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ABSTRACT
In recent years, researchers have attempted to provide an indication of the prevalence
of inflated Type 1 error rates by analyzing the distribution of p-values in the
published literature. De Winter & Dodou (2015) analyzed the distribution (and
its change over time) of a large number of p-values automatically extracted from
abstracts in the scientific literature. They concluded there is a ‘surge of p-values
between 0.041–0.049 in recent decades’ which ‘suggests (but does not prove)
questionable research practices have increased over the past 25 years.’ I show
the changes in the ratio of fractions of p-values between 0.041–0.049 over the
years are better explained by assuming the average power has decreased over
time. Furthermore, I propose that their observation that p-values just below 0.05
increase more strongly than p-values above 0.05 can be explained by an increase in
publication bias (or the file drawer effect) over the years (cf. Fanelli, 2012; Pautasso,
2010, which has led to a relative decrease of ‘marginally significant’ p-values in
abstracts in the literature (instead of an increase in p-values just below 0.05). I
explain why researchers analyzing large numbers of p-values need to relate their
assumptions to a model of p-value distributions that takes into account the average
power of the performed studies, the ratio of true positives to false positives in the
literature, the effects of publication bias, and the Type 1 error rate (and possible
mechanisms through which it has inflated). Finally, I discuss why publication bias
and underpowered studies might be a bigger problem for science than inflated Type
1 error rates, and explain the challenges when attempting to draw conclusions about
inflated Type 1 error rates from a large heterogeneous set of p-values.

Subjects Statistics
Keywords p-value, False positives, Publication bias, Statistics, p-curve

INTRODUCTION
In recent years, researchers have become more aware of how flexibility during the

data-analysis can increase false positive results (e.g., Simmons, Nelson & Simonsohn, 2011).

If the true Type 1 error rate is substantially inflated, for example because researchers

analyze their data until a p-value smaller than 0.05 is observed, the robustness of

scientific knowledge can substantially decrease. However, as Stroebe & Strack (2014, p. 60)

have pointed out: ‘Thus far, however, no solid data exist on the prevalence of such research

practices.’ Some researchers have attempted to provide an indication of the prevalence

of inflated Type 1 error rates by analyzing the distribution of p-values in the published
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literature. The idea is that inflated Type 1 error rates lead to ‘a peculiar prevalence

of p-values just below 0.05’ (Masicampo & Lalande, 2012), the observation that “just

significant” results are on the rise’ (Leggett et al., 2013), and that ‘p-hacking is widespread

throughout science’ (Head et al., 2015).

Despite the attention grabbing statements in these publications, the strong conclusions

these researchers have drawn do not follow from the empirical data. The pattern of a peak

of p-values just below p = 0.05 observed by Leggett et al. (2013) does not replicate in other

datasets of p-value distributions for the same journal in later years (Masicampo & Lalande,

2012), in psychology in general (Hartgerink et al., unpublished data; Kühberger, Fritz &

Scherndl, 2014), or in scientific journals in general (De Winter & Dodou, 2015). The peak

in p-values observed in Masicampo & Lalande (2012) is only surprising compared to an

incorrectly modeled p-value distribution that ignores publication bias and its effect on

the frequency of p-values above 0.05 (Lakens, 2014a, see also Vermeulen et al., in press).

The ‘widespread’ p-hacking observed by Head and colleagues (2015) disappears after

controlling for a simple confound (Hartgerink, 2015).

Recently, De Winter & Dodou (2015) have contributed to this emerging literature on

p-value distributions and concluded that there is a ‘surge of p-values between 0.041–0.049

in recent decades’. They improved upon earlier approaches to analyze p-value distributions

by comparing the percentage of p-values over time (from 1990–2013). Two observations

in the data they collected could seduce researchers to draw conclusions about a rise of

p-values just below a significance level of 0.05. The first observation the authors report

is how from 1990 to 2013 p-values between 0.041 and 0.049 rose more strongly than the

percentage of p-values between 0.051–0.059. The second observation is that the percentage

of p-values that falls between 0.041–0.049 has increased more than the increase in the per-

centage of p-values between 0.001–0.009, 0.011–0.019, 0.021–0.029, and 0.031–0.039 from

1990 to 2013 1. The authors (2015, p. 37) conclude that: “The fact that p-values just below

1 The authors also analyze p-values with
2 digits (e.g., p = 0.04), which reveal
similar patterns, but here I focus on
the three digit data, which focuses
on p-values between (for example)
0.041–0.049 because trailing zeroes
(e.g., p = 0.040) are rarely reported.

0.05 exhibited the fastest increase among all p-value ranges we searched for suggests (but

does not prove) that questionable research practices have increased over the past 25 years.”

I will explain why the data does not suggest an increase in ‘questionable research

practices’. First, I will discuss how the relatively stronger increase in p-values just below

p = 0.05 compared to p-values just above p = 0.05 is not caused by a change over time in

the percentage of p-values just below 0.05, but by a change over time in the percentage of

p-values above 0.05. Perhaps surprisingly, p-values just above 0.05 increase much less than

all other p-values. This might be due to a stricter interpretation of p < 0.05 as support of a

hypothesis, and less leniency for ‘marginally significant’ p-values just above this threshold.

Second, I will explain why the relatively high increase in p-values between 0.041–0.049 over

the years can easily be accounted for by a decrease in the average power of studies. At the

same time, I will illustrate why this increase in p-values just below 0.05 is unlikely to emerge

due to an inflation of the Type 1 error rate due to optional stopping or trying out multiple

analyses until p < 0.05. I want to explicitly note that it was possible to provide these

alternative interpretations of the data because De Winter & Dodou (2015) shared all data

and analysis scripts online. While I criticize their interpretation of data, I applaud their
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adherence to open science principles, which greatly facilitated cumulative science. Most

importantly, the main point of this article is to highlight the challenges in drawing conclu-

sions about inflated Type 1 error rates based solely on a large heterogeneous set of p-values.

As I have discussed before (Lakens, 2014a), it is essential to use a model of p-value

distributions before drawing conclusions about the underlying reasons for specific

distributions of p-values extracted from the scientific literature. A model of p-value

distributions consists of four different factors. First, the p-value distribution depends

on the number of studies where the null-hypothesis (H0) is true, and the number of studies

where the alternative hypothesis (H1) is true. Second, the p-values for studies where H1

is true depend upon the power of the studies. Statistical power is the probability that a

study yields a statistically significant effect, if there is a true effect to be found. Power is

determined by the significance level, the sample size, and the effect size. Third, p-values

for studies where H0 is true depend upon the Type 1 error rate chosen by the researcher

(e.g., 0.05), and any possible mechanisms through which the Type 1 error rate is inflated

beyond the nominal Type 1 error rate set by the researcher. When I talk about inflated

Type 1 error rates in this article, I explicitly mean flexibility in dependent tests that are

performed on the data (e.g., by performing a test after every few participants, flexibly

deciding to exclude participants, or dropping or combining measurements) that have the

goal to lead to a statistically significant result. When these statistical tests are dependent

(e.g., analyzing the data after 20 participants, and analyzing the same data again after

adding 10 additional participants) the Type 1 error rate inflation has a specific pattern

where p-values between 0.041–0.049 become somewhat more likely than smaller p-values.

And finally, the p-value distribution in the published literature is influenced by

publication bias. Publication bias is the tendency to publish statistically significant results

(both because authors are more likely to submit those articles, as that editors and reviewers

are more likely to evaluate such manuscripts more positively). The threshold at which

p-values indicate a statistically significant result, as well as the leniency towards ‘marginally

significant’ findings, both influence the frequency of observed p-values in the literature. It

is important to look beyond simplistic comparisons between p-values just below 0.05 and

p-values in other parts of the p-value distribution if the observed p-values are not explicitly

related to a model consisting of the four factors that determine p-value distributions.

ARE P-VALUES BELOW 0.05 INCREASING, OR
P-VALUES ABOVE 0.05 DECREASING?
De Winter & Dodou (2015) show there is a relatively stronger increase over time in p-values

between 0.041–0.049 than in p-values between 0.051–0.059 (see for example their Fig.

9). The data is clear, but the reason for this difference is not, and it is not explored by

the authors. Although all p-values are increasing over time, the real question is whether

p-values below p = 0.05 are increasing more, or p-values above p = 0.05 are increasing

less. A direct comparison is difficult, because a comparison across the p = 0.05 boundary is

influenced by publication bias. If publication bias increases, and less non-significant results

end up in the published literature due to the file-drawer problem, the percentage of papers
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reporting p-values smaller than 0.05 will also increase (even when there is no increase

in p-hacking). Indeed, both Pautasso (2010) as Fanelli (2012) have provided support for

the idea that negative results have been disappearing from the literature, which raises the

possibility that the relative differences in p-values between 0.041–0.049 and 0.051–0.059

observed by De Winter & Dodou (2015) are actually caused by a relative decrease in p-values

between 0.051–0.059.

By comparing the relative differences between p-values between 0.031–0.039 and

0.041–0.049 over the years on the one hand, and 0.051–0.059 and 0.061–0.069 on the

other hand, we can examine whether there is an increase in p-values between 0.041–0.049

(due to an increase in the Type 1 error rate), or an increase in publication bias (or the

file-drawer problem), which leads to a lower percentage of p-values between 0.051–0.059.

If there is an increase in the Type 1 error rate due to flexibility in the data analysis, the

biggest differences over time should be observed just below p = 0.05 (in line with the

idea of a surge of p-values between 0.041–0.049). However, there are reasons to assume

the biggest difference will be observed in p-values just above p = 0.05. As Lakens (2014a)

noted, there seems to be some tolerance for p-values just above 0.05 to be published, as

indicated by a higher prevalence of p-values between 0.051–0.059 than would be expected

based on the power of statistical tests and an equal reduction of all p-values above 0.05

due to the file-drawer problem. If publication bias becomes more severe, we might expect

a reduction in the tolerance for ‘marginally significant’ p-values just above 0.05, and the

largest changes in ratios should be observed above p = 0.05.

Across the three time periods (1990–1997, 1998–2005, and 2006–2013) the ratio of

p-values between 0.031–0.039 to p-values between 0.041–0.049 is pretty stable: 1.13, 1.09,

and 1.11, respectively. The ratio of p-values between 0.051–0.059 to p-values between

0.061–0.069 shows a surprisingly large reduction over the years: 2.27, 1.94, and 1.79,

respectively. It is important to note that flexibly analyzing data with the goal to be able

to report a significant finding leads to a change in the p-value distribution both above as

below p = 0.05. However, the ratio of p-values between 0.031–0.039 to p-values between

0.041–0.049 should change much more than the ratio of p-values between 0.051–0.059 to

p-values between 0.061–0.069, because p-values are drawn from a relatively larger range

above p = 0.05, to a relatively small range just below p = 0.05. This surprisingly large

change in ratios over time for p-values 0.051–0.059 to 0.061–0.069 indicates that instead

of an increase in the Type 1 error rate of p-values below 0.05, the real change over time

happens in the p-values between 0.051–0.059.

The change over time in p-values just above p = 0.05 might be explained by an

increasingly strong effect of the file-drawer problem. Where p-values between 0.051–0.059

(or ‘marginally significant’ results) might have been more readily accepted as support for

the alternative hypothesis in 1990–1997, p-values just above 0.05 might no longer deemed

strong enough support for the alternative hypothesis in 2005-2013. This idea is speculative,

but seems plausible given the increase in publication bias over the years (Fanelli, 2012;

Pautasso, 2010), which suggests that non-significant results are less likely to be published in

recent years. It should be noted that p-values just above the 0.05 level are still more frequent
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than can be explained just by the average power of the tests combined with publication bias

that is equal for all p-values above 0.05 (cf. Lakens, 2014a). In other words, this data is in

line with the idea that publication bias is still slightly less severe for p-values just above 0.05,

even though this benefit of p-values just above 0.05 has become smaller over the years.

HOW A CHANGES IN AVERAGE POWER OVER THE
YEARS AFFECTS RATIOS OF P-VALUES BELOW 0.05
The first part of the title of the article by De Winter & Dodou (2015), “A surge of p-values

between 0.041–0.049” is based on the observation that the ratio of p-values between

0.041–0.049 increases more than the ratio of p-values between 0.031–0.039, 0.021–0.029,

and 0.011–0.019. There are no statistics reported to indicate whether these differences in

ratios are actually statistically significant, nor are effect sizes reported to indicate whether

the differences are practically significant (or justify the term ‘surge’), but the ratios do

increase as you move from bins of low p-values between 0.001–0.009 to bins of high

p-values between 0.041–0.049.

The first thing to understand is why none of the observed ratios are close to 1. The

reason is that there is a massive increase in the percentage of abstracts of papers in which

p-values are reported over the years. As De Winter & Dodou (2015, p. 15) note: “In 1990,

0.019% of papers (106 out of 563,023 papers) reported a p-value between 0.051 and 0.059.

This increased 3.6-fold to 0.067% (1,549 out of 2,317,062 papers) in 2013. Positive results

increased 10.3-fold in the same period: from 0.030% (171 out of 563,023 papers) in 1990 to

0.314% (7,266 out of 2,317,062 papers) in 2013.” De Winter & Dodou (2015) show p-values

are finding their way into more and more abstracts, which points to a possible increase

in the overreliance on null-hypothesis testing in empirical articles. This is an important

contribution to the literature.

The main question is how these differences in the ratios across the 5 bins below p = 0.05

can be explained. De Winter & Dodou (2015) do not attempt to model their hypothesized

mechanism by choosing values for the four factors of the model (the ratio of studies

where H0 or H1 is true, the power of studies, the Type 1 error rate, and the presence

of the file-drawer problem). However, this model contains all the factors that together

completely determine the p-value distribution (except perhaps erroneously calculated

p-values, which is also common, see Hartgerink et al., unpublished data; Vermeulen et al.,

in press). Therefore, the hypothesis that flexibility in the data-analysis increases the Type

1 error rate must be translated into specific parameters for the factors in this model. It

is only possible to explain the relative differences between the ratios of the different bins

of p-values if we allow at least one of the parameters of the model to change over time.

Because we are focusing on the p-values below 0.05 we can ignore the file drawer problem,

assuming all disciplines that report p-values in abstracts use α = 0.05 (this is not true, but

we can assume it applies to the majority of articles that are analyzed). The three remaining

possibilities are a change in the average power of studies over time, a change in the inflated

Type 1 error rate over time, and a change in the ratio of studies where H0 or H1 is true. I

will discuss each of these three possible explanations in turn.

Lakens (2015), PeerJ, DOI 10.7717/peerj.1142 5/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.1142


Table 1 Expected percentage of p-values between 0.001–0.049 based on 42% and 55% power. Note that
columns do not sum to 0.55 and 0.42 because some p-values are not included in the analysis (e.g., p-values
between 0.049–0.050).

Expected p-values per bin
with 55% power

Expected p-values per
bin with 42% power

p0.001–p0.009 0.300 0.199

p0.011–p0.019 0.085 0.072

p0.021–p0.029 0.056 0.051

p0.031–p0.039 0.042 0.034

p0.041–p0.049 0.034 0.033

Changes in power over time
We can relatively easily reconstruct the observed data purely based on differences in the

average power across the years. Remember that the distribution of p-values depends on

the statistical power of the studies (or the average power of multiple subsets of studies,

if heterogeneity in power is substantial), which is itself a function of the true effect size,

the significance level, and the sample size (for formulas, see Cumming, 2008; Lakens &

Evers, 2014, for an online app, see http://rpsychologist.com/d3/pdist/). It is not difficult to

model the ratios observed by De Winter & Dodou (2015) under the assumption that power

decreases from 1990 to 2013. For example, if we assume the average power of studies was

55% in 1990, and 42% in 2013, we will (given a large enough sample) observe the p-value

distribution across the 5 bins as detailed in Table 1, with 29.86% of the p-values falling

between 0.001 and 0.009 in 1990, but only 19.93% of p-values falling between 0.001 and

0.009 in 2013. This is just the p-value distribution as a function of the power of the tests.

The total number of studies analyzed by De Winter & Dodou (2015) was 561,516 in

1990, and 2,311,772 in 2013. Because the authors note how the percentage of statistically

significant p-values reported in abstracts has increased by 10% over the years, and I

chose 0.01% in 1990 and 0.1% in 2013 as the percentage of abstracts that report p-values

(column 1 and 2 in Table 2). Assuming the average power was 55% in 1990 and 42%

in 2013, we can calculate the expected number of observed p-values in 1990 and 2013

by simply multiplying the total number of articles (e.g., 561,516) by the percentage of

articles reporting p-values (e.g., 0.01), multiplied by the percentage of p-values expected in

each p-value bin based on the assumed power (e.g., 0.300). The number of reconstructed

p-values is presented in Table 2, columns 3 and 4. These numbers closely resemble the

absolute number of p-values observed by De Winter & Dodou (2015, Table 2, columns 5

and 6), indicating the chosen parameters for the model can reproduce the observed data.

Following De Winter & Dodou (2015), the fraction of the observed p-values in each

of the five p-value bins can now be calculated by dividing the number (N) of p-values

in a specific bin for a specific year (e.g., N = 1,676) by the total (T) number of p-values

(e.g., T = 561,516) to get the fractions for 1990 and 2015 (e.g., 1,676/561,516 × 100

= 0.299). The reconstructed fractions (Table 3, column 1 and 2) are very similar to the

observed fractions by De Winter and Dodou (columns 4 and 5). The main dependent
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Table 2 Percentage of papers that report p-values in abstracts, and the number of reconstructed and observed (De Winter & Dodou, 2015)
p-values between 0.001–0.049 in 1990 and 2013 for each bin.

% p-values in
abstracts 1990

% p-values in
abstracts 2013

Reconstructed #
p-values 1990

Reconstructed #
p-values 2013

Observed #
p-values 1990

Observed # p-values
2013

p0.001–p0.009 0.01 0.1 1,676 46,064 1,770 44,970

p0.011–p0.019 0.01 0.1 480 16,690 462 14,885

p0.021–p0.029 0.01 0.1 315 11,698 268 10,630

p0.031–p0.039 0.01 0.1 237 9,189 240 9,108

p0.041–p0.049 0.01 0.1 190 7,629 178 8,250

Table 3 Ratio of fractions of reconstructed p-values and p-value ratios observed by De Winter & Dodou (2015) between 0.001–0.049 for 1990
and 2013.

p-value bin Reconstructed
fraction N/T 1990

Reconstructed
fraction N/T 2013

Reconstructed
1990/2013 ratio of
fractions

Observed fraction
N/T 1990

Observed fraction
N/T 2013

Observed 1990/2013
ratio of fraction

0.001–0.009 0.299 1.993 6.674 0.315 1.945 6.17

0.011–0.019 0.085 0.722 8.454 0.082 0.644 7.83

0.021–0.029 0.056 0.506 9.017 0.048 0.460 9.63

0.031–0.039 0.042 0.398 9.417 0.043 0.394 9.21

0.041–0.049 0.034 0.330 9.740 0.032 0.367 11.28

variable De Winter and Dodou analyze is the fraction in 1990 divided by the fraction

in 2013 (e.g., 0.299/1.993 = 6.674, basically a ratio of fractions), and we can see the

reconstructed ratios of fractions of 1990/2013 (column 3) closely resemble the observed

ratios of fractions (column 6).

The reconstruction is close, but not perfect, for a number of reasons. First of all, there

are very few data points from 1990, which will lead to substantial variation between

expected and observed frequencies. For example, the reconstructed 1990/2013 ratio of

fractions in the 0.021–0.029 bin (9.017) is smaller than the reconstructed ratio of fractions

in the 0.031–0.039 bin (9.417), but the pattern is reversed in the observed data (9.63 and

9.21, respectively). However, if we calculate the same ratios of fractions for 2013 with all

other preceding years (e.g., 1991, 1992, 1993, etc.) we find a smaller ratio of fractions in

the 0.021–0.029 bin than in the 0.031–0.039 bin for all the remaining 21 comparisons

(see Table 4, columns 3 and 4). In other words, the model correctly predicts the ratios of

fractions in 21 out of 22 comparisons between years, even when we chose the parameters

for the model based on the 1990/2013 comparison. This provides strong support for the

validity of the model that is used to reconstruct the ratios.

The model based on power differences similarly predicts that ratios for p-values between

0.031–0.039 should be very similar to those between 0.041–0.049. The predicted 1990/2013

ratio of fractions in the 0.031–0.039 bin is 9.417, and the predicted ratio of fractions for

the 0.041–0.049 bin is 9.740, while the difference in observed ratios of fractions is much

larger (9.21 and 11.28, respectively, see column 6 in Table 3). If the true difference is large

(following the observed ratios) the ratio of fractions in the 0.041–0.049 bin should be
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Table 4 Ratios of fractions of the percentage of p-values in abstracts for 2013 relative to the
percentages in 23 preceding years, for the 5 p-value bins.

Year compared to 2013 Year/2013 ratio of fractions per p-value bin

0.001–0.009 0.011–0.019 0.021–0.029 0.031–0.039 0.041–0.049

1990 6.17 7.83 9.63 9.22 11.26

1991 5.10 6.81 6.90 8.02 9.19

1992 4.07 5.04 5.72 6.30 6.55

1993 3.03 4.06 4.39 5.01 4.92

1994 2.56 3.26 3.61 4.28 4.31

1995 2.10 2.72 2.98 3.22 3.36

1996 1.62 2.23 2.26 2.48 2.52

1997 1.42 1.84 2.15 2.19 2.16

1998 1.26 1.76 1.85 2.15 1.95

1999 1.12 1.52 1.64 1.70 1.70

2000 1.02 1.29 1.39 1.42 1.50

2001 0.95 1.19 1.27 1.34 1.25

2002 0.88 1.08 1.09 1.17 1.15

2003 0.77 0.88 0.90 0.97 0.98

2004 0.67 0.76 0.78 0.81 0.81

2005 0.57 0.64 0.66 0.67 0.67

2006 0.52 0.57 0.59 0.60 0.62

2007 0.47 0.51 0.51 0.54 0.54

2008 0.42 0.45 0.46 0.45 0.48

2009 0.39 0.42 0.41 0.43 0.42

2010 0.36 0.38 0.38 0.40 0.39

2011 0.31 0.33 0.32 0.33 0.33

2012 0.27 0.28 0.27 0.27 0.28

consistently higher than the 0.031–0.039 bin across all years. If the reconstructed ratios are

true, the difference between the two bins should be less pronounced across all year. When

comparing 2013 to each of the 23 preceding years, the ratio of fractions in the 0.041–0.049

bin (see Table 4) is higher than for p-values in the 0.031–0.039 bin in only 12 out of 23

comparisons (52% of the time). This can hardly be called a ‘surge’ of p-values between

0.041–0.049. This observation is not in line with the idea that the Type 1 error rate has

increased, because an increase in Type 1 error rates due to flexibility in the data analysis

typically assumes p-values between 0.041–0.049 increase more strongly than p-values be-

tween 0.031–0.039 (e.g., Head et al., 2015; Leggett et al., 2013; Masicampo & Lalande, 2012).

Obviously a model that explains the observed p-value distribution only based on a

change in the average power of the studies (and sets the other factors to zero) is not likely

to reflect the true state of affairs in the real world. Although we lack data about changes

in the ratio of true to false effects examined over time (a worthwhile research question in

itself), it seems reasonable to at least entertain the possibility of some changes over time for

this factor of the model. For now, the most important conclusion is that a change in power

over time can mathematically account for the observed changes in ratios of fractions in the
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different p-value bins. Moreover, the idea that power decreases over time is theoretically

plausible, since such a decrease in power over time has been observed in some disciplines,

such as psychology (Sedlmeier & Gigerenzer, 1989), and the values of the parameters

(55% and 42% power) are plausible. At the same time, we can be certain power varies

substantially across studies and research disciplines (e.g., Button et al., 2013; Sedlmeier &

Gigerenzer, 1989), and therefore the p-value distribution can be more accurately modeled

by summing multiple p-value distributions across different research areas.

Changes in Type 1 error rates over time
Let’s assume the average power has not changed over time, and instead try to reconstruct

the observed data by De Winter & Dodou (2015) based on a change in the Type 1 error

rates over time. The assumption is that there should be an increase in p-values just below

p = 0.05 because questionable research practices increase the number of false positives (De

Winter & Dodou, p. 6). A false positive or Type 1 error occurs when the null-hypothesis

is true, but a statistically significant result is observed. When Type 1 error rates are not

inflated (or nominal) 5% of the studies will observe p-values smaller than 0.05. De Winter

and Dodou focus on p-values between 0.041–0.049 in the analysis of p-values with three

digits (where p-values such as 0.040 will be absent because researchers are most likely

to write 0.04 instead of 0.040), which means 0.8% of the time (0.049 minus 0.041) a

p-value within each of the five p-value bins will be observed2. By increasing the Type 1

2 Because researchers round numbers to
the nearest 3 digits, one might argue
that instead of 0.8% of p-values between
0.041–0.049 when the null hypothesis
is true, De Winter & Dodou (2015)
actually focus on p-values between
0.0405–0.0495, which would mean 0.9%
of the time a p-value within a single
p-value bin will be observed. Using 0.8%
or 0.9% Type 1 error rates in each bin
does not influence the reconstruction
purely based on changes in power over
time, and does not have consequences
for any of the conclusions based on the
reconstructions.

error rate above 0.8%, and doing so more strongly for higher p-value bins, we can attempt

to reconstruct the consequences of an increase in false positives in the literature on the

observed ratios of p-values over time.

The observed ratios of fractions by De Winter & Dodou (2015) show the 1990/2013 ratio

is the smallest for p-values between 0.001–0.009 (i.e., 6.17), and substantially higher for

p-values between 0.011 and 0.049 (see Table 3, last column). It is important to realize that

the 1990/2013 ratios (see row 1, Table 4) with the large difference between the 0.031–0.039

and 0.041–0.049 bins (9.21 and 11.28, respectively) is an outlier—the ratios in the two

p-value bins are on average the same between 1992 and 2012. The pattern in the ratios

for the 1990/2013 ratios can be reproduced based on inflated Type 1 error rates. However,

reconstructing the ratios for the last twenty years requires an inflated Type 1 error rate that

is unlikely to occur in real life.

One attempt to specify the parameters to model the ratios (but not the absolute values,

because this proved to be too difficult solely based on an inflated Type 1 error rate) is

presented in Table 5 (column 5). The ratio of studies where H0 is true to studies where H1

is true is set to 1 (a hypothesis is equally likely to be true or false), and the average power

is assumed to be 57.5%. The Type 1 error rate inflation over time has been increased based

on a modest p-hacking strategy (collecting 50 participants in each condition, analyzing the

data after every 10 participants until 100 have been collected). Although this would be sub-

stantial (it assumes p-hacking occurs in all studies where H0 is true), it is not impossible.

However, such a pattern of Type 1 error rates does not predict the ratio of fractions in

the last 20 years, which were on average equal for the 0.031–0.039 and 0.041–0.049 bins.
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Table 5 Type 1 error rates, absolute number of reconstructed Type 1 errors between 0.001–0.049 from 1990 to 2013, and their ratio.

Type 1 error rate
1990

Type 1 error rate
2013

Significant p-values
1990

Significant p-values
2013

Reconstructed 1990/2013
ratio of fractions

p0.001–p0.009 0.008 0.009 1,899 50,338 6.44

p0.011–p0.019 0.008 0.014 581 17,072 7.14

p0.021–p0.029 0.008 0.018 408 13,706 8.16

p0.031–p0.039 0.008 0.022 327 12,755 9.47

p0.041–p0.049 0.008 0.028 279 13,262 11.56

If we would change the Type 1 error rates to reconstruct the very similar ratios in the

majority of the years in the 0.031–0.039 and 0.041–0.049 bins only based on a change in

Type 1 error rates, the Type 1 error rates should be equal across these bins, or even slightly

lower in the 0.041–0.049 bin compared to the 0.031–0.039 bin. This would be opposite to

predictions based on flexibility during the data analysis (De Winter & Dodou, 2015; Head

et al., 2015; Leggett et al., 2013; Masicampo & Lalande, 2012). The p-value distribution for

true effects (based on the power of the studies) leads to a lower frequency of p-values in

the 0.041–0.049 bin than in the 0.031–0.039 bin. A uniform inflation of the Type 1 error

rate (e.g., increasing Type 1 error rates from 0.008 to 0.02 in all p-value bins) would add

the same number of false positive p-values to each bin, but because the frequency of true

p-values decreases from bins with low p-values to bins with high p-values, the relative

increase is stronger in the 0.041–0.049 bin than in the 0.031–0.039 bin because the extra

p-values from false positives constitute a relatively larger increase. As Table 4 shows the

ratios in the 0.031–0.039 bins and 0.041–0.049 bin are very similar in most of the years.

Therefore, reconstructing these ratios would actually require a lower increase in the Type 1

error rate in the 0.041–0.049 bin than in the 0.031–0.039 bin.

Researchers can (and probably do) p-hack studies where H1 is true. If such behavior

increases over time, we can expect the percentage of p-values from true effects in the

0.041–0.049 bin to increase in 2013 compared to 1990. If we would incorporate this effect

in the model, the relative increase over time in the 0.041–0.049 bin would be even stronger

compared to the 0.031–0.039 bin. Again, we do not see huge differences in the ratios

between the 0.031–0.039 and 0.041–0.049 bins, which makes the explanation based on

flexibility in the data analysis even less likely.

Changes in the ratio of true to false effects that are examined
The third factor that could influence the ratios is the percentage of studies where true

effects are examined. A hypothesis is either true or not. The current analysis focuses on

statistically significant findings in the published literature (i.e., with p-values smaller

than 0.05). This means that p-values are either true positives (when H1 is true) or false

positives (when H0 is true). The ratios calculated by De Winter & Dodou (2015) can change

over time based on the idea that for each published study in 2013 that examined a true

hypothesis, there is a much greater percentage of studies that examined a false hypothesis

than in 1990. Most of the studies that examined a false hypothesis will end-up in the file
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drawer, but we can assume (most of) the false positives end up in the literature. This

greater number of false positives among the true positives in 2013 compared to 1990 could,

theoretically, explain the change in ratios over time.

However, the effect of a change over time of the ratio of true positives to false positives

on the p-value ratios in each of the five bins is really small. To account for the observed

ratios by De Winter & Dodou (2015), the changes in these ratios need to be quite substantial

for a close reconstruction of the observed data. For example, when keeping the power

(i.e., 55% power) and Type 1 error rate (i.e., 0.08% in each p-value bin) constant over

time, the observed ratios of fractions (although again, not the observed absolute number

of p-values) can be reconstructed purely based on a change in the H0/H1 ratio over time

if we assume it was 10 times more likely to examine a true hypothesis compared to a false

hypothesis in 1990, and at the same time assume it is 10 times more likely to examine

a false hypothesis compared to a true hypothesis in 2013 (for details, see Supplemental

Information). That is a truly massive change over time, where scientists are 100 times

more likely to examine a false hypothesis than a true hypothesis in 2013 compared to

in 1990. Without empirical data, it is not possible to conclusively reject this alterative

explanation, but it seems highly implausible. More subtle changes over time might exist,

and it is worthwhile to get data on the ratio of true to false hypotheses that researchers

examine. However, with respect to the current question, it is unlikely this factor of the

model underlies the ratios observed by De Winter & Dodou (2015).

To summarize, we can easily reconstruct the observed ratios by assuming a relatively

small decrease in power over the years (e.g., from 55% to 42%). On the other hand, while

increases in Type 1 error rates can be used to reconstruct the observed ratios, the pattern of

inflated Type 1 errors across the 5 bins of p-values is unlikely to emerge in real life, and the

required difference in the ratio of true to false hypotheses researchers examine is even less

likely. Therefore, I conclude it is not very likely to be true that there is a ‘surge of p-values

between 0.041–0.049’, nor that these data suggest there is an increase in questionable

research practices over the last 25 years. A more plausible explanation is a small reduction

in the average power of experiments over the last twenty years. This could be caused by

a stronger focus on smaller effects over the years, after many larger effects have already

been uncovered and researchers focus more on moderators of known effects, or smaller

novel effects.

DISCUSSION
I hope to have illustrated the difficulty in accounting for the observed data by De Winter &

Dodou (2015) purely based on an increase in inflated Type 1 error rates over the years. The

search for evidence of an increase in questionable research practices in science in general,

or at least across a large number of studies, is starting to mirror the search for the ether.

After repeatedly claiming to observe a rise in p-values just below 0.05 without providing

substantial evidence for such a rise (De Winter & Dodou, 2015; Head et al., 2015; Leggett

et al., 2013; Masicampo & Lalande, 2012), and conflicting results across studies examining
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this question, it is time that researchers investigating inflated Type 1 errors use a model of

p-value distributions to check their assumptions.

Any criticisms on the suggestion that changes in power over time are a more likely

explanation of the observed ratios than inflated Type 1 error rates should propose different

parameters for the model of p-value distributions. Regardless of any disagreements about

the specific values for the parameters, the model of p-value distributions I have used

here, based on the ratio of true positives to false positives, the power of studies, the Type

1 error rate, and the effect of publication bias, is a mathematical reality. If researchers

aim to draw conclusions about the Type 1 error rate in the literature based on p-value

distributions, they need to specify values for the parameters in this model, and interpret

how plausible these values are. My explanation for the observed p-value distribution in

De Winter & Dodou (2015) contains clearly testable predictions, such as the leniency of

reviewers and editors to accept marginally significant p-values as support for a hypothesis,

and the prediction that, on average, power has decreased from 1990–2013. Testing these

predictions in future studies allows the values I have chosen for the parameters in the

model to be either falsified or corroborated.

Analyzing huge numbers of p-values, which come from studies with large heterogeneity

in effect sizes, might lack the sensitivity to provide support for an inflation of Type 1

error rates. Furthermore, automatically retrieving p-values from abstracts does not allow

researchers to identify all theoretically relevant tests that are performed in an article that

might contain multiple studies. Articles also contain many statistical tests not related to the

main hypothesis, and might describe non-significant results without reporting statistics

(e.g., no other differences reached statistical significance). A better approach seems to

be to perform targeted analyses of small sets of similar studies, which might be able to

yield support for p-hacking (e.g., Lakens, 2014b; Simonsohn, Nelson & Simmons, 2014; Van

Assen, Van Aert & Wicherts, in press). I do not doubt that Type 1 error rates are inflated in

some lines of research, but the inflation and the percentage of experiments that examine

a hypothesis where the null hypothesis is true need to be large to observe an effect on the

p-value distribution across a large number of studies.

CONCLUSIONS
Although it is important to control Type 1 error rates when performing statistical tests

(e.g., Lakens, 2014c), I believe statistical power and publication bias due to the file drawer

problem, and not p-hacking, are the biggest problems in the scientific literature. Without

publication bias, Type 1 errors would be quite easily identified as they lead to follow-up

research that will not observe the hypothesized effect. Even with publication bias,

meta-analyses can identify sets of studies that lack evidential value, indicating the studies

are a result of selection and reporting biases (Lakens, Hilgard & Staaks, in press; Simonsohn,

Nelson & Simmons, 2014; Van Assen, Van Aert & Wicherts, in press). As the current analyses

reveal, the p-value distributions in 1990 and 2013 in the data by De Winter & Dodou (2015)

in 1990 and 2013 could be reproduced by assuming the average power of the studies was

around 50%. This suggests that from the outset only half of the performed studies could
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be expected to observe a statistically significant effect when the alternative hypothesis is

true. This is clearly a huge waste of resources (especially in combination with publication

bias). Inflated Type 1 errors and practices such as p-hacking have been very salient in recent

years, but I believe it is worthwhile to point out that designing well-powered studies with

high informational value (e.g., Lakens & Evers, 2014) and preventing publication bias

(e.g., Nosek & Lakens, 2014) are at least, and I personally believe even more, important to

improve our science.
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