recent migration or the maintenance of reproductive barriers. In particular, there was 

623 almost no admixture between the “Eastern-Mediterranean” and the “North-Eastern” groups. 

624 Maryańska-Nadachowska et al. (2011) described a contact zone in the Carpathians between 

625 North-Eastern and South-Western haplogroups (this last group corresponds to our “Western” and 

626 “Eastern-Mediterranean” together) and detected heteroplasmic mitochondrial DNA, likely 

627 caused by paternal leakage from hybridization between members of these two clades. 

628 Interestingly, Lis, Maryańska-Nadachowska and Kajtoch (2015) have found different 

629 prevalences of Wolbachia infection between the different mitochondrial lineages of P. 

630 spumarius. The North-Eastern clade showed a higher proportion of infected individuals than the 

631 South-Western. In the Carpathian contact zone, infection was more prevalent in both groups, 

632 which however harboured different supergroups of Wolbachia. The authors suggest that there 

633 may be limited gene-flow between genetically distinct populations through a mechanism of 

634 cytoplasmic incompatibility. This could be an explanation for the low level of admixture 

635 detected in our study between the two genetic groups. A genome-wide survey in a wider 

636 sampling of both genetic groups will allow testing these hypotheses.

637

638 The intermediate position of UK, USA and Azores individuals in the PCA analysis, as well as 

639 the admixture detected in STRUCTURE, suggest they are the result of mixed gene pools. It 
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640 further corroborates the mtDNA results of Rodrigues et al. (2014) that showed the occurrence of 

641 different mitochondrial lineages in the UK and USA and that Azores and some USA samples 

642 were genetically similar to those from the UK. Across North America, variation in the 

643 morphology of male aedeagus in P. spumarius was reported by Hamilton (1979) and different 

644 mtDNA haplogroups were detected by Rodrigues et al. (2014), leading to the suggestion of 

645 multiple colonization events. The analysed population, from New Hampshire, USA, showed very 

646 low genome-wide differentiation from the UK population (mean FST=0.042), compared to other 

647 pairwise comparisons in this study, and also a large number of COI haplotypes belonging to the 

648 “North-Eastern” haplogroup (5 in the 7 samples analysed for mtDNA). This supports a likely 

649 origin of the North American P. spumarius from Northern Europe, perhaps with multiple 

650 colonisation events and with large effective population sizes. In S. Miguel island (Azores), only 

651 two COI haplotypes, differing by one substitution, were found so far (in 6 samples, Rodrigues et 

652 al., 2014 and this study), which are closely related to the UK haplotypes from the “Western” 

653 haplogroup. From the genomic results, this population was more differentiated from UK and 

654 USA (mean FST=0.098 between AZO and UK, and mean FST=0.078 between AZO and USA) 

655 than these two were from one another (mean FST=0.042 between UK and USA), showing the 

656 lowest genetic diversity (expected heterozygosity) of all P. spumarius populations here analysed. 

657 These results suggest a likely origin of the Azores colonization from Northern Europe, not from 

658 Southern Europe, and that this colonization is likely to have involved a bottleneck event leading 

659 to reduced genetic diversity observed. The low number of colour morphs found in S. Miguel 

660 (Borges et al., 2018) in this highly polymorphic species, further supports this hypothesis, 

661 although selective processes may also be involved. Expanding the sampling and analyses will 

662 allow more precise determination of the origin and eventually the timing of these transatlantic 

663 colonisations.

664

665 Population genomics approaches provide genome-wide information that is expected to reflect a 

666 baseline of neutral processes and, at the same time, allow detection of loci with signatures of 

667 selection, deviating from this baseline (Hohenlohe, Phillips, & Cresko, 2010). We focused on 

668 detecting local adaptation, by finding those loci that are more differentiated (FST) between 

669 populations than expected from the neutral background, and also by finding loci that have allelic 

670 variation correlated with environmental variation. When discarding such candidate loci for 

671 selection from our dataset, the population structure patterns remained very similar to the neutral 

672 dataset, which means that these 9% of loci are not affecting the genome-wide neutral pattern of 

673 population structure. Despite the usefulness of RAD sequencing for detection of selection in 

674 natural populations (Catchen et al., 2017), this analysis is limited by the number of SNPs 

675 analysed and also by the fact that RAD tags are usually distributed non-uniformly across the 

676 genome (Lowry et al., 2016). The large genome size of P. spumarius (Rodrigues et al., 2016) 

677 makes it more difficult to have a good genomic representation with these scattered markers. 

678 Also, genetic signatures of selection in individual loci can be weak and not easily detected in 

679 cases of soft selective sweeps (adaptation from standing genetic variation), epistatic interactions 
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680 among loci or genotype-by-environment interactions (Hohenlohe et al., 2010). Whole-genome 

681 analyses, by analysing patterns of diversity, differentiation and linkage disequilibrium along the 

682 genome, will be essential to better understand the evolutionary forces of selection and 

683 recombination shaping the genomic variation (Ellegren, 2014). The fact that we did not detect 

684 loci under balancing selection in the Bayescan analysis may also be related to low marker 

685 density. P. spumarius is particularly known for its balanced polymorphism in the dorsal colour 

686 form and the assessment of population variation in the colour-associated loci (Rodrigues et al., 

687 2016) remains to be done.

688

689 In the environmental association analysis, the associated variables were primarily longitude and 

690 those related to the extreme values and range variation in temperature and precipitation. This 

691 analysis is tentative, since we have a low number of populations from a wide geographic range. 

692 The low number of hits of the candidate loci with the P. spumarius transcriptome may indicate 

693 their location was mostly in non-coding regions, while the low number of hits with the partial 

694 genome denotes its incompleteness (Rodrigues et al., 2016). A more complete draft genome is 

695 now available (Biello et al., 2020), and new genomic and transcriptomic resources will be soon 

696 generated for P. spumarius which will provide important tools to further explore the molecular 

697 basis of adaptation in this species.

698

699 Understanding species divergence and population genetic structure of these insect vectors is 

700 relevant to the management of the eventual progression of the plant pathogenic bacterium X. 

701 fastidiosa, since their dispersal patterns might aid or constrain disease transmission. Also, the 

702 ecological requirements of different taxa or local populations may be different, for example in 

703 host plant preference or performance as vectors (acquisition of X. fastidiosa and transmission 

704 efficiency). Understanding the specific ecology of the vector has been shown to be crucial in the 

705 management of X. fastidiosa diseases in America (Redak, Purcell, Blua, Mizell, & Andersen, 

706 2004). All this type of information is important for epidemiological models of X. fastidiosa in 

707 Europe and other Mediterranean countries. The risk of X. fastidiosa transmission and disease 

708 progression is generally expected to be related to long-range human-assisted movements of 

709 infected plants and with shorter-range natural dispersal by vectors (EFSA et al., 2019). The 

710 genetic studies of P. spumarius have shown that it does not constitute a panmictic population, 

711 and geographical distance is not the only factor restricting gene flow. Other factors have to be 

712 taken into account, namely habitat fragmentation, barriers to gene exchange such as 

713 endosymbionts or behavioural differences, rapid climate changes that may cause major shifts in 

714 distribution ranges, as well as unpredictable adaptive responses (Kellermann & Van 

715 Heerwaarden, 2019). Even without detectable gene flow, adults of P. spumarius may be able to 

716 migrate occasionally, or consistently but without reproductive outcome, and spread the 

717 bacterium. More ecological studies on the abundance and distribution of the insect’s vectors 

718 through the seasons and across years are needed to understand the dispersal patterns across 
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719 geographical regions and the potential for disease spread. In particular, it will be important to 

720 understand the dispersal patterns from South Italy, which is a potential source of contamination 

721 by Xylella fastidiosa (subspecies pauca). In North and Central Italy, as well as in Sicily, 

722 Rodrigues et al. (2014) detected haplotypes from both “Eastern-Mediterranean” and “Western” 

723 haplogroups, unveiling the pivotal role of that region in the dispersal patterns of the species 

724 between the Mediterranean peninsulas.

725

726 Conclusions

727 In this study, morphological and genomic analysis allowed a more detailed view of the 

728 divergence between P. spumarius and P. tesselatus, as well as of the population structure and 

729 adaptation in P. spumarius. We found genome-wide divergence between these two species, 

730 despite the lack of mitochondrial DNA differentiation between them. The population genomics 

731 approach taken here showed admixture but also co-occurrence of non-admixed individuals in 

732 contact zones of diverging mitochondrial lineages of P. spumarius. The potential role of 

733 Wolbachia in shaping these patterns of divergence and introgression should be further explored.

734

735 The findings on species divergence and population structure described here point to the need for 

736 elucidating the dispersal and ecological requirements of the different taxa and local populations 

737 of these vectors for a better management of X. fastidiosa progression.
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Figure 1
Map with the sampling locations of Philaenus.

The points indicate the sampling locations of Philaenus spumarius in Turkey (TUR), Greece
(GRE), Finland (FIN), France (FRAN), Portugal (POR), United Kingdom (UK), Azores (AZO) and
United States of America (USA), and of Philaenus tesselatus in Morocco (MOR). In Morocco,
three locations were sampled (details in Supplementary Table S1).
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Figure 2
Schematic representation of the aedeagus of Philaenus with morphometric characteres
measured

(A) Morphometric characters measured on the aedeagus of Philaenus spittlebugs: TotLen –

total length of aedeagus; LowLen – length of lower appendages (left and right); MidLen –

length of middle appendages (left and right); UpLen – length of upper appendages (left and
right); UpCur – curvature of upper appendages (left and right). (B) Diagram of geometric
measurements of the curvature of the aedeagus upper appendages.
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Figure 3
Principal component analysis of morphometric data of male aedeagus and of RAD-seq
data.

Scatterplots of the three first principal components (PC1, PC2 nd PC3) from the Principal
Component Analysis (PCA) of morphometric data of male aedeagus (A and B) and of RAD-seq
data (C and D).
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Figure 4
STRUCTURE results for the complete dataset with 9 populations

STRUCTURE results for the dataset including all populations, for K=2 to K=5. The best K
according to Evanno et al. (2005) method was K=4. The colours of the major groupings in
STRUCTURE were chosen to correspond loosely to the mitochondrial DNA haplogroups
(Rodrigues et al., 2014 and this study), for a better visualization.
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Figure 5
Geographical distance versus genetic distance for each pair of populations

Scatterplot of the geographical distance (natural logarithm) versus genetic distance (FST/(1-

FST)) for each pair of populations. Colours discriminate distances between: Morocco and the

other populations (red); European populations (grey); transatlantic populations (USA or
Azores) vs. European populations (green).
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Figure 6
Population genetic structure analysis, excluding the North African population.

(A) Scatterplot of the two first principal components (PC1 and PC2) from the Principal
Component Analysis of RAD-seq data for the 8 populations, after excluding the North African
population; (B) STRUCTURE results for K=3 (best K according to Evanno et al., 2005). (C)
Mitochondrial haplogroups present in each population (Rodrigues et al., 2014 and this study)
shown in coloured squares (blue: “North-Eastern”, green: “Western”; red: “Eastern-
Mediterranean”). The colours of the major groupings in STRUCTURE were chosen to
correspond loosely to the mitochondrial DNA haplogroups, for a better visualization
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Table 1(on next page)

Pairwise FST matrix and estimates of expected and observed heterozygosity (HE and HO,
respectively) and FIS for each population.

The triangular matrix shows the FST values for each pair of populations and the bottom values

are the estimates of expected and observed heterozygosity (HE and HO, respectively) and FIS

for each population.
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Sheet1

Page 1

MOR USA UK AZO POR FRAN GRE TUR FIN

MOR 0

USA 0.4557 0

UK 0.4474 0.0415 0

AZO 0.4464 0.0785 0.098 0

POR 0.3375 0.0755 0.0887 0.1089 0

FRAN 0.4222 0.0728 0.0925 0.1226 0.0359 0

GRE 0.4484 0.205 0.2141 0.1998 0.1831 0.1833 0

TUR 0.5039 0.2403 0.2504 0.2273 0.2168 0.2018 0.0533 0

FIN 0.4451 0.0762 0.0964 0.1108 0.1094 0.1188 0.0887 0.1423 0

MOR USA UK AZO POR FRAN GRE TUR FIN

He 0.0373 0.0708 0.0737 0.0641 0.0795 0.0725 0.0808 0.0789 0.0781

Ho 0.0258 0.046 0.0537 0.046 0.0406 0.0475 0.0360 0.0491 0.0396

FIS 0.3313 0.2927 0.2379 0.2599 0.4421 0.2962 0.4795 0.3544 0.4233
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