The youngest ellimmichthyiform (clupeomorph) fish to date from the Oligocene of South China (\#56381)

First submission

Guidance from your Editor

Please submit by $\mathbf{5}$ Jan $\mathbf{2 0 2 1}$ for the benefit of the authors (and your $\$ 200$ publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

(1)
Custom checks
Make sure you include the custom checks shown below, in your review.

Raw data check
Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.
Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the materials page.

(!) Custom checks

9 Figure file(s)
1 Table file(s)
1 Other file(s)

New species checks

Have you checked our new species policies?? Do you agree that it is a new species?
(1. Is it correctly described e.g. meets ICZN standard?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

1. BASIC REPORTING

2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review
When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English language used throughout.

Intro \& background to show context. Literature well referenced \& relevant.

Structure conforms to PeerJ standards, discipline norm, or improved for clarity.

Figures are relevant, high quality, well labelled \& described.

Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of the journal.

Research question well defined, relevant \& meaningful. It is stated how the research fills an identified knowledge gap.

Rigorous investigation performed to a high technical \& ethical standard.

Methods described with sufficient detail \& information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted. Meaningful replication encouraged where rationale \& benefit to literature is clearly stated.

All underlying data have been provided; they are robust, statistically sound, \& controlled.

Speculation is welcome, but should be identified as such.

Conclusions are well stated, linked to original research question \& limited to supporting results.

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: $A A, B B, C C$

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The youngest ellimmichthyiform (clupeomorph) fish to date from the Oligocene of South China

Gengjiao Chen ${ }^{\text {Corresp., } 1}$, Mee-Mann Chang ${ }^{2,3}$, Feixiang Wu ${ }^{2,4}$, Xiaowen Liao ${ }^{1}$
${ }^{1}$ Natural History Museum of Guangxi Zhuang Autonomous Region, Nanning, China
${ }^{2}$ Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
${ }^{3}$ College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
${ }^{4}$ CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
Corresponding Author: Gengjiao Chen
Email address: cgengjiao@aliyun.com

A new ellimmichthyform, Guiclupea superstes, gen. et sp. nov., from the Oligocene Ningming Formation of Ningming Basin, Guangxi Zhuang Autonomous Region, South China is described herein. With relatively large body size, parietals meeting at the midline, anterior ceratohyal with a beryciform foramen in the center, a complete predorsal scutes series of very high number and about equally-size scutes with radiating ridges on dorsal surface, first preural centrum unfused with first uroneural but fused with the parhypural, and first ural centrum of roughly the same size as the preural centrum, Guiclupea superstes cannot be assigned to the order Clupeiformes. The phylogenetic analyses using parsimony and Bayesian inference methods with Chanos/Elops as outgroup respectively suggests that the new form is closer to ellimmichthyiform genus Diplomystus than to any other fishes, although there are some discrepancies between the two criteria and different outgroup used. It shares with Diplomystus the high supraoccipital crest, pelvic-fin insertion in advance of dorsal fin origin, and number of predorsal scutes more than 20. The new form is the youngest ellimmichthyiform fish record in the world so far. Its discovery indicates that the members of the Ellimmichthyiformes had a wider distribution range and a longer evolutional history than previously known.

Guiclupea superstes, gen. et sp. nov., the youngest ellimmichthyiform (clupeomorph) fish to date from the Oilgocene of South China

Gengjiao CHEN ${ }^{1 *}$, Mee-Mann CHANG ${ }^{2,3}$, Feixiang WU ${ }^{2,4}$, Xiaowen LIAO ${ }^{1}$
${ }^{1}$ Natural History Museum of Guangxi Zhuang Autonomous Region, Nanning 530012, China;
${ }^{2}$ Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate
Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China;
${ }^{3}$ College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Bejing 100049, China
${ }^{4}$ CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China;

*Corresponding author: cgengjiao@aliyun.com
Abstract A new ellimmichthyform, Guiclupea superstes, gen. et sp. nov., from the Oligocene Ningming Formation of Ningming Basin, Guangxi Zhuang Autonomous Region, South China is described herein. With relatively large body size, parietals meeting at the midline, anterior ceratohyal with a beryciform foramen in the center, a complete predorsal scutes series of very high number and about equally-size scutes with radiating ridges on dorsal surface, first preural centrum unfused with first uroneural but fused with the parhypural, and first ural centrum of roughly the same size as the preural centrum, Guiclupea superstes cannot be assigned to the order Clupeiformes. The phylogenetic analyses using parsimony and Bayesian inference methods with Chanos/Elops as outgroup respectively suggests that the new form is closer to ellimmichthyiform genus Diplomystus than to any other fishes, although there are some discrepancies between the two criteria and different outgroup used. It shares with Diplomystus the high supraoccipital crest, pelvic-fin insertion in advance of dorsal fin origin, and number of
predorsal scutes more than 20. The new form is the youngest ellimmichthyiform fish record in the world so far. Its discovery indicates that the members of the Ellimmichthyiformes had a wider distribution range and a longer evolutional history than previously known.

Keywords Ellimmichthyiforms, Oligocene, southern China, phylogeny, paleobiology

Introduction

The Ellimmichthyiformes is one of the two major clades of the Clupeomorpha (Nelson et al., 2016). The Recent Clupeomorpha is represented only by the order Clupeiformes, which is amongst the most economically important fish species for food (Zhang, 2001), and containing both fossil and extant herrings, anchovies, and other relatives. The order Ellimmichthyiformes is an extinct cosmopolitan clade (Nelson et al., 2016), established by Grande in 1982. It initially included only a single family Ellimmichthyidae (=Paraclupeidae, see Chang \& Grande 1997) with only two genera- Diplomystus and Ellimmichthys, diagnosed by bearing a series of predorsal scutes expanding laterally then taking a subrectangular-shape, and laking some derived characters of the Clupeiformes, e.g., presence of recessus lateralis, parietal bones completely separated by the supraoccipital, and loss of the 'beryciform' foramen in anterior ceratohyal (Grande, 1982, 1985). Since the founding of Ellimmichthyiformes, especially in the last two decades, many new and previously known genera and species have been added or moved to this order (Silva Santos, 1990, 1994; Bannikov \& Bacchia, 2000; Chang \& Maisey, 2003; PoyatoAriza \& García-Garmilla, 2000; Forey et al., 2003; Hay et al., 2007; Alvarado-Ortega \& OvallesDamián 2008; Khalloufi et al., 2010; Newbrey et al 2010; Murray \& Wilson, 2011, Malabarba et al., 2004; Bannikov, 2015; Vernygora \& Murray, 2015; Murrey et al., 2016; Alvarado-Ortega \& Melgarejo-Damián. 2017; Plock et al., 2020; etc), though some of them with the predorsal scutes
pattern only partially agree, with or completely disagree with this order-level character, e.g., Ellimma branneri, whose anterior predorsal scutes is longer than broad; Scutatospinosus itapagipensis and Codichthys carnavalii, without any subrectangular predorsal scutes at all, completely disagree with the order-level character. Along with the increasing of the members of this order, several families were erected, and the interest in the definition, classification, and intra-relationship of the group has been increasing (Bannikov \& Bacchia, 2000; Chang \& Maisey, 2003; Zaragüeta-Bagils, 2004; Alvarado-Ortega et al., 2008; Murray \& Wilson, 2013; Figueiredo \& Ribeiro 2016; Vernygora et al., 2016; Marramà \& Carnevale 2017; Boukhalfa et al., 2019; Vernygora \& Murray, in press; etc), theugh no definitive consensus has been reached on these issues. The main differences among the results of previous studies are the relationship of Armigatus and Diplomystus [some analysis suggested that Armigatus is sister to Diplomystus (Chang \& Maisey, 2003, Murray \& Wilson, 2013; others suggested that Armigatus is in a more basal (Forey, 2004; Figueiredo \& Ribeiro 2016) or derived position than Diplomystus (Vernygora \& Murray, 2016; Marramà \& Carnevale 2017; Boukhalfa et al., 2019), or Armigatus is not an ellimmichthyiform member (Zaragüeta-Bagils, 2004)], and Ornategulum is an ellimmichthyiforms or not (Murrey \& Wilson, 2013; Marrama et al., 2018; Figuereido \& Ribeiro 2017; Boukhalfa et al., 2019). To date, reported members of the group have reached 21 genera and 37 species at least, ranging from the Early Cretaceous to middle Eocene marine and nonmarine strata of Eastern Asia, Middle East, North and South America, Africa, and Europe (Figure 1). No ellimmichthyiform fish from the strata younger than the Eocene has ever been reported. Accordingly, it was believed that the ellimmichthyiforms have finally beceme extinct after the middle Eocene. However, recently, an Oligocene ellimmichthyiform fish was discovered from the non-marine deposits of Ningming Basin, Guangxi Zhuang Autonomous

Region, South China. Consequently, this new ellimmichthyiform fish is the youngest one to date. This discovery not only extends the spatial and temporal distribution of ellimmichthyiform ${ }_{2}$, but also shed new light for our understanding of the evolutionary history and paleobiogeography of the order. Herein we provide descriptions of the new form, perform a phylogenetic analysis of the Ellimmichthyiformes, and discuss the taxonomic position and the paleobiographical implications of the new form.

Abstract

Abbreviations

Institutional Abbreviation-IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China. NHMG, Natural History Museum of Guangxi Zhuang Autonomous Region, China.

Anatomical Abbreviations-aa, angulo-articular; ach, anterior ceratohyal; as, autosphenotic; br, branchiostegal rays; cl, cleithrum; cor, coracoids; cs, caudal scute; d, dentary; ect, ectopterygoid; en, epineural; enpt, entopterygoid; ep, epural; epl, epipleural; fr, frontal; h, hypural; hy, hyomandibular; io, infraorbital; iop, interopercle; la, lacrimal; le, lateral ethmoid; met, metapterygoid; ms, mesethmoid; msc, mandibular sensory canal; mx, maxilla; ns, neural spine; op, opercle; pa, parietal; pch, posterior ceratohyal; pcl, postcleithra; pd, predorsal bones; ph, parhypural; pmx, premaxilla; pop, preopercle; pr, pleural rib; ps, parapophysis; pt, posttemporal; pto, pterotic; pu, preural centrum; q, quadrate; ra, retroarticular; sc, scapula; scl, supracleithrum; scr, sclerotic bone; so, supraorbital; sop, subopercle; smxa, anterior supramaxilla; $\mathbf{\operatorname { s m x p }}$, posterior supramaxilla; $\mathbf{s p}$, sphenotic; spo, supraoccipital; $\mathbf{s y}$, symplectic; \mathbf{u}, ural centrum; uh, urohyal; un, uroneural; vo, vomer; vs, ventral scutes.

Materials and Methods

Fossil specimens except NHMG 038777, described herein, including artieulaf skeletons and
detached bones, were collected from the outcrops about $2.5 \sim 3.5 \mathrm{~km}$ west of Ningming County, Guangxi, South China (Figure 1), about 40 km away from the boundary of China and Vietnam and about 120 km northwest of the South China Sea, and now housed in the NHMG. The fossilbearing strata pesitions in the middle-upper part of the Second Member of the Yongning Group (Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region, 1985), or Ningming Formation (Li et al., 1995), which is a set of fossiliferous lacustrine sediments dominated by light-gray, yellowish mudstones, occasionally containing fine sand grains. This deposition also bears a variety of cyprinid and a few siluriform and perciform fishes, and a large number of plant macrofossils (Chen et al., 2018). No volcanic material which can be used for isotopic dating was found at the locality. The geological age of the Ningming Formation, according to palynologists (Wang et al., 2003), is Oligocene. Paleobotanists accepted this opinion when studied macrofossil plant from the same strata (Li et al., 2003; Shi et al., 2010, 2012, 2014; Wang et al., 2014; Dong et al., 2017; Ma et al., 2017; etc). We applied this geological age also when we studied Huashancyprinus robustispinus (Cyprinidae, Cypriniformes) from the same locality and horizon (Chen \& Chang, 2011) and adopt it herein. NHMG 038777 is a disarticulated dentary collected from Yongning formation of Santang, Nanning basin, Guangxi. The geological age of Yongning formation is Oligocene (Zhao, 1983, 1993; Quan et al., 2012)

Fossil fish materials were prepared mechanically with steel needles of different sizes under a binocular microscope. Line drawings were made based on the observations of the fossils under an Olympus SZ61 microscope and the photos.

The taxonomy terminology and the methods of counting and measurement used in here follow Grande (1982) and Forey et al. (2003). The descriptions of gill raker follow Bornbusch \& Lee (1992). Specimens used for comparison include: 1) Paraclupea chetungensis Sun 1956,
including IVPP V816, V2986.2, V3002.1, 5-8, 10, 12, 15, 19, from the Lower Cretaceous Chawan Formation, eastern China; 2) Diplomystus shengliensis Zhang et al. 1985, including SOF 790001, SOF 790002, and SOF 790003, from top of series 4 to bottom of series 3 of the Shahejie Formation, Middle Eocene, East China; 3) Knightia bohaiensis Zhang et al. 1985, including SOF 790003, from top of series 4 to bottom of series 3 of the Shahejie Formation, Middle Eocene, East China; and 4) dried skeleton and disarticular bones of Ilisha elongate, NHMG, collected from Nanning Dancun Market.

The electronic version of this article in portable document format will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank Life Science Identifiers (LSIDs) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn : lsid: zoobank.org: pub: 99B7F0EE-3695-4178-96061CD8BD90316C. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central, and CLOCKSS.

The Phylogenetic analyses are based on data matrix (see Appendix 1S-3S) eonsisted of 55 morphological characters and 40 taxa, including three Recent clupeiform species (Denticep. clupeoides, Chirocentrus dorab, and Odaxothrissa vittata (the first one is the only extant member of the Denticipitoidei; the latter two represent the Clupeoidei), a gonorynchiform or elopomorph (Chanos chanos or Elops saurus, being used as outgroup alternatively to polarize the characters and root the tree), the enigmatic fossil Ornategulum sardinioides Forey 1973, and
our new form (to test its position within the Clupeomorpha). Characters are mainly adopted from Chang \& Maisey (2003), and Murray \& Wilson (2013).

The analyses use both parsimony and Bayesian inference methods, for both methods have advantages and disadvantages for morphological data (Bai et al., 2020). The parsimony analyses were performed with TNT 1.5 (Goloboff et al., 2008), using the Traditional Search method with 1000 replicates and tree bisection and reconnection (TBR) swapping algorithm. All characters are unordered and equally weighted. The most parsimonious trees (MPTs) generated by the analysis were used to construct a strict consensus tree. Tree length, consistency index (CI), retention index (RI), Bremer support and bootstrap values were then calculated for the strict consensus tree.

Bayesian analyses were conducted by MrBayes 3.1.2 (Ronquist \& Huelsenbeck, 2003). For the substitution models, the Mkv model was used with an assumption of gamma rate variation across characters. Markov chain Monte Carlo analysis consists of four chains, which were run simultaneously with 2000000 trees, sampling $1 / 100$ trees, with a burn-in value of 5000 . The remaining trees were used to build a 50% majority rule consensus tree, and statistical support of each node was assessed by posterior probabilities.

Systematic Paleontology

Infraclass TELEOSTEI Müller, 1845
Cohort CLUPEOCEPHALA Patterson \& Rosen, 1977
Superorder CLUPEOMORPHA Greenwood et al., 1966
Order ELLIMMICHTHYIFORMES Grande, 1982
Diplomystus clade

Genus GUICLUPEA gen. nov.
Diagnosis: A pretty large-sized, double-armoured ellimmichthyiform fish, differing from other genera of the order the following combination of characters: dorsal body margin without marked angle at the dorsal fin insertion; posttemporal large; predorsal scutes series complete, with scutes small, numerous (about 55), all about equal in size, and with ridges on dorsal surface; number of predorsal bones ten or more; no diastema between second and third hypural; proximal end of middle principal caudal fin ra, nlarged.

Etymology : 'gui', the abbreviation in Chinese of the Guangxi Zhuang Autonomous Region, a province of China from where the fossil materials were collected; 'clupea', from the Latin, to indicate clupeomorph affinities of the new taxon.

Type species : Guiclupea superstes gen. et. sp. nov.

Guiclupea superstes gen. et. sp. nov.
(Figs. 2-7)
Diagnosis: See generic diagnosis. Pectoral fin rays 18 , pelvic fin rays $5 \sim 6$, dorsal fin rays 14 , anal fin rays 38 , total number of vertebrae (include ural centra) about 46 .

Etymology: 'superstes', Latin 'survivore'. The species name means that the species survived in $_{\perp}$ Oligocene when almost all menbers of the order Elimmchthyiforms had become extinct.

Holotype: NHMG 005532, a nearly complete skeleton, part and counterpart (Figs. 2A-B).
Paratypes: NHMG 033659 (Fig. 3A), a relatively complete skeleton with the snout and the caudal fin rays missing; NHMG 033658 (Fig. 6), a skeleton from the anterior margin of the orbital to the caudal peduncle, part of the anterior portion and counterpart of the posterior portion; NHMG 011648 (Fig. 7A), caudal peduncle to caudal fin, part and counterpart.

Additional material: NHMG 033660 (Fig. 5), disarticulated bones of skull and anterior part of the body; NHMG 004929, an incomplete skeleton with the posterior part of the body missing; NHMG 033361, disarticulated bones of skull, the anterior ceratohyal and entopterygoid in this specimen were showed in Fig. 4E; NHMG 033680, disarticulated bones of skull and anterior part of the body, the posterior ceratohyals in this specimen shored in Fig. 4F; NHMG 033685, premaxilla (Fig. 4C); NHMG 038778, an incomplete skeleton with the head and caudal skeleton and fin missing; NHMG 033681-033683 and NHMG 038777, dentary (NHMG 033681 showed in Fig. 3D); NHMG 011647 and NHMG 011649, caudal skeleton and caudal fin; NHMG 011650-011651, caudal skeleton.

Localities and horizon: Gaoling Village ($22^{\circ} 07 \mathrm{~N}, 107^{\circ} 02^{\prime} \mathrm{E}$), Ningming County, and Santang $\left(22^{\circ} 52^{\prime} \mathrm{N}, 108^{\circ} 25^{\prime} \mathrm{E}\right)$, Nanning, Guangxi province, China; middle to upper portion of the second member of the Yongning Group or Ningming Formation and Yongning Formation; Oligocene.

Description

(1) General Appearance. This new form is a prety large-sized double-armored clupeomorph. The total length of the holotype (Figs. 2A-B) is about 526 mm , and the known largest incomplete specimen, NHMG 033659 (Fig. 3A), with the preserved portion reaches 638 mm in length, and the distance from the anterior margin of the lacrimal to the caudal fin base is about 585 mm . The fish has an elongate fusiform body. The standard length in holotype is about 3.3 times of maximum body depth. The anterior dorsal margin of the fish body is rounded and convex, without a marked angle at the origin of the dorsal fin as the typical members of paraclupeids. The ventral border in front of the insertion of the pelvic fin is also convex, but is straight and ebliquely rising upwards behind the insertion, making the posterior part of the body gradually
narrowing caudally. The origin of the dorsal fin is posterior to the level of the insertion of the pelvic. The anal fin has a long base. The caudal fin is deeply forked. There are complete series of predorsal and ventral scutes along the dorsal and ventral margin of the body respectively. The meristic characters are listed in Table 1.
(2) Skull Roof. The head is slightly longer than deep (Figs. 2A; 4A). The skull roof above the eye is narrow. The frontal is a long bone, with its posterior one-fourth expanding laterally. There is a longitudinal ridge of the supraorbital sensory canal running along the dorsal surface of this bone (Figs. 4A-B; 5). The frontal sutures with the anterior edge of the parietal posteriorly. Two parietal bones meet at the midline, at least in the anterior part (Fig. 4A-B), as in the case of the primitive clupeomorphs (Grande, 1985). No fontanelle between the anterior portions of the frontals is observed, which is often present in clupeoids and Paraclupea chetungensis (Chang and Grande, 1997). Anterior to the frontal is the mesethmoid, which bears a lateral process on each side (Fig. 5). Lateral ethmoid, contacting the frontal at its anteriolateral margin, is situated anterior to the orbit, forming the lateral portion of the anterior wall of the orbit (Figs. 4A-B). The outlines of pterotic and sphenotic are not elear. But the strong ventrally directed process of the autosphenotic can be seen, lying in front of the head of the hyomandibula (Fig. 4A-B). The posttemporal is a very large bone (Figs. 4A-B; NHMG 004929). Supraoccipital is situated posteriorly and sutures with the parietals anteriorly. Supraoccipital crest is well-developed, being high and triangle-shaped, making the lateral profile of the skull roof with a distinct angle between the anterior and the posterior parts (Fig. 4A-B). The external surface of all the skull roof bones lacks ornamentation, except for a longitudinal ridge containing the supraorbital sensory canal (Figs. 2A-B, 4A, 5, 6A). No openings of the recessus lateralis are observed.
(3) Opercular Series and Cheek Bones. The opercle is trapezoidal in shape. Its ventral part is
wider than the dorsal part, with the anteroventral corner protrudes downward and a little bit forward. The depth of the opercle is about 1.5 times of its width. No ornamentation on the surface of the opercle can be observed (Figs. 4A, 6). Two arms of the preopercle, with the dorsal branch slightly longer than the ventral branch, form an obtuse angle. The preopercular sensory canal runs along the mid-line of the bone sending out several branches backwards and downwards. Interopercle and subopercle are long and thin, with smooth surface (Figs. 4A-B, 6A). About 8-9 branchiostegal rays can be detected in the holotype, although the outline of each ray is not very clear (Fig. 2A). In NHMG 033659, five of the posterior branchiostegal rays of the right side can be counted below the interopercular bone, while four displaced, slender anterior branchiostegal rays are discernible in the position anterior to the interopercle (Fig. 4A-B).
(4) Circumorbital Bones. There is an arched, long bone above the frontal bene in NHMG 033659 (Fig. 4A-B), we guess that it ought to be the supraorbital bone displaced from its original position. The sclerotic ring, consisting of two halves, can be observed in the posterior and anterior part of the orbit. Anterior to the orbit, there are two bones, which seem to bear sensory canals. The large, sub-trianglular, anterior thin bone is the lacrimal, whereas the posterior rectangle one may be the infraorbital 2 (Fig. 4A-B). Detached infraorbital bones are preserved in NHMG 033660 (Fig. 5).
(5) Jaws and Palate. The mouth is somewhat superterminal based on NHMG 004929. The oblique gap is relatively short, with the lower jaw articulation under the anterior border of the orbit (Fig. 4A; NHMG 004929). The upper jaw consists of a premaxilla, a maxilla and two supramaxillae. The premaxilla is a small, long, triangular bone, with a row of small conical teeth on its oral margin (Fig. 4C). The maxilla is a long bone, with its anterior part narrow and thick while its posterior part breadening into a thin blade and bearing a rounded ventral profile. The
oral margin of the thin blade is finely serrated. The anterior end of the maxilla develops into a round ethmoid head and a round palatine head (Fig. 5, NHMG 004929, 033684, 033686, 033689). Along the dorsal edge of the maxilla two supramaxillae can be detected in NHMG 004929 and 033659 (Fig. 4A). In NHMG 033689, two disarticulated supramaxillae bones seem to be roughly equal in size and similar in shape, and their external surfaces are smooth, except for a low ridge extending along its midline.

The dentary has a well-developed coronoid process. In NHMG 033681-3 and NHMG 038777, there is a single row of small conical teeth along the short toeth oral margin of the dentary (Fig. 4D-E). Teeth close to the symphysis of the two dentaries are slightly stouter than that in the rear But in specimen NHMG 033660, no teeth can be seen on the oral margin of the dentary which are probably missing during preparation or fossilization. Along the lower lateral margin of the dentary, the mandibular sensory canal is well developed with $6 \sim 7$ pores (Fig. 5). The anguloarticular is a triangular bone with mandibular sensory canal running along it lower margin of lateral surface. Length of angulo-articular is about half of that of the dentary. Its posterior end forms the articular process for the quadrate (Figs. 4A-B, 5). The very small retroarticular bone is located below the postarticular head of the angulo-articular bone (Fig. 4A-B).

The parasphenoid can be partly observed in NHMG 033658 and 004929. It is difficult to judge if a basipterygoid process and the "osteoglossid" tooth patch of the bone is present or not due to the preservation. The quadrate, as is generally for teleosts, consists of a fan-like plate at its dorsal side and a rod-like posterior process at its ventral side. The articular head of the quadrate fits into the socket at the postero-dorsal end of the angulo-articular (Fig. 4A-B).
(6) Hyoid Arch. The area for hyomandibular articulation with the braincase is broad. The hyomandibular bears a thin, broad anterio-dorsal plate and a long, narrow ventral shaft, which
ventrally connects the upper end of the symplectic (Figs. 4A-B, 5). The condyle for articulation with the opercle is large. From that level, a prominent ridge runs ventrally along the posterior margin of the inner surface of the shaft. The foramen for hyomandibular branch of facial never (VII.hm) is clear. The symplectic inserts the notch between the plate of the quadrate and its ventral process with its anterior end to complete the suspension of the lower jaw to the braincase (Figs. 4A-B). Detached entopterygoid is shown in NHMG 033660 and 033661. It is a broad, triangular bone, with numerous fine conical teeth covering its buccal side (Figs. 4F, 5). The metapterygoid is an expansive, trapezoid bone. Its anterior margin is posterior to the anterior margin of the quadrate, and its posterior margin reaches a relatively more dorsal position, almost in line with the hyomandibular condyle (Figs. 4A-B, 6A).

The anterior ceratohyal is a thick, sub-rectangular plate with its length about two times ef its depth. Its dorsal margin is slightly convex, whereas its ventral margin is slightly concave. Its central part is pierced by a large elongated oval foramen (Figs. 4F, 5) as in primitive clupeomorphs (Grande, 1985). The posterior ceratohyal is a triangle plate without foramen within it. There is a small notch on its dorsal posterier margin (Fig. 4G). The urohyal shows a narrow ventral keel and a vertical crest. Height of the crest gradually increases posteriorly (Fig. 5). Gill arches are not well-preserved, but many dislocated, long and pointed gill rakers with a bifid base which embraced the gill arches are observed in several specimens (Figs. 3A, 4F-G, 5). Length of the gill rakers varies from about one vertebral centrum to $2 \sim 3$ time as long as a vertebral centrum or even more. There are numerous fine conical denticles recurved posteriorly throughout almost the upper edge of the gill rakers, differing from the situation in Diplomystus sp. from English chalk in which the rakers appear to be smooth throughout most of their length (Forey, 2004)
(7) Paired Fins and Girdles. Supracleithrum is small, lying below and posterior to the very developed posttemporal. The cleithrum is a long and S-shaped bone, with its upper end covered by the supracleithrum. Below the cleithrum is the developed, laminate coracoid with a large notch on its anterior margin (Figs. 4A, 5-6). The pectoral fin is located rather high in the flank. The fin is long, extending over the insertion of the pelvic fin in NHMG 033658 (Fig. 6A). In other specimens, the fin rays do not look so long, probably because θ f the distal ends of the fin rays were missing during the process of fossilization. Eighteen pectoral fin rays can be counted (Fig. 6A).

The pelvic girdle cannot be observed due to the covering of the abdominal scutes. The pelvic fin is small, with about 5~6 fin rays, inserted at the level in front of the origin of the dorsal fin (Figs. 2A, 6A). The length of the longest pelvic fin ray is equivalent to the span of $6 \sim 7$ postpelvic scutes.
(8) Dorsal and Anal Fins. The origin of the dorsal fin is situated slightly posterior to the midpoint of standard body length. There are about 14 dorsal fin rays (Figs. 2A, 6A). The first two are short and unbranched, while the third the fifth rays are the longest ones. Twelve pterygiophores are preserved in the holotype. The first is comparatively long and broad, inserted between the tenth and eleventh neural spines, whereas those posterior to it are much narrower (Fig. 2A).

The origin of the anal fin lies behind the end of the dorsal fin base, closer to the pelvic fin insertion than to the caudal fin base. The anal fin base is comparatively long, containing about 38 rays, of which the anterior six are longer than the posterior ones. At least 36 pterygiophores are preserved in the holotype. In specimen NHMG 038778, 38 pterygiophores can be counted. Anterior pterygiophores are longer than the posterior ones. The first pterygiophore inserts
between the last pleural rib and the first hemal spine (Figs. 2A, 3A).
(9) Vertebral Column. Twenty-three caudal vertebrae, not including two ural centra, and nineteen abdominal vertebrae are recognized in the holotype (Fig. 2A-B). We added two to our counts for the vertebrae that normally lie under the superficial bones of the skull and pectoral girdle (e.g., opercle, cleithrum), thus, the total number of the preural vertebrae is about 44 in the holotype. The length and depth of the vertebra is about equal, except the last several ones which are shorter than the anterior ones (Figs. 2A, 3A). There are two longitudinal ridges along the lateral side of each vertebra, forming two pits on their lateral side (Fig. 3A). Halves of the neural arches fused medially. The hemal spines start from the $21^{\text {st }}$ or $22^{\text {nd }}$ centrum, and their length decreases gradually until the fourth or fifth preural centrum where they increase greatly to support the fin rays of the lower caudal lobe (Fig. 7).

Nineteen pairs of ribs are present in the holotype, but in NHMG 033659 only 18 pairs of ribs could be counted. All the pleural ribs insert deeply into the centra. Ventrally, these ribs touch the lateral wings of the abdominal scutes. There are numerous thin and long epineural and epipleural intermuscular bones. The epineural series extends from the occiput to the first preural centrum. The epipleural series starts from approximately under the last three abdominal vertebrae and extends to about the first preural centrum. Longest epineural reaches the length about five to six centra, and the epipleural is about the length of four to five centra (Figs. 2A-B, 3A, 6).
(10) Caudal Skeleton and Fin. Caudal skeleton and fin are preserved relatively well in specimens NHMG 011646-011651. The neural and haemal spines of the second to the fourth or fifth preural centrum are elongated and somewhat flattened in that of the second and third preural centrum, and support a few caudal fin rays and procurrent rays. The structure of the caudal skeleton, collectively, differs from that in clupeiforms but closely resembles that in
ellimmichthyiforms, i.e., bearing at least two autogenous uroneurals, and the first one without fusing with the first preural centrum as in clupeoidei, though it is long and thick, extending anteriorly to reach the anterodorsolateral side of that centrum. The second uroneural is much shorter than the first one, extending anteriorly only to the anterior end of the second ural centrum, although its distal end reaches that of the first one. It cannot be confirmed if a third uroneural is present or not. There are two free ural centra, the first one is about equal in size to the first preural centrun, but the second one is much shorter than the first one. Six hypurals are present. The proximal end of first hypural is in contact with but not fused to the first ural centrum, although the narrow second hypural is fused to this centrum with its proximal end. The hypural 3 is the largest. Anteriorly, its enlarged proximal end contacts with the distal end of the second ural centrum entirely constraining the hypurals above it to ge forwardly to $\overline{\text { an }}$ tact with this centrum; posteriorly, it expands, filling the entire space between the second and the fourth hypurals, then there is no diastema between them, as the case in Armigatus brevissimus and the Eocene Diplomystus species. The fourth to sixth hypurals arenarrower and shorter in turn. The proximal end of parhypural fused with the first preural centrum, which has a long and broad neural arch and spine. There are three epurals (NHMG 011650). The caudal fin is deeply forked with the upper and lower lobes of about equal in length, containing 19 principal fin rays ($\mathrm{I}_{\mathbf{2}} 9-8, \mathrm{I}$), and eleven and nine procurrent rays above and below the principal caudal fin rays, respectively (Figs. 2A, 7). The proximal ends of the middle principal fin rays are preserved as impressions in NHMG 011648, but relatively well-preserved in NHMG 011649, from which we can see that these ends enlarge obvio $\mathrm{\overline{=} 1}$. Caudal scutes can be seen in NHMG 011647.
(11) Predorsal Bone and Scutes. There are ten or eleven predorsal bones with thin anterior and posterior bony expansions. The anterior bones are broader than the posterior ones, and the
first three stretches almost vertically (Figs. 2A-B, 3A) or somewhat postero-ventrally (Fig. 6), whereas the rest antero-ventrally.

There is a series of scutes along the dorsal margin from the occiput to the origin of the dorsal fin in the holotype. The entire series includes about 55 small, equally-sized scutes (Fig. 2). Fer poor preservation, the details of the scutes cannot be observed in this specimen. In specimen NHMG 038778, about six predorsal scutes from just behind the occiput and about nine enes just anterior to origin of the dorsal fin can be recognized. The detail of the scutes cannot be observed for poorly preserved alse. However, it can be detected in NHMG 033658 (Fig. 6), in which numerous small dorsal scutes are preserved along the dorsal margin from the occiput to the seventh predorsal bone. Most of the scutes are displaced, some of them are even upside-down and showing their smooth ventral surface, but many scutes show their dorsal surface ornamented with several radial ridges. In NHMG 033659, a few predorsal scutes with weak ridges are preserved anterior to the dorsal fin. In NHMG 033680, several displaced dorsal scutes bearing radial ridges as NHMG 033658 can be detected. No dorsal scutes are seen behind the dorsal fin base,

About 24 prepelvic scutes are counted from the posterior edge of the coracoid to the insertion of pelvic fin in the holotype (Fig. 2A-B) and in NHMG 033658 (Fig. 6). Fourteen postpelvic scutes are present in the holotype. Only first 11 postpelvic scutes are preserved in NHMG 033658. Several much smaller ventral scutes can be detected below the coracoids in the holotype or displaced in the lower part of the head in NHMG 033659. The scutes behind the coracoid bear strong ventral spine and much higher lateral wings. The lateral wings are wider at their ventral edges, but get narrower gradually dorsally, extending from the ventral edge of the body up to about one quarter of the way to the vertebral column (Figs. 2A, 3A, 6).
(12) Squamation/Scales. In NHMG 038778, impression of some squamations can be seen in the body above the vertebral column. The squamation is small in shape. The detail of it is not clear.

DISCUSSION

Phylogenetic Relationships of the New Form

Although the predorsal scutes of the new form do not expand laterally as in the diagnosis given by Grande (1982) of the Ellimmichthyiformes when he established the order, the presence of two parietals meeting at the midline, a beryciform foramen within the anterior ceratohyal, ornamentations on the predorsal scutes, and the structure of the caudal skeleton suggest that it apparently differs from clupeiforms but resembles ellimmichthyiforms (Grande, 1982, 1985). To further assess the systematic position of the new form, phylogenetic analyses are conducted.

Two data matrices were constructed for the phylogenetic analyses. Data matrix 1 (D1) used Chanos chanos as outgroup taxon, whereas data matrix 2 (D2) used Elopse saurus taking the place of Chanos chanos as outgroup taxon. Each data matrix includes 55 morphological characters and 40 taxa (see Apeendix 2S-3S), being analyzed using parsimony and Bayesian inference methods respectively.

The analysis of the D1, using parsimony criteria, generated 4 equally most parsimonious trees (PMTs). A strict consensus tree of 189 steps was built, with a consistency index (CI) of 0.323 and retention index (RI) of 0.670 (Fig. 8, Appendix Figure 1S). The cladogram of the strict consensus tree (SCT1) shows two main clades of Clupeomorpha: Clupeiformes and Ellimmichthyiformes. The monophyly of the Ellimmichthyiformes, including Ornategulum as the most basal taxon, is supported by the following features: two parietals meeting at the midline (2:0), two supramaxillary bones (8:0), presence of the "basipterygoid" process (9:1), anterior
ceratohyal with foramen (11:1), and three epurals (38:0). Gasteroclupea and Sorbinichthys lie in the basal position of the Ellimmichthyiformes, but do not form sister groups as suggested by Marramà et al. (2019) and Boukhalfa et al. (2019). Sorbinichthyidae sensu Murrey and Wilson 2013 including only two Sorbinichthys species, is strongly supported by a number of derived characters: broad dorsal process of the posttemporal (15:2), posterior predorsal scutes laterally expanded (41:1), the most posterior predorsal scutes enlarged (44:1), high number of abdominal scutes (51:2), but less number of postpelvic scutes (52:1). Monophyly of Armigatus is supported by sharp proximal end of first hypural (27:1), predorsal scute series incomplete (39:0). Monophyly of Diplomystus (exclude D. solignaci Gaudant 1971) is supported by the presence of sub-rectangular scutes in anterior and posterior predorsal series (40:1 and 41:1), and presence of series of spines on posterior margin of lateral wings of predorsal scutes (42:1). Diplomystus solignaci is a member of the paraclupeid clade as suggested by many previous studies (AlvaradoOetega et al., 2008; Murrey \& Wilson 2013; Figuereido \& Ribeiro 2016; Marramà et al., 2019; Boukhalfa et al., 2019). Armigatus is in a more basal position than that of Diplomystus as suggested by Alvarado-Oetega et al. (2008) and Figuereido \& Ribeiro (2016). Our new form, Guiclupea, forms sister group to Diplomystus. The synapomorphies of the two are high supraoccipital crest (4:1), pelvic-fin insertion in advance of dorsal-fin origin (22:0), number of predorsal scutes more than twenty (46:1). The membership of Paraclupeidae, not inelude, Kwangoclupea and Codoichthys as some previous studies suggested (e.g., Murrey and Wilson, 2013; Francisco and Figueiredo, 2016; Marrama et al., 2018; Boukhalfa et al., 2019) but in some w_{1} consistent with the recent analysis conducted by Vernygona and Murray (in press), is supported by the dorsal outline forming a marked angle at dorsal-fin insertion (1:1), first uroneural extending forward to second preural centrum (32:0), and predorsal scutes with ridges
on the dorsal surface (44:1).
The analysis of the D1 using Bayesian inference method, generated a Bayesian Inference tree (BIT) (Fig. 9). As in SCT1, the monophyly of Sorbinichthys, Armigttus, Diplomystus, and Paraclupeidae were supported, and Guiclupea is sister to Diplomystus. Unfortunately, the monophyly of the Clupeiformes cannot be supported, and Gasteroclupea, Sorbinichthys, and Kwangoclupea lies in a more derived position than that in SCT1.

The analysis of the D2, using parsimony criteria, recovered 16 PMTs. The SCT of the 16 PMTs (see Appendix Figure 3S) is 188 in step, the CI is 0.324 , and the RI is 0.671 . The cladogram of the SCT2 shows that Ornategulum is in a basalmost position of the superorder, i.e., Ornategulum does not belong to the Ellimmichthyiformes as suggested by SCT1 and BIT1. The monophyly of the Clupeiformes, Sorbinichthys, and the remaining members of the Ellimmichthyiformes clade exclusive of Gasteroclupea was all supported, and the last one has the same topelogy as in SCT1.

The topology of the BIT2, resulted from the analysis of D2, is very similar with that of the BIT1 except for the position of Ornategulum and Denticeps. In BIT2, Ornategulum lies in the most basal position as in SCT2, and Denticeps is sister group to the two clupeoid genera. It seems that the applying different outgroup taxa effects the position or the assignment of Ornategulum, as demonstrated by previous analyses (Murrey and Wilson, 2013; Marramà et al., 2019; Figuereido and Ribeiro 2017; Boukhalfa et al., 2019). In addition, the positions of Armigatus, Gasteroclupea, Sorbinichthys, Kwangoclupea, and Codoichthys are the same in the two SCTs and in the two BITs respectively, but different between the SCTs and the BITs. In BITs, Armigatus lies in the basalmost position of the order but it is not so in SCTs. In BITs, Gasteroclupea belongs to the Sorbinichthyidae as suggested by Marramà et al. (2019) and

Boukhalfa et al. (2019); but in SCTs, Gasteroclupea does not form sister group to Sorbinichthys. Kwangoclupea forms sister group to Codoichthys and lies in a relatively basal position in the two SCTs, whereas it lies in a relatively derived position and belongs to the Paraclupeidae in the two BITs. These differences between the general topologies of the SCTs and BITs probable due to that the information contained in the dataset is insufficient to draw firm conclusions about their relationships as pointed out in the recent analyses of the phylogeny of Ceratomorpha (Bai et al., 2020). To improve the understanding of relationships of the group, more phylogenetically informative fossils and more complete data are needed.

Although there are discrepancies between the MPTs and BITs, and between the trees with alternative outgroups, the general topologies of the four trees mentioned above are basically similar, and all the four trees suggest that the new form is a member of the ellimmichthyiforms and forms a sister group to Diplomystus. The close relationship of them is supported by high supraoccipital crest (4:1), pelvic-fin insertion in advance of dorsal fin origin (22:0), and number of predorsal scutes ≥ 20 (46:1). Actually, in addition to these synapomorphies, the new form and Diplomystus, especially the Eocene species, i.e., D.dentatus and D. shengliensis, share many more similar characters, such as having an elongated fusiform body form, dorsal outline curved gently, no ornamentation on the skull bones, with teeth on entopterygoid, high number of anal fin rays (23-25 in D. birdi, 27 in D. dubertreti, 38-41 in D. dentatus, about 39 in D. shengliensis and 55 in Guiclupea superstes), and no diastema between second and third hypural (but there is a gap between second and third hypural in the Later Cretaceous species, i.e., D. birdi and D. dubertreti (Chang \& Maisey 2003, p27)). The last character also occurs in pristigasteroids, and osteoglossids, some elopomorphs, and a number of ostariophysans (Chang \& Maisey, 2003). The differentiation between Diplomystus and Guiclupea is in the shape and ornamentation of the
predorsal scutes (sub-rectangular vs. ovate, presence vs. absence of pectinate posterior border, dorsal surface smooth vs. with radial ridges), and the number of predorsal bones (6-8 vs. 10-11). Accordingly, the new form is a distinct genus and species, and can be easily distinguished from Diplomystus. Comb-like teeth along the posterior edges of the dorsal scutes is a derived character of Diplomystus. In addition to Diplomystus, sub-rectangular predorsal scutes also occur in most members of the Paraclupeidae. As far as the radial ridges on the dorsal surface of predorsal scutes is concerned, they usually occur in paraclupeids, such as Paraclupea, Ellimmichthys, Ellimma, Triplomystus, etc., these forms usually have a marked angle at the insertion of dorsal fin, and sub-rectangular dorsal scutes at least in the posterior part of the scute series. The new form is distinct from them in the shape of the body and predorsal scutes. Among species with ornamentation on predorsal scute ${ }_{2}$ the new form resembles Scutatuspinosus itapagipensis in the shape of body and predorsal scutes (not laterally expanded), and posterior expansion of the third hypural, leaving no gap or notch between the second and third hypurals. However, there are obvious differences between the two forms in the number of predorsal scutes and anal fin rays, ornamentation on the skull roof bones, and the size and shape of the abdominal scutes. On the whole, the new form displays a mosaic combination of characters. It bears radial ridges on the dorsal surface of predorsal scutes as the paraclupeids, but the scutes are all about the same size as in Armigatus and Diplomystus. Consequently, Guiclupea can easily be distinguished from all known ellimmichthyiforms in number and morphology of the dorsal scutes. Se that predorsal scutes with ridges on the dorsal surface are not unique to Paraclupeidae.

Body shape and size of the Ellimmichthyiformes

The ellimmichthyiforms are diverse both in general morphology and body size. Generally, ellimmichthyiforms show two types of body form. One bears a deep body, with the maximum
depth/standard length (MD/S干) larger than 50%, some of them even with the MD roughly equal to, or slightly larger than the $\mathrm{SI}_{\mathbf{1}}$ in adult specimens, e.g., in Tycheroichthys dunveganensis and Rhombichthys intoccabilis (Hay et al., 2007; Khalloufi et al., 2010). Most of this kind of fishes are referred to paraclupeids. The other kind of fishes have an elongate fusiform shape, the MD/SF often lower than 50%. They occupy a relatively basal position in the Ellimmichthyiformes, such as Armigatus, Diplomystus, and Guiclupea.

Body size of ellimmichthyiforms ranges from several centimeter to about 65 cm in TL. The known smallest fish is Eoellimmichthys superstes with the TL and SI_{\perp} about 17.5 mm and 13.7 mm , respectively (Marramà et al., 2019). Many species are with the TL shorter than 100 mm , such as Armigatus alticorpus, A. dalmaticus, A. oligodentatus, Codoichthys carnavalii, Diplomystus shengliensis, "Diplomystus" trebicianensis, Ellimmichthys maceioensis, Eoellimmichthys superstes, Gasteroclupea branisai, Scutatuspinosus itapagipensis, Sorbinichthys africanus, Thorectichthys marocensis, T. rhadinus, and Tunisiaclupea speratus. Species with TL larger than 200 mm are rare. The TL of Rhombichthys intoccabilis reaches about 230 mm in the holotype (Khalloufi et al., 2010, fig. 3). The predorsal length of Horseshoeichthys armigserratus, from the Maastrichtian of Canada, is 172 mm , with the estimated SL about 260-280 mm (Newbrey et al., 2010). Specimens with SL over 300 mm are only seen in Diplomystus dentatus from the Eocene of eastern coast of the Pacific, and Guiclupea superstes from the Oligocene of the western coast of the Pacific so far. The former reaches a TL of about 650 mm (Grande, 1982) while the latter reaches a SF_{2} about 600 mm . They should be the largest ellimmichthyiform fishes. It is noted that the order or the Diplomystus clade seems to show a trend to enlarge their body size. In the Cretaceous, members of this order usually have a small body length; it is until the end of the Cretaceous; some member (e.g.,

Horseshoeichthys armigserratus) became relatively large body-sized; in the late Paleogene, some members developed large, body size. It is worth mentioning that the fishes with large body size all are members of Diplomystus clade (Horseshoeichthys forms sister group to Diplomystus species (Veryngora \& Murray, in press)) and occur along the coast of the Pacific.

A recent study based on a comparative analysis indicates that across the Clupeiformes diadromous species are larger than non-diadromous species (Bloom et al., 2018). Another study based on over 4500 migratory and non-migratory species of ray-finned fishes also shows that migratory species are larger than non-migratory relatives in nearly all clades and across all modes of migration (Burns \& Bloom, 2020) No-association of body size with trophic position was found (Bloom et al., 2018). From these two studies, we have reason to speculate that the wide-spread Diplomystus clade possibly involve some diadromous or migratory species which have large-sized body and are able to be widely distributed along the coast of the Pacific, for increased body size is an adaptation to mitigate the energetic expense of long-distance migration (Bloom et al., 2018). Then the restriction of the species of the Sorbinichthyidae and Armigatidae to the circum-Mediterranean region may be associated with their small body size.

Paleobiogeographic history of the Ellimmichthyiformes

The Ellimmichthyiformes is an extinct cosmopolitan group of fishes, with members known from marine and non-marine sediments of South and North America, Africa, coastal regions of Mediterranean, and East Asia (Fig. 1). The oldest known so far are from Hauterivian-Barremian. It ineludes Scutatuspinosus itapagipensis and Eillmmichthys longicostatus from northeastern Brazil (Figueiredo \& Ribeiro 2017; Cope, 1886), Ezkutuberezi carmenae from northern Spain (Poyato-Ariza et al., 2000), Tunisiaclupea speratus from southern Tunisia (Boukhalfa et al.,
2019), and Paraclupea chedungensis from eastern China (Sun, 1956; Chang \& Grande, 1997; Hu et al., 2017). All these species belong to the Paraclupeidae. The paraclupeid fishes are abundant during late Early Cretaceous (Aptian-Albian). There are Ellimma branneri and Ellimmichthys maceioensis from Alagoas (Schaeffer, 1947; Chang and Maisey 2003; Malabarba et al., 2004), and Ellimma longipectoralis from Santos Basin (Polck et al., 2019) of Brazil; Ellimmichthys goodi from Equatorical Guinea (Eastman, 1912); and Paraclupea seilacheri from Puebla, Mexico (Alvarado-Ortega and Melgarejo-Damián 2017). In addition to paraclupeids, there are Codoichthys carnavalii from the Aptian of Brazil (de Figueiredo and Ribeiro, 2016) and Foreyclupea loonensis from the Albian of Canada (Vernygora et al., 2016, the authors thought this species should be closely related with Scutatuspinosus itapagipensis). The close relationship between the Early Cretaceous fish faunas from northeastern South America and from western Africa might have resulted from the contiguous margins of Brazil and West Africa during the Early Cretaceous (Chang and Grande, 1997). But there is little geologic evidence to support an Early Cretaceous non-marine paleogeographic connection between the eastern Asiatic margin and western Gondwana. Consequently, the distribution pattern of paraclupeids in the Early Cretaceous arouses a biogeographic conundrum. No favorable hypothesis well deciphers this distribution pattern to date. Chang and Maisey (2003) suggested that either a substantial portion of their non-marine fossil record is missing or their distribution involved marine dispersal.

During the early Late Cretaceous, the Ellimmichthyiformes reaches its greatest diversity. Not only the Paraclupeidae is highly diversified in the Mediterranean region and extended their range to North America (Tycheroichthys dunveganensis from Canada, Hay et al., 2007), but all
other main ellimmichthyiform clades, i.e., Sorbinichthydae, Armigatidae or Armigatus, and Diplomysus, occurred and flourished in the Cenomanian with their oldest record from the eastern Tethys (Lebanon) (Woodward, 1895; Signeux, 1951; Grande, 1982; Zhang et al., 1985; Bannikov \& Bacchia, 2000; Murray \& Wilson, 2011; 2013; Murray et al., 2016). With all main clades first occurring there, undoubtedly, the circum-Mediterranean region is a hotspot of the evolution of ellimmichthyiforms. Species of Diplomysus are also found from the Cenomanian English chalk (Forey, 2004). The diversity of ellimmichthyiforms during the early Late Cretaceous was probably resulted from the global sea-level rising and the consequential land-sea distribution which increased food input, dispersal routes, and habitat fragmentation for these fishes (Boukhalfa et al., 2019). m_{t} the end of the Cretaceous, the diversity of the

Ellimmichthyiformes suddenly declined. Only Gasteroclupea branisai from South America and Horseshoeichthys armigserratus from North America are known to date.

Rare ellimmichthyiforms survived after the Cretaceous-Tertiary boundary. Gasteroclupea branisai, Eoellimmichthys superstes, and Diplomystus clade are the exception. Gasteroclupea branisai firstly occurred in the Late Cretaceous of South America and survived to the Danian of Argentina and Bolivia (Signeux, 1964; Marramà \& Carnevale, 2017). Eoellimmichthys superstes is a paraclupeid from the marine Eocene of Italy. Interestingly, Diplomystus clade not only survived up to the Oligocene, but also had a relatively wide distribution range along both sides of the Pacific eoast (see Fig. 1). Horseshoeichthys armigserratus occurred en west coast ρf North America in $_{\text {t }}$ the end of the Cretaceous (Newbrey et al., 2007). The Eocene Diplomystus occurred on both sides of the Pacific Ocean (along the coast of the Bohai Gulf, east China and
the west North America) bearing striking similarity in morphology (Zhang et al., 1985; Chang \& Maisey, 2003). Their sister group, Guiclupea superstes, survived to the Oligocene as the youngest ellimmichthyiform fish. The Eocene "transpacific" distribution pattern of Diplomystus and other fishes and terrestrial vertebrates has long been noted by paleontologists (Chang \& Chow, 1978; Grande, 1982, 1985; Zhang et al., 1985). A broad connection between Asia and North America in the Bering Strait area and temporary desalination of the Arctic Ocean could have facilitated the dispersal of these fishes (Chang \& Maisey, 2003). It is interesting to find that all ellimmichthyiform fossil localities (Fig. 1) are near to the recent coast. Many contemporaneous fish fauna have been found from inland areas of China, Mongolia, and East Kazakhstan (Tang, 1959; Liu et al., 1962; Wang et al., 1981; Sytchevskaya, 1986), but no ellimmichthyiforms have been reported from there to date. In addition, most Recent Clupeomorpha inhabit in the sea. It seems reasonable to suggest that the origin and dispersal of these fishes must have something te be related with the sea.

CONCLUTION

Guiclupea superstes from the Oligocene of southern China is the youngest ellimmichthyiform known to date. Its occurrence indicates that the Ellimmichthyiformes had a wider distribution range and a longer evolutionary history than previously knew. Guiclupea superstes is closely related to Diplomystus, which suggests that the dorsal scutes with ridges on dorsal surface is not a character unique to paraclupeids.

Paraclupeids is very diverse and widely distributed during the Early Cretaceous, and survived to the Eocene in circum-Mediterranean area. Sorbinichthys and Armigatus are restricted
to the Mediterranean region in the early Late Cretaceous. Diplomystus clade might originated not later than early Late Cretaceous, and disappeared from Europe and Middle East afterearly Late Cretaceous, but still prosperous in the Pacific coast in the end of the Cretaceous to Eocene and survived there until the Oligocene. This made the Ellimmichthyiformes to obtain a particularly long distribution range along the West Pacific.

There is still no consensus among ichthyologists on the phylogenetic relationships of the Ellimmichthyiformes, especially the relationship of Armigatus and Diplomystus, the position of Gasteroclupea and Codoichthys. Besides, there are discordances between the most parsimonious tree and the Bayesian Inference tree. To solve those problems, more informative specimens and characters are needed to add to the dataset.

Acknowledgments

We thank Zhanxiang Qiu from IVPP for his kind help in creating the species name, Alison M Murrey from University of Alberta for providing references, Weicai Chen from Nanning Normal University for help in conducting MrBayes analyses, Desui Miao from Kansas University for stylistic improvement. Thanks are extended to Lidi Cen, Xueqiang Lei, and Qiongyao Fu from NHMG for preparing the fossil specimens and help in preparing the figures, Guodun Kuang, Qiuping Zhu, Zhiming Xie, and many other colleagues for their hard work in the field. This work is supported by National Natural Science Foundation of China (Nos. 41862001, 41162002), Natural Science Foundation of Guangxi (No. 2017GXNSFAA198291), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA20070203).

LITERATURE CITED

Alvarado-Ortega, J., and M. P. Melgarejo-Damián. 2017. Paraclupea seilacheri sp. nov., a
double armored herring (Clupeomorpha, Ellimmichthyiformes) from the Albian limestones of Tlayua quarry, Puebla, Mexico. Revista Mexicana de Ciencias Geologicas 34:234-249.

Alvarado-Ortega, J., and E. Ovalles-Damián. 2008 Triplomystus applegatei, sp. nov. (Teleostei: Ellimmichthyiformes), a rare "triple armored herring" from El Espinal Quarry (Early Cretaceous), Chiapas, southeastern Mexico. Journal of Vertebrate Paleontology 28: 53-60.

Alvarado-Ortega, J., E. Ovalles-Damián, and G. Arratia. 2008. A review of the interrelationships of the order Ellimmichthyiformes (Teleostei: Clupeomorpha); pp. 257-278 in G. Arratia, H.-P. Schultze, and M. V. H. Wilson (eds), Mesozoic Fishes 4-Homology and Phylogeny. Verlag Dr. Friedrich Pfeil, Munich, Germany.

Bai Bin, Jin Meng, Chi Zhang, Yan-Xin Gong \& Yuan-Qing Wang. 2020. The origin of Rhinocerotoidea and phylogeny of Ceratomorpha (Mammalia, Perissodactyla). Communications biology, https://doi.org/10.1038/s42003-020-01205-8

Bannikov, A. F. 2015. A new genus for the Cenomanian ellimmichthyiform fishes from Lebanon and Mexico. Bollettino della Società Paleontologica Italiana, 54: 11-218.

Bannikov, A. F. and F. Bacchia. 2000. A remarkable clupeomorph fish (Pisces, Teleostei) from a new Upper Cretaceous marine locality in Lebanon. Senckenbergiana Lethaea 80:3-11.

Bloom D D, Burns M D, Schriever T A. 2018. Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad and allies). Biol. J. Linn. Soc. 125, 302-314. (doi:10.1093/biolinnean/bly106)

Bornbusch A. H. and Lee M. 1992. Gill raker structure and development in Indo-Pacific anchovies (Teleostei: Engrauloidea), with a discussion of the structural evolution of engrauloid gill rakers. Journal of morphology 214:109-119

Boukhalfa K, Feixiang Wu, Walid Ben Ali et al. 2019. A new paraclupeid fish (Clupeomorpha:

Ellimmichthyiformes) from the Lower Cretaceous Sidi Aich Formation of southern Tunisia: phylogenetic and paleobiogeographic implications, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2018.1529675

Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region. Tertiary System. Regional Geology of Guangxi Zhuang Autonomous Region (in Chinese with English summary). Beijing: Geological Publishing House, 1985. 267-280

Burns M D, Bloom D D. 2020. Migratory lineages rapidly evolve larger body sizes than nonmigratory relatives in ray-finned fishes. Proc. R. Soc. B 287: 20192615. http://dx.doi.org/10.1098/rspb.2019.2615

Chang, M. M., and C. C. Chow. 1978. On the fossil fishes in Mesozoic and Cenozoic oil-bearing strata from east China and their sedimentary environment. Vert. PalAs. 16(4): 229-237.

Chang, M. M., and L. Grande. 1997. Redescription of \dagger Paraclupea chetungensis, an early Clupeomorph from the Lower Cretaceous of Southeastern China. Fieldiana Geology 37:119.

Chang, M. M., and J. G. Maisey. 2003. Redescription of \dagger Ellimma branneri and \dagger Diplomystus shengliensis, and relationships of some basal clupeomorphs. American Museum Novitates 3404:1-35.

Chen G J, Chang M M, 2011. A new early cyprinin from Oligocene of South China. Sci China Earth Sci, 54(4): 481-492

Chen G J, Liu J, Chang M M. 2018. Evolutionary hotspot of Cenozoic fish: Paleogene ichthyofauna from the onshore basins around Beibu Gulf (in Chinese with English summary). Chin Sci Bull, 63, doi: 10.1360/N972018-00569

Cope, E. D. 1886. A contribution to the vertebrate paleontology of Brazil. Proceedings of the

American Philosophical Society 23:3-4.
Dong, J.-L., Bai-Nian Suna, Teng Mao et al. 2017. The occurrence of Burretiodendron from the Oligocene of South China and its geographic analysis, Palaeogeogr. Palaeoclimatol. Palaeoecol. http://dx.doi.org/10.1016/j.palaeo.2017.07.004

Eastman, C. R. 1912: Tertiary fish-remains from Spanish Guinea in West Africa. Ann. Carnegie Mus. 8: 370-378.

Figueiredo, F. J., and D. R. M. Ribeiro. 2016. Relationships of \dagger Codoichthys carnavalii Santos, 1994 (Teleostei, Clupeomorpha, †Ellimmichthyiformes) from the late Aptian of São LuísGrajaú basin, NE Brazil. Anais da Academia Brasileira de Ciências 88: 1277-1307.

Figueiredo, F. J., and D. R. M. Ribeiro. 2017. Reassessment and Relationships of \dagger Scutatuspinosus itapagipensis (Teleostei, Clupeomorpha, \dagger Ellimmichthyiformes) from the Neocomian of Reconcavo Basin, Northeastern Brazil. Anais da Academia Brasileira de Ciências 89:799-823.

Forey, P. L. 2004. A three-dimensional skull of a primitive clupeomorph from the English Chalk and implications for the evolution of the clupeomorph acusticolateralis system pp. 405-427 in G. Arratia and A. Tintori A (eds), Mesozoic Fishes 3 - Systematics, Paleoenvironments and Biodiversity, Verlag Dr. Friedrich Pfeil, München, Germany,

Forey, P. L., L. Yi, C. Patterson, and C. E. Davies. 2003. Fossil Fishes from the Cenomanian (Upper Cretaceous) of Namoura, Lebanon. Journal of Systematic Palaeontology 1:227-330. Gaudant, M., and J. Gaudant. 1971. Une nouvelle espèce de Diplomystus (Poisson téléostéen) dans le Crétacé supérieur du Sud tunisien. Bulletin de la Society Géologique de France 13: 156-159.

Goloboff, P. A., J. S. Farris, and K. C. Nixon. 2008. TNT, a free program for phylogenetic
analysis. Cladistics 24:774-786.
Grande L. 1982. A revision the fossil genus Diplomystus, with comments on the interrelationships of clupeomorph fishes. American Museum Novitates 2728:1-34.

Grande L. 1985. Recent and fossil Clupeomorph fishes with material for revision of the subgroups of Clupeoids. Bulletin of the American Museum of Natural History 181:231-372.

Greenwood, P. H., D. E. Rosen, S. H. Weitzman, and G. S. Myers. 1966. Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History 131:339-455.

Hay, M. J., S. L. Cumbaa, A. M. Murray et al. 2007. A new paraclupeid fish (Clupeomorpha, Ellimmichthyiformes) from a muddy marine prodelta environment: middle Cenomanian Dunvegan Formation, Alberta, Canada. Canadian Journal of Earth Sciences 44:775-790.

Hu, G., W. X. Hu, J. Cao, and S. P. Yao. 2017. Stratigraphic correlations and occurrence patterns of two sets of Lower Cretaceous black shales in coastal southeastern China and geological implications: insights from zircon U-Pb ages. Geological Journal 52:5894-608.

Khalloufi, B., R. Zaragüeta-Bagils, and H. Lelièvre. 2010. Rhombichthys intoccabilis, gen. et sp. nov. (Ellimmichthyiformes, Clupeomorpha, Teleostei), from the Cenomanian (Upper Cretaceous) of Ein Yabrud, Middle East: anatomical description and phylogenetic implications. Journal of Vertebrate Paleontology 30:57-67.

Li H M, Chen Y F, Chen G J, et al. Tertiary fossil winged fruits of Palaeocarya from Ningming of Guangxi, S. China (in Chinese with English summary). Acta Palaeont Sin, 42: 537-547

Li, R., D. Z. Qiu, and G. R. Li. 1995. Tertiary sedimentary facies and their controls on the reservoir quality in the Ningming region, Guangxi. Petrofacies and Paleo-geography 5(3):40-45. (Chinese with English abstract)

Liu T S, Liu H T, Tang X. A new percoid fish from South China (in Chinese). Vert PalAiat, 1962, 6: 121-129

Ma F J, Liu S, Sun B N, et al. Legume fruits from the Oligocene Ningming Formation of Guangxi, China, and their biogeographical and palaeoclimatic implications. Rev Palaeobot Palynol, 2017, 244: 192-202

Malabarba, M. C., D. A. Do Carmo, I. Gómez-Pérez et al. 2004. A new clupeomorph fish from the Cretaceous Maceió Formation, Alagoas Basin, NE Brasil. Neues Jahrbuch fur Geologie und Paläontologie 233:255-274.

Marramà, G., and G. Carnevale. 2017. The relationships of Gasteroclupea branisai Signeux, 1964, a freshwater double-armored herring (Clupeomorpha, Ellimmichthyiformes) from the Late Cretaceous-Paleocene of South America. Historical Biology 29:904-917.

Marramà G, Bannikov AF, Kriwet J et al. 2019. An Eocene paraclupeid fish (Teleostei, Ellimmichthyiformes) from Bolca, Italy: the youngest marine record of double-armoured herrings. Papers in Palaeontology, 5(1), 83-98.

Muller, J. 1845. Über den Bau und die Grenzen der Ganoiden undüber das natürlichen System der Fische. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften 1844: 117-216.

Murray, A. M., and M. V. H. Wilson. 2011. A new species of Sorbinichthys (Teleostei: Clupeomorpha: Ellimmichthyiformes) from the Late Cretaceous of Moroccco. Canadian Journal of Earth Sciences 48:1-9.

Murray, A. M., and M. V. H. Wilson. 2013. Two new paraclupeid fishes (Clupeomorpha: Ellimmichthyiformes) from the Upper Cretaceous of Morocco; PP. 267-290 in G. Arratia, H.-P. Schultze, and M. V. H. Wilson (eds), Mesozoic Fishes 5 - Global Diversity and

Evolution, Verlag Dr. Friedrich Pfeil, Munich, Germany.
Murray, A. M., O. Vernygora, S. Japundẑić et al. 2016. Relationships of the species of Armigatus (Clupeomorpha, Ellimmichthyiformes) and the description of a new species from the Cretaceous of Dalmatia, Croatia. Journal of Vertebrate Paleontology. doi: 10.1080/02724634.2017.1226851.

Nelson J S, Grande T C, Wilson M V H. 2016. Fishes of the World. 5th ed. New Jersey: John Wiley and Sons Inc

Newbrey, M. G., A. M. Murray, D. B. Brinkman et al. 2010. A new articulated freshwater fish (Clupeomorpha, Ellimmichthyiformes) from the Late Cretaceous Horseshoe Canyon Formation, Alberta, Canada. Canadian Journal of Earth Sciences 47: 1183-1196.

Patterson C., Rosen, D. E., 1977. Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History, 158, 83-172.

Poyato-Ariza, F. J., M. A. López-Horgue, and F. García-Garmilla F. 2000. A new early Cretaceous clupeomorph fish from the Arratia Valley, Basque Country, Spain. Cretaceous Research 21: 571-585.

Polcka M A R, Gallob V, Figueiredob F J, et al. 2020. †Ellimma longipectoralis sp. nov. (Teleostei: Clupeomorpha: †Ellimmichthyiformes) from the Aptian of the Santos Basin, southeastern Brazil. Journal of South American Earth Sciences, https://doi.org/10.1016/j.jsames.2019.102318

Quan C, Fu Q Y, Shi G L, et al. 2016. First Oligocene mummified plant Lagerstätte in the low latitudes of East Asia. Sci China Earth Sci, doi: 10.1007/s11430-015-5250-z

Ronquist F, and Huelsenbeck J P, 2003. MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19, 1572-1574.
Silva Santos, R. 1990. Clupeiformes e Gonorhynchiformes do Cretáceo Inferior (Aptiano) da Formação Cabo, Nordeste do Brasil. - An. Acad. Brasil. Ciênc. 62 (3): 261-268.

Silva Santos, R. 1994. Ictiofáunula da Formação Codó, Cretáceo Inferior, com a descrição de um novo táxon - Codoichthys carnavalii (Pisces-Teleostei). Anais Academia Brasileira Ciencias 66:131-143.

Schaeffer B. 1947. Cretaceous and Tertiary actinopterygian fishes from Brazil. Bull Amer Mus Nat Hist 141(3): 357-474.

Signeux, J. (1951): Notes paléoichthyologiques. V. Diplomystus dubertreti, une nouvelle espèce du Sénonien du Liban. - Bull. Mus. natl. Hist. natur., Paris 23 (2): 692-693.

Signeux J. 1964. Gasteroclupea branisai, clupeide nouveau du Cretace Superieur de Bolivie [Gasteroclupea branisai, a new clupeid of the Late Cretaceous of Bolivia]. Bull Mus Natl Hist Nat. 36:291-297.

Shi G, Zhou Z, Xie Z. 2010. A new Cephalotaxus and associated epiphyllous fungi from the Oligocene of Guangxi, South China. Rev Palaeobot Palynol, doi: 10.1016/j.revpalbo.2010.04.002

Shi G, Zhou Z, Xie Z. 2012. A new Oligocene Calocedrus from South China and its implications for transpacific floristic exchanges. Am J Bot, 99: 108-120

Shi G L, Xie Z M, Li H M. 2014. High diversity of Lauraceae from the Oligocene of Ningming, South China. Palaeoworld, 23: 336-356

Sun, A. L. 1956. Paraclupea-a genus of double-armoured herrings from Chekiang. Acta Paleontologica Sinica 4:413-418.

Sychevskaya, E. K. 1986. Paleogene freshwater fish fauna of the USSR and Mongolia. Joint

Soviet-Mongolian Paleontological Expedition, Transactions 29:1-157. (Russian with English summary)

Tang, X., A new fossil fish from Linli, Hunan, Vert. PalAsiat. (in Chinese), 1959, 1: 211-213
Vernygora, O., and A. M. Murray. 2015. A new species of Armigatus (Clupeomorpha, Ellimmichthyiformes) from the Late Cretaceous of Morocco, and its phylogenetic relationships. Journal of Vertebrate Paleontology. doi: 10.1080/02724634.2015.1031342.

Vernygora, O., and A. M. Murray. 2020. In press. Morphological variation among the species of Armigatus (Teleostei, Clupeomorpha, Ellimmichthyiformes) and new material of Armigatus alticorpus from the Upper Cretaceous (Cenomanian) of Hakel, Lebanon. Cretaceous Research.,

Vernygora, O., A. M. Murray, and M. V. H. Wilson. 2016. A primitive clupeomorph from the Albian Loon River Formation (Northwest Territories, Canada). Canadian Journal of Earth Science 53:331-342.

Wang J K, Li G F, Wang J S. 1981. The early Tertiary fossil fishes from Sanshui and its adjacent basin, Guangdong (in Chinese). Palaeontol Sin (Ser C), 22: 1-90

Wang Q, Song Z, Chen Y, et al. 2014. Leaves and fruits of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the Oligocene Ningming Formation of Guangxi, South China and their biogeographic implications. BMC Evol Biol, 14: 1-17

Wang, W. M., G. J. Chen, Y. F Chen, et al. 2003. Tertiary palynostratigraphy of the Ningming basin, Guangxi. Journal of Stratigraphy 27:324-327. (Chinese with English abstract)

Woodward, A. S. 1895: On two deep-bodied species of the clupeoid genus Diplomystus.Ann. Mag. Natur. Hist. 15 (6): 1-3.

Zaragüeta-Bagils, R. 2004. Basal clupeomorphs and ellimmichthyiform phylogeny; p. 391-404
in G. Arratia and A. Tintori (ds), Mesozoic Fishes 3: Systematics, Paleoenvironments and Biodiversity. Verlag Dr. Friedrich Pfeil, München, Germany.

Zhang, M. M., J. J. Zhou, and D. R. Qing. 1985. Tertiary fish fauna from coastal region of Bohai Sea. Academia Sinica, Institute of Vertebrate Paleontology and Paleoanthropology Memoirs 17: 1-60.

Zhang S Y. 2001. Fauna Sinica, Osteichthyes, Acipenseriformes Elopiformes Clupeiformes Gonorhynchiformes. Science Press, Beijing, 209 pp. (in Chineses)

Zhao Z. 1983. A new species of Anthracothere from Nanning Basin, Guangxi. Verteb PalAsia, 21: 266-270 (Chinese with English abstract)

Zhao Z. 1993. New Anthracothere materials from the Paleogene of Guangxi. Verteb PalAsia, 31: 13-190 (Chinese with English abstract)

Figure 1

Map of the main localities of ellimmichthyiform fossils

Map of the main localities of ellimmichthyiform fossils

国

Figure 2

Guiclupea superstes, gen. et sp. nov

Guiclupea superstes, gen. et sp. nov. A, and B, photograph of the holotype (NHMG 005532);
C, close up of the complete predorsal scutes series maeked by the white box in A.

PeerJ

Figure 3

Guiclupea superstes, gen. et sp. nov

A, photograph of the NHMG 033659; B, tentative restoration mainly based on the holotype and paratypes.

Figure 4

Guiclupea superstes, gen. et sp. nov

A, photograph, and B, line drawing of the head in NHMG 033659. Anterior facing right. C, photograph of a left premaxilla, NHMG 033685; D, photograph of an incomplete dentary, NHMG 033682, showing the oral teeth; E, photograph of a dentary, NHMG 033683; F, photograph, showing anterior ceratohyal and entopterygoid in NHMG 033661; G, photograph, showing posterior ceratohyals in NHMG 033680.

PeerJ

PeerJ

Figure 5

Guiclupea superstes, gen. et sp. nov.

A, photograph and B, line drawing of the disarticular skull and anterior trunk bones of NHMG 033660.

PeerJ

Figure 6

Guiclupea superstes, gen. et sp. nov

A, photograph of NHMG 033658, B, and C, close up of the predorsal scutes in the black boxes of B and C in A, respectively.

Figure 7

Guiclupea superstes, gen. et sp. nov.
A, photograph and \mathbf{B}, line drawing of NHMG 011648. Anterior facing left.

Figure 8

Strict consensus of most parsimonious trees

Strict consensus of most parsimonious trees retrieved in TNT 1.5 based on 55 morphological characters and 40 taxa, with Chanos chanos being used as outgroup taxa. Characters supporting each node are listed along corresponding branches. Characters above black spot have consistency index of 1. Numbers at each node represent Bremer support/bootstrap values. Only bootstrap values higher than 50% are shown on the tree.

Figure 9

Cladogram

Cladogram resulting from Bayesian phylogenetic analyses based on 55 morphological characters and 40 taxa, with Chanos chanos was used as outgroup taxon. The numbers at the internal nodes are the posterior probabilities of the corresponding clades.

Table $\mathbf{1}_{\text {(on next page) }}$

TABLE

Measurements and counts for the specimens of the \dagger Guiclupea superstes, gen. et sp. nov. Measurements are in millimeters.

	004929	005532	033658	033659
total length		526.0		630+
standard length (SL)	502+*	453.0	410+	585+
head length	175	132.0		140+
head length/SL		29.1\%		
head depth	169.0	116.0		165+
body depth	213	137.0	150	210
body depth/SL		30.2\%		
predorsal length	333.5	252.8		$310+$
predorsal length/SL		55.8\%		
prepelvic length	293.7	242.0		260+
prepelvic length/SL		53.4\%		
preanal length	387.0	309.3		358+
Preanal length/SL		68.3\%		
dorsal fin rays		Ii, 12	at least 13	
anal fin rays		~ 35		
pterygophores of anal fin		~36	29+	22+
pectoral fin rays		at least 12	18	12+
pelvic fin rays		5~6	5~6	
abdominal vertebrae	20	22	20	20
caudal vertebrae (exclude u1, u2)	12+	23		24
total vertebrae (exclude u1, u2)	32+	45		44
predorsal bones	10	10 or 11	10	10
abdominal scutes	at least 36	~38	35+	27+
pre-pelvic scutes	~ 24	~ 24	~ 24	16+
post-pelvic scutes	at least 12	14	11+	11+
pre-dorsal scutes		55	27+	
pairs of ribs	18	20	18	19

4 *: "+" stand for the actual digital larger than this digital because of the specimen is incomplete or not well5 preserved.

