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ABSTRACT
The coefficient of determination R2 quantifies the amount of variance explained by
regression coefficients in a linear model. It can be seen as the fixed-effects complement
to the repeatability R (intra-class correlation) for the variance explained by random
effects and thus as a tool for variance decomposition. The R2 of a model can be further
partitioned into the variance explained by a particular predictor or a combination of
predictors using semi-partial (part) R2 and structure coefficients, but this is rarely
done due to a lack of software implementing these statistics. Here, we introduce
partR2, an R package that quantifies part R2 for fixed effect predictors based on
(generalized) linear mixed-effect model fits. The package iteratively removes predictors
of interest from the model and monitors the change in the variance of the linear
predictor. The difference to the full model gives a measure of the amount of variance
explained uniquely by a particular predictor or a set of predictors. partR2 also estimates
structure coefficients as the correlation between a predictor and fitted values, which
provide an estimate of the total contribution of a fixed effect to the overall prediction,
independent of other predictors. Structure coefficients can be converted to the total
variance explained by a predictor, here called ‘inclusive’R2, as the square of the structure
coefficients times totalR2. Furthermore, the package reports beta weights (standardized
regression coefficients). Finally, partR2 implements parametric bootstrapping to
quantify confidence intervals for each estimate.We illustrate the use of partR2with real
example datasets for Gaussian and binomial GLMMs and discuss interactions, which
pose a specific challenge for partitioning the explained variance among predictors.

Subjects Animal Behavior, Computational Biology, Ecology, Statistics, Computational Science
Keywords Semi-partial coefficient of determination, Generalized linear mixed-effects models,
Variance component analysis, Structure coefficients, R2, Parametric bootstrapping, Partitioning
R2, r-square

INTRODUCTION
Coefficients of determination R2 are of interest in the study of ecology and evolution,
because they quantify the amount of variation explained by a linear model (Edwards et al.,
2008). By doing so, they go beyond significance testing in putting effects in perspective of
the phenotypic variance.R2 is expressed as a proportion of the total variance in the response,
which represents a biologically relevant quantity if the total variation is representative for
the total population (De Villemereuil et al., 2018). The total coefficient of determination in
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Response Y

Total variance in Y
YTotal = Yx1 + Yx2 + Yx3 + Yx1,x2 + Yx1,x3 + Yx2,x3 + 
Yx1,x2,x3 + YRE + YR

Random components (incl. repeatability)
Random effects: YRE / YTotal

Residual: YR / YTotal

Total R2

YR2 = (Yx1 + Yx2 + Yx3 + Yx1,x2 + Yx1,x3 + Yx2,x3 + Yx1,x2,x3) / YTotal

Part R2 for individual predictors
X1:   Yx1 / YTotal

X2:   Yx2 / YTotal

X3:   Yx3 / YTotal

Part R2 for sets of predictors
X1 + X2:   (Yx1 + Yx2 + Yx1, x2) / YTotal

X1 + X3:   (Yx1 + Yx3 + Yx1, x3) / YTotal

X2 + X3:   (Yx2 + Yx3 + Yx2, x3) / YTotal

X1 + X2 + X3:   (Yx1 + Yx2 + Yx3 + Yx1,x2 + Yx1,x3 + Yx2,x3 + Yx1,x2,x3) / YTotal

Inclusive R2 for individual predictors
X1:   (Yx1 + Yx1,x2 + Yx1,x3 + Yx1,x2,x3) / YTotal

X2:   (Yx2 + Yx1,x2 + Yx2,x3 + Yx1,x2,x3) / YTotal

X3:   (Yx3 + Yx1,x3 + Yx2,x3 + Yx1,x2,x3) / YTotal

Par<al R2 for individual predictors
X1:   Yx1 / (YTotal - Yx2 - Yx3 - Yx1,x2 - Yx1,x3 - Yx2,x3 - Yx1,x2,x3)
X2:   Yx2 / (YTotal - Yx1 - Yx3 - Yx1,x2 - Yx1,x3 - Yx2,x3 - Yx1,x2,x3)
X3:   Yx3 / (YTotal - Yx1 - Yx2 - Yx1,x2 - Yx1,x3 - Yx2,x3 - Yx1,x2,x3)

Commonali<es
Xx1, x2:       Yx1, x2 / YTotal

Xx1, x3:       Yx1, x3 / YTotal

Xx2, x3:       Yx2, x3 / YTotal

Xx1, x2, x3:   Yx1, x2, x3 / YTotal

Figure 1 Conceptual framework for the estimation of proportions of variance components in a mixed
model. The large grey circle symbolizes the variance in a response Y, the dark grey area on the top indi-
cates the share explained by random effects and the coloured ellipses symbolize variance in covariates with
intersections indicating jointly explained variances. partR2 calculates total R2, part R2 for individual pre-
dictors and sets of predictors as well as inclusive R2. The package does not report partial R2 and common-
alities, although they could be calculated from the partR2 output.

Full-size DOI: 10.7717/peerj.11414/fig-1

a generalised linear mixed model (GLMM) quantifies the variance explained by all fixed
effects together (marginal R2 sensu Nakagawa & Schielzeth, 2013, also known as the total
correlation coefficient,Watanabe, 1960).

However, it is often of interest to attribute explained variation to individual predictors.
Semi-partial coefficients of determination, also known as part R2, decompose the variance
of R2 into components uniquely explained by individual predictors (Jaeger et al., 2017;
Jaeger, Edwards & Gurka, 2019) or sets of predictors (Fig. 1). The set of all predictors in the
model yields the total proportion of variance explained by the fixed part of the model (total
R2). With correlations among predictors, it often happens that predictors in univariate
regressions explain a large share of the variance, but do not show large part R2 if other
correlated predictors are included in the model. Note that part R2 estimates the proportion
of the variance in the response explained by a predictor while accounting for covariance
between this predictor and the other predictors in the model, whereas the (arguably more
familiar) partial R2 estimates the proportion of the variance that is explained by a predictor
of interest after accounting for the other predictors from the response as well as the
predictor of interest. The difference is subtle, but important (see more below). Therefore,
part R2 represents ‘variance accounted for’ in relation to the total variance, but partial R2

does not. Consequently, part R2 will be conceptually easier to compare with (total) R2.
Structure coefficients provide a valuable addition to part R2 in the decomposition of the

phenotypic variance (Nimon et al., 2008; Yeatts et al., 2017). Structure coefficients quantify
the correlation between individual predictors and the linear predictor. Predictors that
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correlate well with a response, but are fitted with collinear predictors may show large
structure coefficients as they are correlated to the predicted response, but low part R2 as
other predictors explain part of the same variance. Structure coefficients range from−1 to
1 with their absolute value expressing the correlation relative to a perfect correlation if a
single predictor explains as much as the total fixed part of the model.

Structure coefficients are correlations and since the square of a correlation yields
the variance explained, we can use structure coefficients to estimate the total variance
explained by a predictor (Nimon et al., 2008). We call this the inclusive R2 of a predictor
and calculate it as the squared structure coefficient, i.e., its contribution to the linear
predictor independent of other predictors (Nimon et al., 2008) times the proportion of
variance explained by the linear predictor (which is the ‘total’ marginal R2 of the model)
(see alsoNathans, Oswald & Nimon, 2012). As far as we are aware, inclusive R2 has not been
implemented before, but it provides valuable insights into the structure of the variance
explained (Fig. 1).

Here, we introduce partR2, a versatile package for estimating part R2, inclusive R2,
structure coefficients and beta weights from mixed-effects models. Figure 1 gives an
overview of how variances are calculated and how they relate to partial R2 and to
commonality analysis (Ray Mukherjee et al., 2014; Seibold & McPhee, 1979; Zientek &
Thompson, 2006). We illustrate how to use partR2 with real example datasets for Gaussian
and binomial GLMMs, discuss how to estimate part R2in the presence of interactions
and discuss some challenges and limitations. The Landesamt fuÌĹr Natur, Umwelt und
Verbraucherschutz Nordrhein-Westfalen "LANUV NRW" (Germany) approved this
research (reference number: 84-02.04.2015.A439).

MATHEMATICAL REPRESENTATION
Part R2

A Gaussian mixed-effects model can be written as:

y=Xβ+
∑

αk+ε (1)

αk ∼N (0,σ 2
αk
)

ε∼N (0,σ 2
ε )

Where y is a vector of response values (outcomes), X is the design matrix of fixed effects,
β is a vector of regression coefficients,

∑
αk is the random part of the model that might

containmultiple random effects and ε is a vector of residual deviations. The linear predictor
β represents the vector of predicted values from the fixed part of the model as β=Xβ.
Note that we dealing with estimates of regression coefficients and variance components
throughout (hence all β should be read as β̂).

Since we are interested in the proportion of the phenotypic variance explained, we
symbolize variance components by upper case Y and index by the source of variance (as
in Fig. 1). While variances are frequently represented as V with the source of variance as
an index, this leads to ambiguity for VX which might represent variance in y explained by
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x or variance in x itself, which is why we use this alternative notation. The total variance
in the response is YTotal = var(y) and is estimated from the raw data or from the model
(see below). The variance of the residuals is estimated by the model as YR= var(ε). The
variance of the (sum of) random effects is estimated by the model as YRE = var(

∑
αk)

and the variance explained by fixed effects can be estimated as the variance in the linear
predictor YX = var(Xβ).

The coefficient of determination R2 estimates the proportion of variance in the response
that is explained by fixed effects. The coefficient of determination R2 for the total fixed
part of the model is thus:

R2
X =

YX
YX +YRE+YR

=
YX

YTotal
(2)

Note that the sum of the components in the denominator might deviate numerically
from the total outcome variance in the raw data. However, conceptually they are the same
in that they represent the population-level outcome variance. The variance in the outcome
is an estimate from the specific sample, while the sum of components of the mixed model
represents a population-level estimate given the data and the model.

A reducedmodel with a (set of) fixed effect predictors X∗ removed but the same random
effect structure can be fitted as (now using the tilde to highlight the differences from Eq.
(1)):

y= X̃β̃+
∑

α̃k+ ε̃ (3)

α̃k ∼N (0,σ 2
α̃k
)

ε̃∼N (0,σ 2
ε̃ )

with the variance in the linear predictor of the reduced model being YX̃ = var(Xβ).
The variance uniquely explained by X∗ is then the difference between the variance

explained by fixed effects in the full and the reduced model YX∗ = YX −YX̃ . Part R
2 sets

this variance in proportion to the total outcome variance:

R2
X∗ =

YX −YX̃
YX +YRE+YR

=
YX −YX̃
YTotal

(4)

The process of fitting a reduced model, estimation of YX∗ and estimation of R2
X∗ can be

repeated for all predictors and combinations of predictors. At the limit for a model with
all fixed effects removed, R2

X∗=R2
X .

Side-note on partial R2

For completeness we note that the partial R2 could be calculated as:

R2
X∗ =

YX −YX̃
YTotal−YX̃

(5)

However, this estimate does not put the explained variance in perspective of the total
variance in the response. It has the major disadvantage that the denominator depends on
YX̃ . The same effect in terms of YX∗ thus appears larger if the reduced model explains more
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variance (larger YX̃ ). Even in the case of independent additive predictors, the contributions
of the different fixed effects do not sum up to R2

X , because of the change in the denominator
that different YX∗ are compared to. Finally, since we are interested in explaining phenotypic
variation in some biological response (the phenomenon to be explained), we think that
part R2 is the more relevant quantity, as it represents the proportion of variance in the
response uniquely explained by X∗.

Inclusive R2

Structure coefficients are the Pearson correlations between a particular predictor of interest
x∗ and the linear predictor η. Note that we now use a lower case x∗ to indicate that we are
dealing with a single predictor. Structure coefficients are quantified from the full model as:

SCx∗ = cor(η,x∗) (6)

The squared correlation between two variables a and b gives the variance explained
for these variables cor(a,b)2 = R2

a. The squared structure correlations thus quantify the
proportion of variance in the linear predictor YX that is explained by a the predictor of
interest x∗. Since the proportion of outcome variance explained by the linear predictor in
the full model is R2

X , the inclusive variance explained by predictor x∗ is:

IR2
x∗ = SC2

·R2
X∗ (7)

InclusiveR2 aswe define it here, complements partR2 by giving additional insights.While
part R2 quantifies the variance uniquely explained by a predictor (or set of predictors),
inclusive R2 quantifies the total proportion of variance explained in the model, both
uniquely and jointly with other predictors. In the special case of a single predictor in a
model SCx∗ = cor(η,x∗)= 1, such that IR2

x∗ =R2
X .

Part R2 in non-Gaussian models
For Gaussian models there is a single residual error term ε with variance YR = var(ε).
For non-Gaussian models, however, there is additional error that arises from the link
function that translates latent-level predictions to observed outcomes. This variance
can be approximated for a variety of link functions and error distributions (Nakagawa
& Schielzeth, 2010; Nakagawa, Johnson & Schielzeth, 2017). Our R package currently
implements distribution-specific variances for Poissonmodels with log and square root link
functions and binomial models with logit and probit link functions. For Poisson models
and non-binary binomial models (proportion models), partR2 also fits an observational
level random effect (if none is fitted already) to estimate variance due to overdispersion
(Harrison, 2014). Both the overdispersion variance, now denoted YR and the distribution-
specific variance YD are included in the denominator of the part R2 calculation:

R2
X∗=

YX −YX̃
YX +YRE+YD+YR

(8)

Notably, there are other estimation methods for R2 for non-Gaussian models or GLMM
(Jaeger et al., 2017; Piepho, 2019). Currently, partR2 only implements the method based
on Nakagawa & Schielzeth (2013) and Nakagawa, Johnson & Schielzeth (2017).
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OTHER IMPLEMENTATIONS IN R PACKAGES
There are a few R packages that calculate part R2 for linear models (lm), for example
rockchalk::getDeltaRsquare (Johnson & Grothendieck, 2019). Other packages calculate
partial R2 (not part R2) such as asbio::partial.R2 (Aho, 2020) and rr2::R2 (Ives
& Li, 2018) for linear models and rsq::rsq.partial (Zhang, 2020) for linear models
and generalized linear models (glm). Note that partial R2 is different from part (semi-
partial) R2 (partial R2 >part R2), since it represents the unique variance explained by a
particular predictor but after removing (‘partialling out’) the variance explained by the
other predictors (Yeatts et al., 2017, Fig. 1). The ppcor package calculates semi-partial and
partial correlations, but does not work on fitted GLM or GLMM models (Kim, 2015).
The package yhat features functions for commonality analyses in glms (Nimon, Oswald &
Roberts, 2020). None of these packages estimates part R2 for mixed-effects models that we
focus on here.

Several packages estimate (marginal) R2 as the variance explained by all fixed effects
in linear mixed-effects models. This includes performance::r2_nakagawa (Lüdecke et
al., 2020), MuMIn::r.squaredGLMM (Bartoń, 2019), and rptR::rpt (Stoffel, Nakagawa
& Schielzeth, 2017). These packages do not allow to estimate part R2. The only versatile
package to estimate part R2 from linear mixed-models is r2glmm (Jaeger, 2017). The
function r2glmm::r2beta computes part R2 from lmer, lme and glmmPQL model fits
(also for linear models lm and glm) based on Wald statistics. However, it does neither
support lme4::glmer for generalized linear model fits nor does it allow to estimate R2

for combinations of predictors. Furthermore, it does not estimate structure coefficients,
inclusive R2 or part R2 for multilevel factors as a unit.

Features of partR2
partR2 takes a fitted (generalized) linear mixed-model (GLMM), from the popular mixed
model package lme4 (Bates et al., 2015) and estimates part R2 by iteratively removing
fixed effects (Nimon et al., 2008). The specific fixed effects of interest are specified by
the partvars and/or by the partbatch argument. The package estimates part R2 for
all predictors specified in partvars individually and in all possible combinations (the
maximum level of combinations can be set by the max_level argument). A custom
specification of fixed effects of interest saves computation time as compared to an all-subset
specification and is therefore required in partR2.

The central function partR2 will work for Gaussian, Poisson and binomial GLMMs.
Since the model fit is done externally, there is no need to supply a family argument. For
non-Gaussian GLMMs, the package estimates link-scale R2 (sensu Nakagawa & Schielzeth,
2013). We implement parametric bootstrapping to quantify sampling variance and thus
uncertainty in the estimates. Parametric bootstrapping works through repeated model
fitting on simulated data based on fitted values (Faraway, 2015). The number of bootstrap
iterations is controlled by the nboot argument. We recommend a low number of nboot
for testing purposes and a large number (e.g., nboot = 1000) for the final analysis.

The package returns an object of class partR2 that contains elements for partR2, inclusive
R2, structure coefficients, beta weights (standardized regression slopes), bootstrapping
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iterations and some other information. An extended summary, that includes inclusive
R2, structure coefficients and beta weights can be viewed using the summary function.
The forestplot function shows a graphical representation of the variance explained by
individual predictors and sets of predictors along with their bootstrapping uncertainties.
All computations can be parallelized across many cores based on the future and furrr

packages (Vaughan & Dancho, 2018; Bengtsson, 2020). An extended vignette with details
on the complete functionality accompanies the package.

Example with Gaussian data
Weuse an example dataset with hormone data collected from a population of captive guinea
pigs to illustrate the features of partR2. The dataset contains testosterone measurements
of 31 male guinea pigs, each measured at 5 time points (age between 120 and 240 days at
30-day intervals). We analyze log-transformed testosterone titers and fit male identity as a
random effect. As covariates the dataset contains the time point of measurement and a rank
index derived from behavioral observations around the time of measurement (Mutwill et
al., 2021).

Rank and Time are correlated in the dataset (r = 0.40), since young individuals are
typically low rank, while older individuals tend to hold a high rank. Time might be fitted
as a continuous predictor or as a factor with five levels. Here we present the version of a
factorial predictor to illustrate the estimation of part R2 for interactions terms. Hence, an
interaction between Time and Rank will also be fitted.

First, the package needs to be loaded (after successful installation) in an R session (R
Core Team, 2021). The package comes with the guinea pig dataset that also needs to be
loaded using the data function.

library(partR2)

data(GuineaPigs)

A single record contains missing values for testosterone measurements. Missing records
can be problematic to handle in partR2 and are better removed prior to the analysis. We
also log-transform the response and convert Time to a factor and filter for the first three
time points to simplify the output.

GuineaPigs <- subset(GuineaPigs, !is.na(Testo) & !is.na(Rank) & (Time

%in% c(1,3,5)))

GuineaPigs$TestoTrans <- log(GuineaPigs$Testo)

GuineaPigs$Time <- factor(GuineaPigs$Time)

We then fit a linear mixed effects model using lmer from the lme4 package (Bates et al.,
2015). Further exploration of the data and model checks are omitted here for simplicity,
but are advisable in real data analysis.

library(lme4)

mod <- lmer(TestoTrans ∼Rank * Time + (1|MaleID), data=GuineaPigs)

The partR2 analysis takes the lmermodel fit (an merMod object) and a character vector
partvars indicating the fixed effects to be evaluated. Interactions are specified with the
colon syntax (see the package’s vignette for further details).
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res <- partR2(mod, partvars = c("Rank", "Time", "Rank:Time"), nboot=100)

The function returns a partR2 object. The print function reports the part coefficients
of determination and a more extensive summary can be viewed with the summary function
which also shows inclusive R2, structure coefficients and beta weights (standardized slopes)
(Fig. 2).

print(res)

summary(res, round_to = 2)

The variances appear largely additive, since combinations of predictors explain about
the sum of the variance explained by individual predictors. The main components of the
partR2 object can be accessed for further processing as res$R2 for part R2 (with point
estimates and confidence intervals), res$SC for structure coefficients, res$IR2 for inclusive
R2 and res$BW for beta weights.

Dealing with interactions
Models with interactions are problematic, because the variance explained by a main factor
can be estimated in multiple ways (Fig. 3) and because of the internal parametrization of
the model matrix.

The model output in Fig. 2 shows the number of parameters fitted in each model (each
row in the R2 part refers to a reduced model). In the print and summary output this is
visible as a column labelled ‘ndf’. A close inspection shows that the removal of rank did not
change the number of parameters (6 for the full model, 6 for the model excluding rank).
This is because the model matrix is reparametrized in the reduced model and lmer will
fit three terms for the interaction (here Time1:Rank, Time3:Rank, Time5:Rank) rather
than just two for the interaction in the full model. Dummy coding of the factor can be
usefully combined with centering of dummy coded variables (Schielzeth, 2010) and gives
more control over this re-parametrisation. It allows for example to estimate the part R2 for
the average effect of Rank by constraining the average Rank effect to zero, so that only the
two contrasts are fitted (here Time3:Rank, Time5:Rank):

GuineaPigs <- cbind(GuineaPigs, model.matrix(∼0 + Time, data=GuineaPigs))

GuineaPigs$Time3 <- GuineaPigs$Time3 - mean(GuineaPigs$Time3)

GuineaPigs$Time5 <- GuineaPigs$Time5 - mean(GuineaPigs$Time5)

The model can then be fitted with dummy predictors. Since the usual specification in
partR2 via partvars would fit all possible combinations, including combinations of the
different Time terms, such a run can take a long time. However we are mostly interested
in fitting and removing all dummy predictors at a time. The package therefore features
an additional argument partbatch to specify a list of character vectors containing the
sets of predictors that should always be kept together. In the example, the list has two
elements, a character vector for the dummy-coded main effects and a character vector for
the interaction terms. The analysis yields part R2 for two batches of predictors as well as
Rank and their combinations.

mod <- lmer(TestoTrans ∼(Time3 + Time5) * Rank + (1|MaleID),

data=GuineaPigs)

batch <- c("Time3", "Time5")
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R2 (marginal) and 95% CI for the full model: 
 R2   CI_lower CI_upper ndf
 0.17 0.09     0.36     6  

----------

Part (semi-partial) R2:
 Predictor(s)        R2   CI_lower CI_upper ndf
 Model               0.17 0.09     0.36     6  
 Rank                0.00 0.00     0.18     6  
 Time                0.02 0.00     0.20     4  
 Rank:Time           0.04 0.00     0.21     4  
 Rank+Time           0.02 0.00     0.20     4  
 Rank+Rank:Time      0.16 0.08     0.34     3  
 Time+Rank:Time      0.04 0.00     0.22     2  
 Rank+Time+Rank:Time 0.17 0.09     0.36     1  

----------

Inclusive R2 (SC^2 * R2):
 Predictor  IR2  CI_lower CI_upper
 Rank       0.13 0.03     0.26    
 Time3      0.00 0.00     0.04    
 Time5      0.00 0.00     0.04    
 Rank:Time3 0.05 0.01     0.13    
 Rank:Time5 0.01 0.00     0.07    

----------

Structure coefficients r(Yhat,x):
 Predictor  SC   CI_lower CI_upper
 Rank       0.87  0.56    0.94    
 Time3      0.14 -0.18    0.43    
 Time5      0.16 -0.26    0.48    
 Rank:Time3 0.56  0.22    0.75    
 Rank:Time5 0.28 -0.14    0.57    

----------

Beta weights (standardised estimates)
 Predictor  BW    CI_lower CI_upper
 Rank        0.50 -0.08    0.94    
 Time3      -0.19 -0.53    0.14    
 Time5       0.17 -0.20    0.55    
 Rank:Time3  0.17 -0.36    0.83    
 Rank:Time5 -0.36 -0.95    0.38    

----------

Figure 2 Summary output for example data analysis with Gaussian data (guinea pig analysis).
Full-size DOI: 10.7717/peerj.11414/fig-2
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Figure 3 Conceptual framework for dealing with interactions. An interaction is the product of two
main effects and thus often correlated with each of the main effects. The figure shows three options for es-
timating the part R2 for main effects that are involved in an interaction.

Full-size DOI: 10.7717/peerj.11414/fig-3

partR2(mod, partvars=c("Rank"), partbatch=list(Time=batch, ‘‘Time:Rank’’=

paste0(batch, ":Rank")), nboot=100)

This, however, is only one way of dealing with interactions (Option A in Fig. 3).
It represents the variance uniquely explained by main effects even in the presence of
an interaction. Since interactions are the products of main effects, interaction terms
are typically correlated with main effects and the part R2 calculated above might not
represent a biologically relevant quantity. There are two alternative ways of how to deal
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with interactions. Both are possible in partR2, but since requirements differ between
applications, we do not implement one with priority.

One way to think about variance explained by main effects and their interactions is to
pool the variance explained by a main effect with the variance explained by interactions
that the term is involved in (Option B in Fig. 3). In the guinea pig example, for instance,
Rank might be considered important either as a main effect or in interaction with time
and we might want to estimate the total effect of Rank. This can be done for the guinea pig
dataset by using partbatch:

mod <- lmer(Testo ∼Time * Rank + (1|MaleID), data=GuineaPigs)

partR2(mod, partbatch = list(Time=c("Time", "Time:Rank"), Rank=c("Rank",

"Time:Rank")), nboot=100)

A third, which we think usually preferable option is to prioritizemain effects by assigning
the proportion of variance that is explained by a main effect together with the variance
jointly explained with its interaction to the main effect (Option C in Fig. 3). This implies
that part R2 for a main effect is estimated when its own interaction is excluded from the
model (mod1 and part1 below). The variance explained by the interaction is then estimated
in a separate model (mod2 and part2 below). We have implemented a helper function
mergeR2 that allows to merge two partR2 runs.

mod1 <- lmer(Testo ∼Time * Rank + (1|MaleID), data=GuineaPigs)

part1 <- partR2(mod1, partvars = c("Time:Rank"), nboot=100)

mod2 <- lmer(Testo ∼Time + Rank + (1|MaleID), data=GuineaPigs)

part2 <- partR2(mod2, partvars = c("Time", "Rank"), nboot=100)

mergeR2(part1, part2)

All these results can be viewed by print, summary and plotted by forestplot. It is
important to bear in mind the differences in the interpretation as illustrated in Fig. 3.

An example with proportion data
As an example for proportion data, we analyze a dataset on spatial variation in color
morph ratios in a color-polymorphic species of grasshopper. Individuals of this species
occur either in a green or a brown color variant and the dataset contains counts of brown
and green individuals (separated for females and males) from 42 sites sampled in the field
(Dieker et al., 2018). Site identity will be fitted as a random effect. As covariates the dataset
contains a range of Bioclim variable that describe various aspects of ecologically relevant
climatic conditions (Karger et al., 2017). The aim is to identify the climatic conditions that
favour one or the other colour variant.

We first load the grasshopper dataset. We standardise all Bioclim variables using the
scale function and add an observation-level counter that will be used as an observation-
level random effect (OLRE) to account for overdispersion (Harrison, 2014).

data(Grasshoppers)

for (i in which(substr(colnames(Grasshoppers),1,3)=="Bio"))

{Grasshoppers[,i] <- scale(Grasshoppers[,i])

}
Grasshoppers$OLRE <- 1:nrow(Grasshoppers)
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Figure 4 Comparison of part R2 for individual predictors (A), inclusive R2 (B), structure coefficients
(C) and beta weights (D) for an example dataset with proportion data from grasshoppers.

Full-size DOI: 10.7717/peerj.11414/fig-4

We first fit a GLMM with binomial error structure and logit link using the glmer
function from the lme4 package (Bates et al., 2015). A previous analysis has shown that
the first principle component of the Bioclim data explains a small, but significant part of
variation in morph ratios (Dieker et al., 2018). For illustration, we use the four Bioclim
variables that show a loading of more than 0.30 on the first principle component.

mod <- glmer(cbind(nGreen, nBrown) ∼ Bio7 + Bio14 + Bio17 + Bio19 +

(1|SiteID) + (1|OLRE), data=Grasshoppers, family="binomial")

res <- partR2(mod, partvars=c("Bio7", "Bio14", "Bio17", "Bio19"),

max_level=1, nboot=100)

The summary output informs us (at the bottom) that there have been warnings in the
bootstrapping processes. This is not unusual since bootstrapping frequently generates data,
for which one of the parameters is estimated at the boundary (in particular if one of the
variance components is very small). The results can be visualised using the forestplot
function (Fig. 4). Plotting is based on ggplot2 (Wickham, 2016), and multiple forest plots
can easily be assembled using the patchwork package (Pedersen, 2020). Forest plots show
the effect sizes graphically and can be set to either show part R2 when type = "R2" (the
default), inclusive R2 when type = "IR2", structure coefficients when type = "SC", and
beta weights (standardized model estimates) with type = "BW".

p1 <- forestplot(res, type = "R2")

p2 <- forestplot(res, type = "IR2")

p3 <- forestplot(res, type = "SC")
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p4 <- forestplot(res, type = "BW")

library(patchwork)

(p1 + p2) / (p3 + p4) +

plot_annotation(tag_levels = "A", tag_prefix= "(", tag_suffix = ")")

A comparison of part R2, inclusive R2, structure coefficients beta weights shows the
different insights that can be gained from these different summaries of the model fit (Fig.
3). In this case, three of the Bioclim variables (Bio14, Bio17, Bio19) are highly positively
correlated (r ≥ 0.93), while a fourth one (Bio7) is moderately negatively correlated to all
three of them (r ≤−0.63). Part R2 are thus low, because none of the parameters uniquely
explains a large share of the variance. Bio17 seems to be the best predictor of morph ratios,
with the largest (negative) beta weight, largest part R2, largest structure coefficients and
largest inclusive R2. Beta weights for the two positively correlated (but slightly weaker)
predictors, Bio14 and Bio19, switch sign as is not unusual for collinear predictors. This
means that after accounting for the effect of Bio17, they contribute positively to prediction.
However, structure coefficients show that both variables load negatively on the linear
predictor, as does Bio17.

Challenges
Using transformation or functions in the formula argument can lead to issueswithmatching
the terms of the model with the partvars argument of partR2. It is therefore important
that the names in partvars match exactly the terms in the merMod object. However, any
complications are easily circumvented by implementing the transformations before fitting
the model and storing them in the data frame used in the analysis. It is also worth to
be aware that unusual names may cause complications and renaming can offer an easy
solution.

We have repeatedly seen model outputs where the point estimate does not fall within the
confidence interval. This might seem like in the bug in the package, but in our experience
usually indicates issues with the data and/or the model. In fact, parametric bootstrapping
can be seen as a limited form of posterior predictive model checks (Gelman & Hill, 2006). If
generating new data from the fitted model (as done with parametric bootstrapping) results
in data that are dissimilar to the original data, then the model is probably not a good fit to
the data.

Bootstrap iterations can sometimes yield slightly negative estimates of part R2, in
particular if the variance explained by a predictor is low. These negative estimates happen
in mixed-effects models, because estimates of random-effect variance might change when
a predictor is removed and this can lead to a slight decrease in the residual variance,
and hence a proportional increase in R2 (Rights & Sterba, 2019). By default, partR2 sets
negative R2 values to 0, but this can be changed by setting allow_neg_r2 to TRUE. It also
happens that inclusive R2 is estimated slightly lower than part R2 when the contribution of
a particular predictor is very large. We consider both cases as sampling error that should
serve as a reminder that variance components are estimated with relatively large uncertainly
and minor differences should not be over-interpreted.
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A warning needs to be added for the estimation of R2 (and, in fact, also repeatability R)
from small datasets. In particular if the number of levels of random effect is low, variance
components might be slightly overestimated (Xu, 2003). This issue applies similarly to the
variance explained by fixed effects, in particular if the number of predictors is large relative
to the number of data points.

Code and data availability
The current stable version of partR2 can be downloaded from CRAN (https://cran.r-
project.org/web/packages/partR2/index.html) and the development version can be
obtained from GitHub (https://github.com/mastoffel/partR2). The data used in the
examples is part of the package.
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