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The coefficient of determination R2 quantifies the amount of variance explained by
regression coefficients in a linear model. It can be seen as the fixed-effects complement to
the repeatability R (intra-class correlation) for the variance explained by random effects
and thus as a tool for variance decomposition. The R2 of a model can be further partitioned
into the variance explained by a particular predictor or a combination of predictors using
semi-partial (part) R2 and structure coefficients, but this is rarely done due to a lack of
software implementing these statistics. Here, we introduce partR2, an R package that
quantifies part R2 for fixed effect predictors based on (generalized) linear mixed-effect
model fits. The package iteratively removes predictors of interest from the model and
monitors the change in the variance of the linear predictor. The difference to the full model
gives a measure of the amount of variance explained uniquely by a particular predictor or
a set of predictors. partR2 also estimates structure coefficients as the correlation between
a predictor and fitted values, which provide an estimate of the total contribution of a fixed
effect to the overall prediction, independent of other predictors. Structure coefficients can
be converted to the total variance explained by a predictor, here called ‘inclusive’ R2, as
the square of the structure coefficients times total R2. Furthermore, the package reports
beta weights (standardized regression coefficients). Finally, partR2 implements parametric
bootstrapping to quantify confidence intervals for each estimate. We illustrate the use of
partR2 with real example datasets for Gaussian and binomial GLMMs and discuss
interactions, which pose a specific challenge for partitioning the explained variance among
predictors.
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31 Abstract

32 The coefficient of determination R2 quantifies the amount of variance explained by regression coefficients in a linear 

33 model. It can be seen as the fixed-effects complement to the repeatability R (intra-class correlation) for the variance 

34 explained by random effects and thus as a tool for variance decomposition. The R2 of a model can be further 

35 partitioned into the variance explained by a particular predictor or a combination of predictors using semi-partial 

36 (part) R2 and structure coefficients, but this is rarely done due to a lack of software implementing these statistics. 

37 Here, we introduce partR2, an R package that quantifies part R2 for fixed effect predictors based on (generalized) 

38 linear mixed-effect model fits. The package iteratively removes predictors of interest from the model and monitors 

39 the change in the variance of the linear predictor. The difference to the full model gives a measure of the amount 

40 of variance explained uniquely by a particular predictor or a set of predictors. partR2 also estimates structure 

41 coefficients as the correlation between a predictor and fitted values, which provide an estimate of the total 

42 contribution of a fixed effect to the overall prediction, independent of other predictors. Structure coefficients can 

43 be converted to the total variance explained by a predictor, here called ‘inclusive’ R2, as the square of the structure 

44 coefficients times total R2. Furthermore, the package reports beta weights (standardized regression coefficients). 

45 Finally, partR2 implements parametric bootstrapping to quantify confidence intervals for each estimate. We 

46 illustrate the use of partR2 with real example datasets for Gaussian and binomial GLMMs and discuss interactions, 

47 which pose a specific challenge for partitioning the explained variance among predictors. 
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48 Introduction

49 Coefficients of determination R2 are of interest in the study of ecology and evolution, because they quantify the 

50 amount of variation explained by a linear model (Edwards et al., 2008). By doing so, they go beyond significance 

51 testing in putting effects in perspective of the phenotypic variance. R2 is expressed as a proportion of the total 

52 variance in the response, which represents a biologically relevant quantity if the total variation is representative for 

53 the total population (de Villemereuil et al., 2018). The total coefficient of determination in a generalised linear 

54 mixed model (GLMM) quantifies the variance explained by all fixed effects together (marginal R2 sensu Nakagawa 

55 & Schielzeth, 2013, also known as the total correlation coefficient, Watanabe (1960)).

56

57 However, it is often of interest to attribute explained variation to individual predictors. Semi-partial coefficients of 

58 determination, also known as part R2, decompose the variance of R2 into components uniquely explained by 

59 individual predictors (Jaeger et al., 2017; Jaeger, Edwards & Gurka, 2019) or sets of predictors (Figure 1). The set of 

60 all predictors in the model yields the total proportion of variance explained by the fixed part of the model (total R2). 

61 With correlations among predictors, it often happens that predictors in univariate regressions explain a large share 

62 of the variance, but do not show large part R2 if other correlated predictors are included in the model. Note that 

63 part R2 estimates the proportion of the variance in the response explained by a predictor while accounting for 

64 covariance between this predictor and the other predictors in the model, whereas the (arguably more familiar) 

65 partial R2 estimates the proportion of the variance that is explained by a predictor of interest after accounting for 

66 the other predictors from the response as well as the predictor of interest. The difference is subtle, but important 

67 (see more below). Therefore, part R2 represents ‘variance accounted for’ in relation to the total variance, but partial 

68 R2 does not. Consequently, part R2 will be conceptually easier to compare with (total) R2. 

69

70 Structure coefficients provide a valuable addition to part R2 in the decomposition of the phenotypic variance 

71 (Nimon et al., 2008; Yeatts et al., 2017). Structure coefficients quantify the correlation between individual 

72 predictors and the linear predictor.  Predictors that correlate well with a response, but are fitted with collinear 

73 predictors may show large structure coefficients as they are correlated to the predicted response, but low part R2 

74 as other predictors explain part of the same variance. Structure coefficients range from -1 to 1 with their absolute 

75 value expressing the correlation relative to a perfect correlation if a single predictor explains as much as the total 

76 fixed part of the model. 

77

78 Structure coefficients are correlations and since the square of a correlation yields the variance explained, we can 

79 use structure coefficients to estimate the total variance explained by a predictor (Nimon et al., 2008). We call this 

80 the inclusive R2 of a predictor and calculate it as the squared structure coefficient, i.e. its contribution to the linear 

81 predictor independent of other predictors (Nimon et al., 2008) times the proportion of variance explained by the 
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82 linear predictor (which is the ‘total’ marginal R2 of the model) (see also Nathans, Oswald & Nimon, 2012). As far as 

83 we are aware, inclusive R2 has not been implemented before, but it provides valuable insights into the structure of 

84 the variance explained (Figure 1).

85

86 Here, we introduce partR2, a versatile package for estimating part R2, inclusive R2, structure coefficients and beta 

87 weights from mixed-effects models. Figure 1 gives an overview of how variances are calculated and how they relate 

88 to partial R2 and to commonality analysis (Ray-Mukherjee et al., 2014; Seibold & McPhee, 1979; Zientek & 

89 Thompson, 2006). We illustrate how to use partR2 with real example datasets for Gaussian and binomial GLMMs, 

90 discuss how to estimate part R2 in the presence of interactions and discuss some challenges and limitations.

91

92 Figure 1: Conceptual framework for the estimation of proportions of variance components in a mixed model. 

93

94 Mathematical representation

95 Part R2 

96

97 A Gaussian mixed-effects model can be written as:

98 (Eq. 1)εαXβy   k

99 ),0(~ 2

k

Nαk 


100 ),0(~ 2

 N

101 Where is a vector of response values (outcomes), is the design matrix of fixed effects, is a vector of y X β

102 regression coefficients, is the random part of the model that might contain multiple random effects and  kα ε

103 is a vector of residual deviations. The linear predictor  represents the vector of predicted values from the fixed η

104 part of the model as . Note that we dealing with estimates of regression coefficients and variance Xβη 

105 components throughout (hence all  should be read as ).β β̂

106

107 Since we are interested in the proportion of the phenotypic variance explained, we symbolize variance components 

108 by upper case and index by the source of variance (als in Figure 1). While variances are frequently represented as Y

109 V with the source of variance as an index, this leads to ambiguity for VX which might represent variance in y 

110 explained by x or variance in x itself, which is why we use this alternative notation. The total variance in the response 

111 is  and is estimated from the raw data or from the model (see below). The variance of the residuals )var(yYTotal 

112 is estimated by the model as . The variance of the (sum of) random effects is estimated by the model )var(RY
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113 as  and the variance explained by fixed effects can be estimated as the variance in the linear )var( k αREY

114 predictor )var(XβXY .

115

116 The coefficient of determination R2 estimates the proportion of variance in the response that is explained by fixed 

117 effects. The coefficient of determination R2  for the total fixed part of the model is thus:

118
(Eq. 2)

Total

X

RREX

X

Y

Y

YYY

Y
R X 


2

119 Note that the sum of the components in the denominator might deviate numerically from the total outcome 

120 variance in the raw data. However, conceptually they are the same in that they represent the population-level 

121 outcome variance. The variance in the outcome is an estimate from the specific sample, while the sum of 

122 components of the mixed model represents a population-level estimate given the data and the model.

123

124 A reduced model with a (set of) fixed effect predictors removed but the same random effect structure can be *X

125 fitted as (now using the tilde to highlight the differences from Eq. 1):

126 (Eq. 3)εαβXy ~~~~   k

127 ),0(~~ 2
~
k

Nαk 


128 ),0(~~ 2
~ N

129 with the variance in the linear predictor of the reduced model being )
~~

var(~ βX
X
Y .

130

131 The variance uniquely explained by  is then the difference between the variance explained by fixed effects in *X

132 the full and the reduced model . Part R2 sets this variance in proportion to the total outcome 
XXX
YYY ~* 

133 variance:

134
(Eq. 4)

Total

XX

RREX

XX

X Y

YY

YYY

YY
R

~~
2
*









135 The process of fitting a reduced model, estimation of and estimation of can be repeated for all 
*X

Y
2
*X

R

136 predictors and combinations of predictors. At the limit for a model with all fixed effects removed, 22
* XRR
X
 .

137

138 Side-note on partial R2

139

140 For completeness we note that the partial R2 could be calculated as:

141  (Eq. 5) 

XTotal

XX

X YY

YY
R

~

~
2

* 




PeerJ reviewing PDF | (2020:07:51365:2:0:NEW 8 Mar 2021)

Manuscript to be reviewed



142 However, this estimate does not put the explained variance in perspective of the total variance in the response. It 

143 has the major disadvantage that the denominator depends on . The same effect in terms of  thus appears 
X
Y ~ *X

Y

144 larger if the reduced model explains more variance (larger ). Even in the case of independent additive predictors, 
X
Y ~

145 the contributions of the different fixed effects do not sum up to , because of the change in the denominator 
2

XR

146 that different  are compared to. Finally, since we are interested in explaining phenotypic variation in some 
*X

Y

147 biological response (the phenomenon to be explained), we think that part R2 is the more relevant quantity, as it 

148 represents the proportion of variance in the response uniquely explained by *X .

149

150 Inclusive R2 

151

152 Structure coefficients are the Pearson correlations between a particular predictor of interest  and the linear *x

153 predictor . Note that we now use a lower case  to indicate that we are dealing with a single predictor. Structure η *x

154 coefficients are quantified from the full model as:

155 (Eq. 6)),(cor *
* xSC
x



156

157 The squared correlation between two variables a and b gives the variance explained for these variables

158 . The squared structure correlations thus quantify the proportion of variance in the linear 22),(cor aRba 

159 predictor  that is explained by a the predictor of interest . Since the proportion of outcome variance 
XY

*x

160 explained by the linear predictor in the full model is , the inclusive variance explained by predictor  is:2
XR

*x

161 (Eq. 7)222
* XRSCIR
x



162

163 Inclusive R2 as we define it here, complements part R2 by giving additional insights. While part R2 quantifies the 

164 variance uniquely explained by a predictor (or set of predictors), inclusive R2 quantifies the total proportion of 

165 variance explained in the model, both uniquely and jointly with other predictors. In the special case of a single 

166 predictor in a model , such that 22
* XRIR
x
 .1),(cor *

*  xSC
x



167

168 Part R2 in non-Gaussian models

169

170 For Gaussian models there is a single residual error term with variance . For non-Gaussian models,  )var(RY

171 however, there is additional error that arises from the link function that translates latent-level predictions to 

172 observed outcomes. This variance can be approximated for a variety of link functions and error distributions 

173 (Nakagawa & Schielzeth, 2010; Nakagawa, Johnson & Schielzeth, 2017). Our R package currently implements 
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174 distribution-specific variances for Poisson models with log and square root link functions and binomial models with 

175 logit and probit link functions. For Poisson models and non-binary binomial models (proportion models), partR2 

176 also fits an observational level random effect (if none is fitted already) to estimate variance due to overdispersion 

177 (Harrison, 2014). Both the overdispersion variance, now denoted YR and the distribution-specific variance 
DY  are 

178 included in the denominator of the part R2 calculation:

179

180
(Eq. 8).

RDREX

XX

X
YYYY

YY
R





~

2

*

181

182
Notably, there are  other estimation methods for R2 for non-Gaussian models or GLMM (Jaeger et al., 2017; Piepho, 

183
2019). Currently, partR2 only implements the method based on Nakagawa & Schielzeth (2013) and Nakagawa, 

184
Johnson & Schielzeth (2017). 

185 Other implementations in R packages

186 There are a few R packages that calculate part R2 for linear models (lm), for example 

187 rockchalk::getDeltaRsquare (Johnson & Grothendieck, 2019). Other packages calculate partial R2 (not 

188 part R2) such as asbio::partial.R2 (Aho, 2020) and rr2::R2 (Ives & Li, 2018) for lms and 

189 rsq::rsq.partial (Zhang, 2020) for linear models and generalized linear models (glm). Note that partial R2 is 

190 different from part (semi-partial) R2 (partial R2 > part R2), since it represents the unique variance explained by a 

191 particular predictor but after removing (‘partialling out’) the variance explained by the other predictors (Yeatts et 

192 al., 2017, Figure 1). The ppcor package calculates semi-partial and partial correlations, but does not work on fitted 

193 GLM or GLMM models (Kim, 2015). The package yhat features functions for commonality analyses in glms 

194 (Nimon, Oswald & Roberts, 2020). None of these packages estimates part R2 for mixed-effects models that we 

195 focus on here.

196 Several packages estimate (marginal) R2 as the variance explained by all fixed effects in linear mixed-effects models. 

197 This includes performance::r2_nakagawa (Lüdecke et al., 2020), MuMIn::r.squaredGLMM (Bartoń, 

198 2019), and rptR::rpt (Stoffel, Nakagawa & Schielzeth, 2017). These packages do not allow to estimate part R2. 

199 The only versatile package to estimate part R2 from linear mixed-models is r2glmm (Jaeger, 2017). The function 

200 r2glmm::r2beta computes part R2 from lmer, lme and glmmPQL model fits (also for linear models lm and glm) 

201 based on Wald statistics. However, it does neither support lme4::glmer for generalized linear model fits nor 

202 does it allow to estimate R2 for combinations of predictors. Furthermore, it does not estimate structure coefficients, 

203 inclusive R2 or part R2 for multilevel factors as a unit.

204
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205 Features of partR2

206 partR2 takes a fitted (generalized) linear mixed-model (GLMM), from the popular mixed model package lme4 

207 (Bates et al., 2015) and estimates part R2 by iteratively removing fixed effects (Nimon et al., 2008). The specific fixed 

208 effects of interest are specified by the partvars and/or by the partbatch argument. The package estimates 

209 part R2 for all predictors specified in partvars individually and in all possible combinations (the maximum level 

210 of combinations can be set by the max_level argument). A custom specification of fixed effects of interest saves 

211 computation time as compared to an all-subset specification and is therefore required in partR2.

212 The central function partR2 will work for Gaussian, Poisson and binomial GLMMs. Since the model fit is done 

213 externally, there is no need to supply a family argument. For non-Gaussian GLMMs, the package estimates link-

214 scale R2 (sensu Nakagawa & Schielzeth, 2013). We implement parametric bootstrapping to quantify sampling 

215 variance and thus uncertainty in the estimates. Parametric bootstrapping works through repeated model fitting on 

216 simulated data based on fitted values (Faraway, 2015). The number of bootstrap iterations is controlled by the 

217 nboot argument. We recommend a low number of nboot for testing purposes and a large number (e.g. nboot 

218 = 1000) for the final analysis.

219 The package returns an object of class partR2 that contains elements for part R2, inclusive R2, structure 

220 coefficients, beta weights (standardized regression slopes), bootstrapping iterations and some other information. 

221 An extended summary, that includes inclusive R2, structure coefficients and beta weights can be viewed using the 

222 summary function. The forestplot function shows a graphical representation of the variance explained by 

223 individual predictors and sets of predictors along with their bootstrapping uncertainties. All computations can be 

224 parallelized across many cores based on the future and furrr packages (Vaughan & Dancho, 2018; Bengtsson, 

225 2020). An extended vignette with details on the complete functionality accompanies the package.

226

227 Example with Gaussian data

228 We use an example dataset with hormone data collected from a population of captive guinea pigs to illustrate the 

229 features of partR2. The dataset contains testosterone measurements of 31 male guinea pigs, each measured at 5 

230 time points (age between 120 and 240 days at 30-day intervals). We analyze log-transformed testosterone titers 

231 and fit male identity as a random effect. As covariates the dataset contains the time point of measurement and a 

232 rank index derived from behavioral observations around the time of measurement (Mutwill et al., in prep.). 

233 Rank and Time are correlated in the dataset (r = 0.40), since young individuals are typically low rank, while older 

234 individuals tend to hold a high rank. Time might be fitted as a continuous predictor or as a factor with five levels. 

235 Here we present the version of a factorial predictor to illustrate the estimation of part R2 for interactions terms. 

236 Hence, an interaction between time and rank will also be fitted. 
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237 First, the package needs to be loaded (after successful installation) in an R session (R Core Team, 2019). The package 

238 comes with the guinea pig dataset that also needs to be loaded using the data function.

239

240 library(partR2)

241 data(GuineaPigs)

242

243 A single record contains missing values for testosterone measurements. Missing records can be problematic to 

244 handle in partR2 and are better removed prior to the analysis. We also log-transform the response and convert 

245 Time to a factor and filter for the first three time points to simplify the output.

246

247 GuineaPigs <- subset(GuineaPigs, 

248 !is.na(Testo) & !is.na(Rank) & (Time %in% c(1,3,5)))

249 GuineaPigs$TestoTrans <- log(GuineaPigs$Testo)

250 GuineaPigs$Time <- factor(GuineaPigs$Time)

251

252 We then fit a linear mixed effects model using lmer from the lme4 package (Bates et al., 2015). Further exploration 

253 of the data and model checks are omitted here for simplicity, but are advisable in real data analysis.

254

255 library(lme4)

256 mod <- lmer(TestoTrans ~ Rank * Time + (1|MaleID), data=GuineaPigs)

257

258 The partR2 analysis takes the lmer model fit (an merMod object) and a character vector partvars indicating 

259 the fixed effects to be evaluated. Interactions are specified with the colon syntax (see the package’s vignette for 

260 further details).

261

262 res <- partR2(mod, partvars = c("Rank", "Time", "Rank:Time"), 

263 nboot=100)

264
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265 The function returns a partR2 object. The print function reports the part coefficients of determination and a 

266 more extensive summary can be viewed with the summary function which also shows inclusive R2, structure 

267 coefficients and beta weights (standardized slopes) (Figure 2). 

268

269 print(res)

270 summary(res, round_to = 2)

271

272

273 Figure 2: Summary output for example data analysis with Gaussian data (guinea pig analysis).

274

275

276 The variances appear largely additive, since combinations of predictors explain about the sum of the variance 

277 explained by individual predictors. The main components of the partR2 object can be accessed for further 

278 processing as res$R2 for part R2 (with point estimates and confidence intervals), res$SC for structure 

279 coefficients, res$IR2 for inclusive R2 and res$BW for beta weights.

280

281 Dealing with interactions

282 Models with interactions are problematic, because the variance explained by a main factor can be estimated in 

283 multiple ways (Figure 3) and because of the internal parametrization of the model matrix. 

284

285

286 Figure 3: Conceptual framework for dealing with interactions. 

287

288

289

290 The model output above shows the number of parameters fitted in each model (Figure 2, each row in the R2 part 

291 refers to a reduced model). In the print and summary output this is visible as a column labelled ‘ndf’. A close 

292 inspection shows that the removal of rank did not change the number of parameters (6 for the full model, 6 for the 

293 model excluding rank). This is because the model matrix is reparametrized in the reduced model and lmer will fit 

294 three terms for the interaction (here Time1:Rank, Time3:Rank, Time5:Rank) rather than just two for the 

295 interaction in the full model. Dummy coding of the factor can be usefully combined with centering of dummy coded 

296 variables (Schielzeth, 2010) and gives more control over this re-parametrisation. It allows for example to estimate 
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297 the part R2 for the average effect of Rank by constraining the average Rank effect to zero, so that only the two 

298 contrasts are fitted (here Time3:Rank, Time5:Rank):

299

300 GuineaPigs <- cbind(GuineaPigs, model.matrix(~ 0 + Time,

301 data=GuineaPigs))

302 GuineaPigs$Time3 <- GuineaPigs$Time3 - mean(GuineaPigs$Time3)

303 GuineaPigs$Time5 <- GuineaPigs$Time5 - mean(GuineaPigs$Time5)

304

305 The model can then be fitted with dummy predictors. Since the usual specification in partR2 via partvars would 

306 fit all possible combinations, including combinations of the different Time terms, such a run can take a long time. 

307 However we are mostly interested in fitting and removing all dummy predictors at a time. The package therefore 

308 features an additional argument partbatch to specify a list of character vectors containing the sets of predictors 

309 that should always be kept together. In the example, the list has two elements, a character vector for the dummy-

310 coded main effects and a character vector for the interaction terms. The analysis yields part R2 for two batches of 

311 predictors as well as Rank and their combinations. 

312

313 mod <- lmer(TestoTrans ~ (Time3 + Time5) * Rank + (1|MaleID),      

314 data=GuineaPigs)

315 batch <- c("Time3", "Time5")

316 partR2(mod, partvars=c("Rank"), partbatch=list(Time=batch,

317 `Time:Rank`= paste0(batch, ":Rank")), nboot=100)

318

319 This, however, is only one way of dealing with interactions (Option A in Figure 3). It represents the variance uniquely 

320 explained by main effects even in the presence of an interaction. Since interactions are the products of main effects, 

321 interaction terms are typically correlated with main effects and the part R2 calculated above might not represent a 

322 biologically relevant quantity. There are two alternative ways of how to deal with interactions. Both are possible in 

323 partR2, but since requirements differ between applications, we do not implement one with priority.

324 One way to think about variance explained by main effects and their interactions is to pool the variance explained 

325 by a main effect with the variance explained by interactions that the term is involved in (Option B in Figure 3). In the 

326 guinea pig example, for instance, Rank might be considered important either as a main effect or in interaction with 

327 time and we might want to estimate the total effect of rank. This can be done for the guinea pig dataset by using 

328 partbatch:
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329

330 mod <- lmer(Testo ~ Time * Rank + (1|MaleID), data=GuineaPigs)

331 partR2(mod, partbatch = list(Time=c("Time", "Time:Rank"),

332 Rank=c("Rank", "Time:Rank")), nboot=100)

333

334 A third, which we think usually preferable option is to prioritize main effects by assigning the proportion of variance 

335 that is explained by a main effect together with the variance jointly explained with its interaction to the main effect 

336 (Option C in Figure 3). This implies that part R2 for a main effect is estimated when its own interaction is excluded 

337 from the model (mod1 and part1 below). The variance explained by the interaction is then estimated in a 

338 separate model (mod2 and part2 below). We have implemented a helper function mergeR2 that allows to merge 

339 two partR2 runs.

340

341 mod1 <- lmer(Testo ~ Time * Rank + (1|MaleID), data=GuineaPigs)

342 part1 <- partR2(mod1, partvars = c("Time:Rank"), nboot=100)

343 mod2 <- lmer(Testo ~ Time + Rank + (1|MaleID), data=GuineaPigs)

344 part2 <- partR2(mod2, partvars = c("Time", "Rank"), nboot=100)

345 mergeR2(part1, part2)

346

347 All these results can be viewed by print, summary and plotted by forestplot. It is important to bear in mind 

348 the differences in the interpretation as illustrated in Figure 3.

349

350 An example with proportion data

351 As an example for proportion data, we analyze a dataset on spatial variation in color morph ratios in a color-

352 polymorphic species of grasshopper. Individuals of this species occur either in a green or a brown color variant and 

353 the dataset contains counts of brown and green individuals (separated for females and males) from 42 sites sampled 

354 in the field (Dieker et al., 2018). Site identity will be fitted as a random effect. As covariates the dataset contains a 

355 range of Bioclim variable that describe various aspects of ecologically relevant climatic conditions (Karger et al., 

356 2017). The aim is to identify the climatic conditions that favour one or the other colour variant.
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357 We first load the grasshopper dataset. We standardise all Bioclim variables using the scale function and add an 

358 observation-level counter that will be used as an observation-level random effect (OLRE) to account for 

359 overdispersion (Harrison, 2014). 

360

361 data(Grasshoppers)

362 for (i in which(substr(colnames(Grasshoppers),1,3)=="Bio")){

363 Grasshoppers[,i] <- scale(Grasshoppers[,i])

364 }

365 Grasshoppers$OLRE <- 1:nrow(Grasshoppers)

366

367 We first fit a GLMM with binomial error structure and logit link using the glmer function from the lme4 package 

368 (Bates et al., 2015). A previous analysis has shown that the first principle component of the Bioclim data explains a 

369 small, but significant part of variation in morph ratios (Dieker et al., 2018). For illustration, we use the four Bioclim 

370 variables that show a loading of more than 0.30 on the first principle component. 

371

372 mod <- glmer(cbind(nGreen, nBrown) ~ Bio7 + Bio14 + Bio17 + Bio19 +

373 (1|SiteID) + (1|OLRE), data=Grasshoppers, family="binomial")

374 res <- partR2(mod, partvars=c("Bio7", "Bio14", "Bio17", "Bio19"),

375 max_level = 1, nboot=100)

376

377 The summary output informs us (at the bottom) that there have been warnings in the bootstrapping processes. 

378 This is not unusual since bootstrapping frequently generates data, for which one of the parameters is estimated at 

379 the boundary (in particular if one of the variance components is very small). The results can be visualised using the 

380 forestplot function (Figure 4). Plotting is based on ggplot2 (Wickham, 2016), and multiple forest plots can 

381 easily be assembled using the patchwork package (Pedersen, 2020). Forest plots show the effect sizes 

382 graphically and can be set to either show part R2 when type = "R2" (the default), inclusive R2 when type = 

383 "IR2", structure coefficients when type = "SC", and beta weights (standardized model estimates) with type 

384 = "BW". 

385

386 p1 <- forestplot(res, type = "R2")

387 p2 <- forestplot(res, type = "IR2")

PeerJ reviewing PDF | (2020:07:51365:2:0:NEW 8 Mar 2021)

Manuscript to be reviewed



388 p3 <- forestplot(res, type = "SC")

389 p4 <- forestplot(res, type = "BW")

390

391 library(patchwork)

392 (p1 + p2) / (p3 + p4) + plot_annotation(tag_levels = "A", tag_prefix 

393 = "(", tag_suffix = ")")

394

395

396 Figure 4: Comparison of part R2 for individual predictors (A), inclusive R2 (B), structure coefficients (C) and beta 

397 weights (D) for an example dataset with proportion data from grasshoppers.
398

399

400

401 A comparison of part R2, inclusive R2, structure coefficients beta weights shows the different insights that can be 

402 gained from these different summaries of the model fit (Figure 3). In this case, three of the Bioclim variables (Bio14, 

403 Bio17, Bio19) are highly positively correlated (r ≥ 0.93), while a fourth one (Bio7) is moderately negatively correlated 

404 to all three of them (r ≤ -0.63). Part R2 are thus low, because none of the parameters uniquely explains a large share 

405 of the variance. Bio17 seems to be the best predictor of morph ratios, with the largest (negative) beta weight, largest 

406 part R2, largest structure coefficients and largest inclusive R2. Beta weights for the two positively correlated (but 

407 slightly weaker) predictors, Bio14 and Bio19, switch sign as is not unusual for collinear predictors. This means that 

408 after accounting for the effect of Bio17, they contribute positively to prediction. However, structure coefficients 

409 show that both variables load negatively on the linear predictor, as does Bio17.

410

411 Challenges

412 Using transformation or functions in the formula argument can lead to issues with matching the terms of the model 

413 with the partvars argument of partR2. It is therefore important that the names in partvars match exactly 

414 the terms in the merMod object. However, any complications are easily circumvented by implementing the 

415 transformations before fitting the model and storing them in the data frame used in the analysis. It is also worth to 

416 be aware that unusual names may cause complications and renaming can offer an easy solution.

417 We have repeatedly seen model outputs where the point estimate does not fall within the confidence interval. This 

418 might seem like in the bug in the package, but in our experience usually indicates issues with the data and/or the 
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419 model. In fact, parametric bootstrapping can be seen as a limited form of posterior predictive model checks 

420 (Gelman & Hill, 2006). If generating new data from the fitted model (as done with parametric bootstrapping) results 

421 in data that are dissimilar to the original data, then the model is probably not a good fit to the data. 

422 Bootstrap iterations can sometimes yield slightly negative estimates of part R2, in particular if the variance 

423 explained by a predictor is low. These negative estimates happen in mixed-effects models, because estimates of 

424 random-effect variance might change when a predictor is removed and this can lead to a slight decrease in the 

425 residual variance, and hence a proportional increase in R2 (see also Rights & Sterba, 2019). By default, partR2 sets 

426 negative R2 values to 0, but this can be changed by setting allow_neg_r2 to TRUE. It also happens that inclusive 

427 R2 is estimated slightly lower than part R2 when the contribution of a particular predictor is very large. We consider 

428 both cases as sampling error that should serve as a reminder that variance components are estimated with relatively 

429 large uncertainly and minor differences should not be over-interpreted.

430 A warning needs to be added for the estimation of R2 (and, in fact, also repeatability R) from small datasets. In 

431 particular if the number of levels of random effect is low, variance components might be slightly overestimated (Xu, 

432 2003). This issue applies similarly to the variance explained by fixed effects, in particular if the number of predictors 

433 is large relative to the number of data points. 

434

435 Code and data availability

436 The current stable version of partR2 can be downloaded from CRAN (https://cran.r-

437 project.org/web/packages/partR2/index.html) and the development version can be obtained from GitHub 

438 (https://github.com/mastoffel/partR2). The data used in the examples is part of the package.

439

440
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Figure 1
Conceptual framework for the estimation of proportions of variance components in a
mixed model.

The large grey circle symbolizes the variance in a response Y, the dark grey area on the top
indicates the share explained by random effects and the coloured ellipses symbolize variance
in covariates with intersections indicating jointly explained variances. partR2 calculates total

R2, part R2 for individual predictors and sets of predictors as well as inclusive R2. The package

does not report partial R2 and commonalities, although they could be calculated from the
partR2 output.
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Figure 2
Summary output for example data analysis with Gaussian data (guinea pig analysis).
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Figure 3
Conceptual framework for dealing with interactions.

An interaction is the product of two main effects and thus often correlated with each of the

main effects. The figure shows three options for estimating the part R2 for main effects that
are involved in an interaction.
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Figure 4

Comparison of part R2 for individual predictors (A), inclusive R2 (B), structure coefficients
(C) and beta weights (D) for an example dataset with proportion data from
grasshoppers.
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