

First submission

Guidance from your Editor

Please submit by **16 Mar 2021** for the benefit of the authors (and your \$200 publishing discount) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

6 Figure file(s)

1 Table file(s)

1 Raw data file(s)

1 Other file(s)

Custom checks

Human participant/human tissue checks

- Have you checked the authors [ethical approval statement](#)?
- Does the study meet our [article requirements](#)?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Shiftwork, functional bowel symptoms, and the microbiome

Ann E. Rogers ^{Corresp., 1}, Yi-Juan Hu ², Ye Yue ², Emily F. Wissel ¹, Robert A. Petit III ³, Simone Jarrett ⁴, Jennifer A. Christie ⁵, Timothy D. Read ⁶

¹ Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, United States

² Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States

³ Investigational Clinical Microbiology Core, Emory University, Atlanta, Georgia, United States

⁴ Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania, United States

⁵ Division of Digestive Diseases, Emory School of Medicine, Emory University, Atlanta, Georgia, United States

⁶ Division of Infectious Diseases, Emory School of Medicine, Emory University, Atlanta, Georgia, United States

Corresponding Author: Ann E. Rogers
Email address: ann.e.rogers@emory.edu

Background. There are about 15 million Americans working full-time on evening, night, or rotating shifts. Between 48% and 81.9% of those working rotating or night shifts report abdominal pain, constipation, diarrhea and other symptoms of functional bowel disorders. The basis for this high prevalence of functional bowel disorders, including irritable bowel syndrome (IBS), among shift workers is unknown. Animal studies, however, suggest that circadian disruption, similar to that in shift workers, may contribute to the development of GI complaints among shift workers by altering the composition and normal diurnal rhythmicity of the resident intestinal microbes

Methods. Fifty-one full time staff nurses who worked either 12-hour day or night shifts completed demographic information, and the Rome III IBS module. They also collected two samples of gut microbiota before the beginning and at the end of their last work shift on day 14, using validated field-tested methods consistent with the Human Microbiome Project. After DNA extraction, 16S rRNA sequencing and assignment to the genus level was completed, samples were then compared to determine if there were 1) differences in the diversity and profile of the microbiome by shift type; 2) if there were differences in the microbiome by time of day for collection; and 3) whether there were differences in the diversity and profile of the microbiome of nurses with IBS and those without IBS.

Results. There were no differences in alpha or beta diversity of gut microbiota when specimens from day and night shift nurses were compared. There were however marginal differences in beta diversity when specimens collected at the beginning and end of the shifts were compared, with seven OTUs being differentially abundant when collected from day shift workers in the evening. There were also three OTUs to be differentially abundant in participants reporting IBS symptoms.

Shiftwork, Functional Bowel Symptoms and the Microbiome

Ann E. Rogers¹, Yi-Juan Hu², Ye Yu³, Emily F. Wissel⁴, Robert A. Petit III⁵, Simone Jarrett⁶, Jennifer Christie⁷, Timothy D. Read⁸

¹ Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA

² Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA

³ Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia,

⁴ Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA

⁵ Investigational Clinical Microbiology Core, Emory University, Atlanta, Georgia, USA

⁶ Einstein Medical Center Philadelphia, Pennsylvania, USA

⁷ Division of Digestive Diseases, Emory School of Medicine, Emory University, Atlanta, Georgia, USA

⁸ Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, Georgia, USA

Ann E. Rogers¹

1520 Clifton Road NE, Atlanta, Georgia, 30322, USA

Email address: ann.e.rogers@emory.edu

Corresponding Author:

Abstract

Background. There are about 15 million Americans working full-time on evening, night, or rotating shifts. Between 48% and 81.9% of those working rotating or night shifts report abdominal pain, constipation, diarrhea and other symptoms of functional bowel disorders. The basis for this high prevalence of functional bowel disorders, including irritable bowel syndrome (IBS), among shift workers is unknown. Animal studies, however, suggest that circadian disruption, similar to that in shift workers, may contribute to the development of GI complaints among shift workers by altering the composition and normal diurnal rhythmicity of the resident intestinal microbes

34

35 **Methods.** Fifty-one full time staff nurses who worked either 12-hour day or night shifts
36 completed demographic information, and the Rome III IBS module. They also collected
37 two samples of gut microbiota before the beginning and at the end of their last work shift
38 on day 14, using validated field-tested methods consistent with the Human Microbiome
39 Project. After DNA extraction, 16S rRNA sequencing and assignment to the genus level
40 was completed, samples were then compared to determine if there were 1) differences
41 in the diversity and profile of the microbiome by shift type; 2) if there were differences in
42 the microbiome by time of day for collection; and 3) whether there were differences in
43 the diversity and profile of the microbiome of nurses with IBS and those without IBS.

44

45 **Results.** There were no differences in alpha or beta diversity of gut microbiota when
46 specimens from day and night shift nurses were compared. There were however
47 marginal differences in beta diversity when specimens collected at the beginning and
48 end of the shifts were compared, with seven OTUs being differentially abundant when
49 collected from day shift workers in the evening. There were also three OTUs to be
50 differentially abundant in participants reporting IBS symptoms.

51

52 **Introduction**

53

54 There are about 15 million Americans working full-time on evening, night, or rotating
55 shifts, or other irregular employer-arranged schedules; 4.7% on evening shifts, 3.2% on
56 night shifts, 3.1% on irregular schedules, and 2.5% on rotating shifts (United States
57 Department of Labor Bureau of Labor Statistics 2005). Night shift work is associated
58 with increased mortality, higher risk of cardiovascular disease, cancer, diabetes,

59 hypertension, chronic fatigue, sleep problems and higher body weight (Gu 2015; Jia
60 2013; Myers 2015; Pan 2011; Rajaratnam 2011; Vyas 2012) night and rotating shift
61 workers also report a higher prevalence of Irritable Bowel Syndrome (IBS), abdominal
62 pain, constipation and diarrhea than do day shift workers (Caruso 2004; Knutsson 2010;
63 Nojkov 2010; Wells 2012). In fact, between 48% and 81.9% of those working rotating or
64 night shifts report abdominal pain, constipation, diarrhea and other symptoms of
65 functional bowel disorders (Nojkov 2010; Saberi 2010).

66

67 The basis for this high prevalence of functional bowel disorders, including IBS, among
68 shift workers is unknown. However, some studies suggest that inappropriate nutrition or
69 irregularity in the timing of meals (Bilski 2006; Lowen 2010), and psychological
70 disorders (Zhen 2006) may contribute to the high prevalence of functional bowel
71 symptoms among workers on rotating or night shifts.

72

73 Other studies strongly suggest that sleep deprivation or sleep disturbances are
74 associated with the presence and severity of functional bowel symptoms reported by
75 resident physicians and nurses (Jarrett 2000; Saberi 2010; Wells 2012). Moreover,
76 animal studies suggest that circadian disruption, similar to that in shift workers,
77 contributes to the development of GI complaints among shift workers by altering the
78 composition and normal diurnal rhythmicity of the resident intestinal microbes (De
79 Bacquer 2009). Interestingly, gut microbiota community composition and diversity are
80 malleable and sensitive to changes in diet and other environmental factors (Voigt 2014),
81 including activity and sleep patterns. For example, Thaiss and colleagues (Thaiss 2014)

82 “jet lagged” a group of mice by subjecting them to an 8-hour advance for three days
83 before allowing them to revert to their usual schedule for three more days, then
84 subjecting them to another 8 hour advance for three days. Mice exposed to 4 weeks of
85 this schedule lost their usual pattern of physical activity, and consumed food at irregular
86 intervals. Significantly, this environmentally induced disruption of daily activity patterns
87 (jet lag schedule) was associated with a loss of diurnal rhythmicity of microbiota
88 composition in mice.

89

90 Thaiss and colleagues (Thaiss 2014) also found similar changes in human microbiota
91 composition in two volunteers who flew from the US to Israel (an 8-10 hour advance).
92 Samples collected at baseline (one day pre-flight), during jet lag (one day after landing),
93 and during recovery (2 weeks after landing) showed rapid changes in the composition of
94 the microbiota. During jet lag the first 24-hours after landing), there was a higher
95 relative representation of Firmicutes, which reversed upon recovery from jet lag (2
96 weeks later). Although some studies have demonstrated no differences in composition
97 of the gut microbiome when samples from lean and obese individuals were compared
98 (Ley 2006; Turnbaugh 2009), other studies in humans have demonstrated that
99 Firmicutes are associated with a higher propensity for obesity and metabolic disease
100 (Finucane 2014; Ley 2006), conditions that are more common in night and rotating shift
101 workers (De Bacquer 2009; Suwazono 2008).

102

103 Finally, multiple studies have linked reduced microbial diversity and richness in
104 microbial communities to IBS symptoms. For example, Krogius-Kurikka and

105 colleagues.(Krogius-Kurikka 2009) reported that fecal samples from patients with
106 diarrhea-predominant IBS were enriched with Proteobacteria and Firmicutes but had
107 reduced Actinobacteria and Bacteroidetes compared to healthy controls. Other studies
108 (Bhattarai Y. 2017; Salonen 2010) have shown an increase in the Firmicutes-to-
109 Bacteroidetes-ratio, a decrease in some types of Firmicutes families (Lactobacilli,
110 Faecalibacterium) and the Actinobacteria population (Bifidobacteria, Collinsella), and an
111 increase in some Firmicutes families (Veillonella, Streptococci, and Ruminococcus spp.)
112 and in Proteobacteria (Enterobacteriaceae spp.). In addition, low microbial richness, an
113 absence of Methanobacteriales, and enrichment with Bacteroides enterotypes are
114 associated with more severe IBS symptoms (Tap 2017). Not only is the composition of
115 the gut microbiota altered in patients with IBS, these imbalances in the microbial
116 community or dysbiosis, occur more frequently in patients with IBS compared to healthy
117 individuals. Reduced diversity was observed in nearly three-fourths of the IBS patients
118 studied by Casén and colleagues (Casén 2015) compared to 16% in normal individuals
119 (Collins 2014; Jeffery 2012; Karantosos 2010).

120

121 While these studies suggest that shiftwork alters gut microbiota and that alterations in
122 gut microbiota are common in patients with IBS, they do not demonstrate whether these
123 alterations are associated with the somatic symptoms experienced by many rotating
124 and night shift workers. Therefore, the present study is designed as the initial step in
125 determining if there are differences in 1) composition and diversity of the microbiome of
126 night shift workers compared to day shift workers; and 2) the composition and diversity
127 of microbiome among night shift workers experiencing functional bowel symptoms (e.g.,

128 bloating, lower abdominal pain, constipation and diarrhea) compared to night shift
129 workers not experiencing functional bowel symptoms.

130

131 **Materials & Methods**

132

133 **Subjects**

134 Participants in this study included 51 full-time staff nurses who worked 12-hour day or
135 night shifts at a large university hospital. Registered nurses were eligible to participate if
136 they were between the ages of 18 and 65 and did not report a history of inflammatory
137 bowel disease (e.g., Crohn's disease or ulcerative colitis) or other chronic disorder
138 affecting the GI track (e.g., GI cancer). Those with recent antibiotic exposure were
139 asked to delay their enrollment in the study for two weeks.

140

141 As expected, the sample was predominantly female (96%), with a mean age of $32.9 \pm$
142 10.0 years and a range of 21-59 years. Just under half of the participants reported
143 working straight day shifts (47%), with the remainder of the sample working either
144 straight night shifts (51%) or rotating shifts (2%). For purposes of the analysis, the nurse
145 who reported working rotating shifts was categorized as working night shift since she
146 worked straight nights during the two-week data-gathering period. Although only three
147 participants (5.8%) reported a prior diagnosis of IBS, a total 18 participants (35%) met
148 criteria for the diagnosis of IBS using the Rome III criteria. Participant BMIs ranged from
149 18.2 to 39.5 with a mean BMI of 26.7 ± 5.4 . As illustrated in Table 1, there were no
150 significant differences by shift type in terms of age, BMI, diagnosis of IBS or type of IBS.

151

152 **Instruments**

153 Data for this study was obtained using a variety of subjective and objective measures. A
154 Demographic Questionnaire and Brief Health History was used to collect information
155 about participant age, and the usual shift worked. Participants were also asked to report
156 any previous diagnosis of inflammatory bowel disorders or chronic diseases affecting
157 the GI, and to list current medications and supplements used. The IBS module from the
158 Rome III Questionnaire (2006) consists of 10 questions that ask subjects to rate the
159 frequency of recurrent abdominal pain or discomfort, onset of pain associated with a
160 change in frequency of stools, and the onset of pain associated with a change in the
161 form of stools. This module is considered the gold standard for assessing functional
162 bowel symptoms.

163

164 Samples of gut microbiota were collected just before the beginning and just after the
165 end participants' work shift at the end of the two week data-collection period using
166 validated, field-tested methods consistent with the Human Microbiome Project (Methé
167 2012). Four specimens (two each time) were collected using the Elution-swap system
168 (Copan). The rectal swabs were stored in 1 mL of Amies transport medium (Copan) and
169 immediately frozen and stored until DNA extraction. Prior to extraction, fecal material
170 (200 mg) was suspended in 500- μ l lysozyme (20 mg/ml in 20 mM Tris-HCl pH 8, 2 mM
171 EDTA, 1.2% w/v Triton X-100) and incubated at 37°C for 2 h using the QIAamp® DNA
172 Stool Mini Kit (Qiagen, Inc., Valencia, CA).

173

174 **Procedure**

175 After obtaining approval from the Emory University's IRB (MOD001-IRB00089064) and
176 Emory Healthcare's Nursing Research Council, emails describing the study were sent to
177 all staff nurses. Those interested in participating were instructed to contact the research
178 team to schedule an appointment to provide informed consent, review study
179 procedures, and complete the demographic and Rome III questionnaire. After written
180 informed consent was obtained, the participant's work schedule was then reviewed to
181 determine an appropriate date to collect samples of gut microbiota at the beginning and
182 end of the participant's shift.

183

184 **Data Analysis**

185 DNA extraction & 16S rRNA sequencing_DNA extraction and 16S sequencing was
186 performed by Omega Bioservices (Norcross, GA, USA) using a standard protocol. DNA
187 was isolated using Omega Biotek Mag-Bind® Universal Pathogen DNA Kit. The V3-V4
188 region of the bacterial 16S rRNA gene sequences were amplified using the primer pair
189 containing the gene-specific sequences and Illumina adapter overhang nucleotide
190 sequences. The full length primer sequences are: 16S Amplicon PCR Forward Primer
191 (5'- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG)
192 and 16S Amplicon PCR Reverse Primer (5'-
193 GTCTCGTGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC)
194 . For amplicon PCR, each 25 μ L of polymerase chain reaction (PCR) reaction contained
195 12.5 ng of sample DNA as input, 12.5 μ L 2x KAPA HiFi HotStart ReadyMix (Kapa
196 Biosystems, Wilmington, MA) and 5 μ L of 1 μ M of each primer. PCR reactions were
197 carried with an initial denaturation step performed at 95°C for 3min followed by 25

198 cycles of denaturation (95°C, 30 s), annealing (55°C, 30 s) and extension (72°C, 30
199 sec), and a final elongation of 5 min at 72°C. PCR product was cleaned up from the
200 reaction mix with Mag-Bind RxnPure Plus magnetic beads (Omega Bio-tek, Norcross,
201 GA). A second index PCR amplification, used to incorporate barcodes and sequencing
202 adapters into the final PCR product, was performed in 25 µL reactions, using the same
203 master mix conditions as described above. Cycling conditions were as follows: 95°C for
204 3 minutes, followed by 8 cycles of 95°C for 30", 55°C for 30" and 72°C for 30". A final, 5
205 minutes' elongation step was performed at 72°C. The libraries were normalized with
206 Mag-Bind® EquiPure Library Normalization Kit ((Omega Bio-tek, Norcross, GA) then
207 pooled. The pooled library ~600 bases in size was checked using an Agilent 2200
208 TapeStation and sequenced (2 x 300 bp paired-end read setting) on the MiSeq
209 (Illumina, San Diego, CA). Sequence data was submitted to the National Center for
210 Bioinformatic Information Short Read Archive database: accession PRJNA687007.

211

212 Processing of sequence data and assignment to Operational Taxonomic Units (OTUs)
213 Data processing, including demultiplexing, QC filtering, contamination and sample
214 mislabeling data checks, OTU representation, taxonomy assignment via a reference
215 database (Caporaso 2010; Wang 2007), and phylogeny and diversity analysis
216 (Lozupone 2007; Lozupone 2006; Lozupone 2005) was done using R packages dada2
217 (Callahan 2016; McMurdie 2013).

218

219 **Statistical Analysis**

220 All data elements collected were evaluated for completeness (extent of missing data
221 values and reasons for missing data as can be determined) and accuracy (relative to
222 minimizing typos and inaccuracies from data collection methods) to maximize data
223 quality and integrity. Additionally, all data was analyzed for descriptive statistical
224 summaries and underlying distributions to provide initial estimates of the measures of
225 centrality (means and medians), and variance (standard deviation, interquartile range,
226 minimum and maximum).

227

228 We compared the Chao1 (measuring species richness) and Shannon (measuring both
229 richness and evenness) diversity indices of cases and controls since loss of taxonomic
230 diversity in general is an indicator of disease state in many ecological systems. We
231 used Principal Coordinates Analysis (PCoA) to visualize clustering of the data based on
232 distances computed using the Bray-Curtis (measuring difference of samples based on
233 relative abundance of species) and Jaccard (measuring difference of samples based on
234 presence-absence of species) metrics.

235

236 Given that this is a pilot study with 51 subjects, the primary focus was computing initial
237 estimates for (a) differences between day and night shift workers and (b) differences
238 between subjects with and without IBS symptoms relative to microbiome diversity.

239 These analyses will consist primarily of two-group comparisons (t-tests, chi-square tests) between day versus night shift workers and between subjects with and without
240 IBS symptoms, using analysis of variance and general linear model procedures. For the
241 two gut microbiome samples obtained in the morning and two gut microbiome samples
242

243 obtained in the evening for each subject, the Linear Decomposition Model (LDM) (Hu
244 2020; Zhu in press) will be used to evaluate differences between these two times, as
245 well as how the differences depend on the differences between subjects (e.g., day shift
246 vs. night shift; IBS vs. no IBS). LDM helps to evaluate the proportion of variance in the
247 outcome (gut microbiome measurements) explained within subjects (morning vs
248 evening) compared to the proportion of variance explained between subjects (shift
249 worked and presence of IBS). To analyze the associations between shift type and the
250 composition of the participants' gut microbiome, we analyzed the fecal samples of night
251 and day shift workers first compared the alpha diversity and beta diversity of the
252 microbiome communities as well as the relative abundance and presence-absence of
253 individual genera by shift type, then evaluated whether there were differences in the
254 microbiome when the first specimen was collected in the evening and the second
255 specimen in the morning (night shift nurses) versus having the first specimen collected
256 in the morning and the second one in the evening (day shift nurses). Finally, we
257 examined whether there were any differences in the alpha diversity and beta diversity of
258 the microbiome communities as well as the relative abundance and presence-absence
259 of individual genera of nurses with IBS compared to those without IBS.

260

261 **Results**

262

263 As shown in Figure 1, there were no significant differences in alpha diversity between
264 day and night shift nurses ($p=0.411$ based on Chao1 index and $p=0.242$ based
265 Shannon index). Nor were there differences in Beta diversity by shift type ($p=0.476$ and
266 $p=0.625$ by the PERMANOVA method based on Bray-Curtis and Jaccard distances,

267 respectively (Figure 2). Nor were there differences in relative abundance and presence-
268 absence data across all genera ($p=0.489$ and $p=0.824$ by the LDM method).

269

270 However, Figure 3 shows an increase of the log Chao1 index from the beginning to the
271 end of the shift for day-shift workers while a decrease for night-shift workers; so does
272 the Shannon index. We found that the change of both alpha diversity indices from the
273 beginning to the end of the shift was significantly different between day shift and night
274 shift workers ($p=0.034$ for Chao1 and $p=0.08$ Shannon), although the change among
275 the pooled workers was not significantly different ($p=0.473$ for Chao1 and $p=0.236$ for
276 Shannon) possibly due to the cancellation of effects with opposite directions. In terms of
277 beta diversity, samples obtained from the same participants tend to cluster together and
278 samples from the same time on sample participants tend to cluster together (See Figure
279 4). Now the change of the beta diversity metrices from the beginning to the end of the
280 shift among the pooled workers was marginally significant or significant ($p=0.056$ and
281 0.014 by PERMANOVA based on Bray-Curtis and Jaccard, respectively). Marginally
282 significant and significant findings were also noted by the LDM ($p=0.035$ and 0.063 by
283 LDM based on relative abundance and presence-absence data, respectively). However,
284 there is not enough evidence to confirm that the change was significantly different
285 between day shift and night shift workers possibly due to the small sample size,
286 although there was suggestive evidence ($p=0.192$ and 0.118 by PERMANOVA based
287 on Bray-Curtis and Jaccard, respectively; $p=0.320$ and 0.134 by the LDM based on the
288 relative abundance and presence-absence data.) In addition, the LDM based on relative
289 abundance data revealed seven OTUs to be differentially abundant; ASV_455(S5-A14a,

290 more abundant at the beginning of the shift),
291 ASV_2527(Ruminococcaceae_NK4A214_group, more abundant at the end),
292 ASV_1304(Ruminococcus_1, more abundant at the end), ASV_221 (Mobiluncus, more
293 abundant at the beginning), ASV_7(Campylobacter), ASV_130(Alistipes, more
294 abundant at the end), and ASV_62(Agathobacter, more abundant at the end).

295

296 Finally, as shown in Figure 5 there were no significant difference in alpha diversity when
297 comparing participants without and with IBS symptoms ($p=0.849$ for Chao 1, $p=0.484$
298 for Shannon, by the LDM method). Although there were no differences in beta diversity
299 by whether or not the participant had symptoms of IBS ($p=0.206$ and $p=0.213$ by the
300 PERMANOVA method based on Bray-Curtis and Jaccard distances), there were
301 significant differences based on the LDM results. Specifically, three OTUs were
302 detected to be differentially abundant (ASV_1160 (Flavonifractor), ASV_1134
303 (Oscillibacter) and ASV_2379 (Ruminiclostridium_9) by the LDM method based on
304 relative abundance data ($p=0.2$). There were significant differences ($p=0.03$) by the
305 LDM based on presence-absence, which detected three OTUs (ASV_1160
306 (Flavonifractor), ASV_2379 (Ruminiclostridium_9) and ASV_47 (Escherichia/Shigella))
307 to be significantly more abundant in participants reporting IBS symptoms.

308

309 **Discussion**

310

311 The findings of this pilot study suggest that there are no differences in the richness and
312 diversity of species when samples from nurses working day and night shifts were
313 compared there were however some changes in both alpha and beta diversity metrics
314 when specimens collected at the beginning and end of the shifts were compared and

315 there was also some evidence that the changes were different for day shift and night
316 shift workers, with increased alpha diversity noted at the end of the day shift and
317 decreased alpha diversity noted at the end of the night shift. Seven OTUs were found
318 to be differentially abundant between the beginning and end of the shifts for the entire
319 sample. In addition, there were three OTUs to be differentially abundant in participants
320 reporting IBS symptoms.

321

322 Studies comparing the effects of shift work on the gut microbiome are limited and
323 somewhat contradictory. For example, a study of 10 male security guards who worked
324 both day and night shifts found there were no significant differences in alpha or beta
325 diversity within and across-subject variation for both shifts (Mortas 2020). In contrast,
326 slight changes in microbial abundance and diversity were noted when 22 subjects, aged
327 20-35 years, delayed their sleep period for 2-4 hours (Liu 2020). Although there have
328 been studies comparing circadian variation in the gut microbiota in mice (Thaiss 2014)
329 and another describing the results samples collected during multiple time points over
330 several days by two subjects (Thaiss 2014), our study is the first to compare the
331 richness and diversity of gut microbiota collected from 51 human participants at two
332 different time points in 24 hours.

333

334 Even though there are numerous studies that have reported increased and/or
335 decreased amounts of various gut bacteria among patients with IBS (Bhattarai Y. 2017;
336 Casén 2015; Pittayananon 2019; Salonen 2010; Tap 2017), a recent systematic review
337 found only nine studies that discussed differences in alpha-diversity in patients with IBS

338 compared to normal controls (Pittayanon 2019). Slightly over half of the studies (55.6%)
339 reported a significant decrease in the richness and diversity in patients with IBS (Carroll
340 2011; Carroll 2012; Liu 2016; Pozuelo 2015; Rangel 2015), whereas the remaining four
341 studies (Carroll 2012; Durban 2012; Rigsbee 2012; Tap 2017), like our current study,
342 revealed no differences in alpha-diversity compared to healthy controls. Like other
343 studies comparing patients with IBS symptoms to healthy controls, our pilot study found
344 increased Firmicutes (Chong 2019), specifically Flavonifractor, Oscillibacter, and
345 Ruminiclostudium among participants with IBS (Casén 2015). The increased
346 abundance of *E. coli*/ *Shigella* possibly reflects the suspected relationship between
347 Shigellosis and IBS (Youn 2016).

348

349 IBS is estimated to have a world-wide prevalence of 10-15% (Canavan 2014; Sperber
350 2017). Prevalence rates of IBS are typically higher among nurses, with rates ranging
351 from 17.4% in China (Liu 2014) to 45.2% in Nigeria (Akere 2014). The prevalence rate
352 of IBS among study participants was 35%, quite similar to the prevalence rate reported
353 among nurses at the University of Michigan Medical Center (36.6%) (Nojkov et al.
354 2010). However, unlike Nojkov et al's study of hospital staff nurses (Nojkov et al. 2010),
355 and other studies of shift workers (Kim 2013), there were no differences in the
356 prevalence of IBS symptoms among day and night shift nurses in our study.

357

358 This study is limited by a number of factors. First, our study population consisted of a
359 convenience sample of nurses that might not be representative of the larger nursing
360 workforce or the larger population of shift workers. The overall participation rate was

361 relatively low, which raises concerns about how representative the participants were of
362 the total population of nurses who were invited to participate. Additionally, given the
363 focus of the study, nurses who experienced IBS symptoms may have been more likely
364 to participate than those who did not experience IBS symptoms. Finally, the severity of
365 IBS symptoms and quality of life was not assessed, two factors which may have been
366 impacted by gut microbiome diversity and richness.

367

368 **Conclusions**

369

370 There were no differences between in the richness and diversity when samples of the
371 gut microbiome from nurses working day and night shifts were compared. However,
372 when specimens collected at the beginning and ends of the shifts were compared, there
373 were some differences in alpha and beta diversity. Three OTUs were more common in
374 participants reporting IBS symptoms.

375

376 **References**

377

378 2006. *The Rome III Adult Criteria for Functional Gastrointestinal Disorders*. McLean,
379 VA: Degnon Associates .
380 Akere A, Akande, K.O. 2014. Association between Irritable Bowel Syndrome and Shift
381 Work: Prevalence and Associated Factors among Nurses. *Journal of Gastroenterology*
382 and *Hepatology Research* 3:1328-1331.
383 Bhattarai Y. M, Pedrogo, D.A., Kashyap, P.C. 2017. Irritable bowel syndrome: A gut
384 microbiota-related disorder. *American Journal of Physiology: Gastrointestinal and Liver*
385 *Physiology* 312:52-62. 10.1152/ajpgi.0038.2016
386 Bilski B. 2006. Influence of shift work on diet and gastrointestinal complaints among
387 nurses: A pilot study. *Medical Practice* 57:15-19.
388 Callahan BJ, McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P.
389 2016. DADA2: High-resolution sample inference from Illumina amplicon data. *Nature*
390 *Methods* 13:581-183. 10.1038/nmeth.3869
391 Canavan C, West, J., Card, T. 2014. The epidemiology of irritable bowel syndrome.
392 *Clinical Epidemiology* 6:71-80. 10.2147/CLEP.S40245

393 Caporaso JG, Bittinger, K., Bushman, F.D., DeSantis, T.Z., Anderson, G.L., Knight, R.
394 2010. PyNAST: a flexible tool for aligning sequences to a template alignment.
395 *Bioinformatics* 26:266-267.

396 Carroll IM, Ringel-Kulka, T, Keku, T.,O, Chang, Y-H, Packey, C.D., Sarto, R.B., Ringel,
397 Y. 2011. Molecular analysis of the luminal-and mucosal-associated intestinal
398 microbiota in patients with diarrhea-predominant irritable bowel syndrome. *American*
399 *Journal of Physiology, Gastrointestinal and Liver Physiology* 301:G799-G807.

400 Carroll IM, Ringel-Kulka, T, Siddle, J.P., Ringel, Y. 2012. Alterations in the composition
401 and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable
402 bowel syndrome. *Neurogastroenterology Motility* 24:521-530.

403 Caruso C, Lusk, S., Gillespie, B. 2004. Relationship of work schedules to
404 gastrointestinal diagnosis, symptoms, and medication use in auto factory workers.
405 *American Journal of Internal Medicine* 46:586-598.

406 Casén C, Vebø, H.C., Sekelja, ., Hegge, F.T., Kalsson, M.K., Ciemniewska, E.,
407 Dzankovic, S., Frøyland, C., Nestestog, R., Engstarand, L., Munkholm, P., Nielsen,
408 O.H., Rogler, G., Simrén, Öhman, L., Vatn, M.H., Rudi, K. 2015. Deviations in human
409 gut microbiota: A novel diagnostic test for determining dysbiosis in patients with IBS or
410 IBD. *Alimentary Pharmacology and Therapeutics* 42:71-83.

411 Chong PPC, V.K. Looi, C.Y., Wong, W.F., Madhavan, P., Yong, V.C. 2019. The
412 Microbiome and Irritable Bowel Syndrome-A Review on the Pathophysiology, Current
413 Research, and Future Therapy. *Frontiers in Microbiology* 10:1-23.
414 10.3389/fmicb.2019/01136

415 Collins SM. 2014. A role for the gut microbiota in IBS. *Nature Reviews Gastroenterology*
416 & *Hepatology* 11:497-505. 10.1038/nrgastro.2014.40

417 De Bacquer D, van Risseghem, M., Clays, E., Kittel, F., De Backer, G., Braeckman, L.
418 2009. Rotating shift work and the metabolic syndrome: A prospective study.
419 *International Journal of Epidemiology* 38:848-854.

420 Durban A, Abellan, J.J., Jimenez-Hernandez, N., Salgado, P., Ponce, M., Ponce, J.,
421 Garrigues, V., Latorre, A., Moya, A. 2012. Structural laterations of faecal and mucosa-
422 associated communities in irritable bowel syndrome. *Enviromental Microbiology Reports*
423 4:242-247.

424 Finucane MM, Sharpton, T.J., Laurent, T.J., Pollard, K.S. 2014. A taxonomic signature
425 of obesity in the microbiome? Getting to the guts of the matter. *PLOS One* 9:e84689.

426 Gu F, Han, J., Laden, F., Pan, A., Caporaso, N.E., Stampfer, M.J., Kawachi, I.,
427 Rexrode, K.M., Willett, W.C., Hankinson, S.E., Speizer, F.E., Schernhammer, E.S.
428 2015. Total and Cause-Specific Mortality of U.S., Nurses Working Rotating Night Shifts.
429 *American Journal of Preventive Medicine* 48:241-252.

430 Hu YJ, Saggen, F.A. 2020. Testing hypotheses about the microbiome using the Lindear
431 Decomposition Model (LDM). *Bioinformatics* 36:4106-4115.

432 <https://doi.org/10.1093/bioinformatics/ntaa260>

433 Jarrett M, Heitkemper, M., Cain, K.C., Burr, R.I., Hertig, V. 2000. Sleep disturbance
434 influences gastrointestinal symptoms in women with irritable bowel syndrome.
435 *Digestive Diseases and Sciences* 45:952-959.

436 Jeffery JB, O'Toole, P.W., Öhman, L., Claesson, M., Deane, J., Quigley, E.M.M.,
437 Simrén, M. 2012. An irritable bowel syndrome subtype defined by species-specific

438 alterations in faecal microbiota. *Gut Pathology* 61:997-1006. 10.1136/gut/nl-2011-
439 301501

440 Jia Y, Lu, Y., Wu, K., Lin, Q., Wei, S., Zhu, M., Huang, S., Chen, J. 2013. Does night
441 work increase the risk of breast cancer? A systematic review and meta-analysis of
442 epidemiological studies. *Cancer Epidemiology* 37:197-206.

443 Karantosos T, Markoutsaki, T., Gazouli, M., Anagnou, N.P., Karamanolis, D.G. 2010.
444 Current insights in to the pathophysiology of irritable bowel syndrome. *Gut Pathology* 2.
445 10.1186/1757-4749-2-3

446 Kim HI, Choi, J.Y., Kim, S-E., Jung, H-K., Shim, K-N, Yoo, K. 2013. Impact of shiftwork
447 on irritable bowel sydrome and functional dyspepsia. *Journal of Korean Medical
448 Sciences* 28:431-437. 10.3346/jkms.2013.28.3.431

449 Knutsson A, Boggild, H. 2010. Gastrointestinal disorders among shift workers.
450 *Scandinavian Journal of Work, Environment and Health* 36:85-95.

451 Krogius-Kurikka L, Lura, A., Malinen, E., Aarnikunnas, J., Tuimala, J., Paulin, L.,
452 Makivuokko, H., Kajander, K., Palva, A. 2009. Microbial community analysis reveals
453 high level phylogenetic alterations in the overall gastrointestinal microbiota of
454 diarrhoea-predominant irritable bowel sufferers. *BMC Gastroenterology* 9:95.
455 10.1186/1471-230X-9-95

456 Ley RE, Turnbaugh, P.J., Klein, S., Gordon, J.I. 2006. Microbial ecology: Human gut
457 microboes associated with obesity. *Nature* 444:1022-1023.

458 Liu L, Xiao, Q-f., Zhang, Y-l., Yao, S-k. 2014. A cross-sectional study of irritable bowel
459 syndrome in nurses in China: Prevalence and associated psychological and lifestyle
460 factors. *Journal of Zhejiang University Science B* 15:590-597. 10.1631/jzus.B1300159

461 Liu Y, Zhang, L., Wang, X., Zhang, J., Jiang, R., Wang, X., Wang, K., Liu, Z., Xia, Z.,
462 Xu, Z., Nie, Y., Lv, X., Wu, X., Zhu, H., Duan, L. 2016. Similar fecal microbiota
463 signatures in patients with diarrhea-predominant irritable bowel syndrome and patients
464 with depression. *Clinical Gastroenterology and Hepatology* 14:1602-1611.e1605.

465 Liu Z, Wei, Z-Y, Chen, J., Chen, K., Mao, X., Liu, Q., Sun, Y., Zhang, Z., Zhang, Y.,
466 Dan, Z., Tang, J., Qin, L., Chen, J-H., Liu, X. 2020. Acute Sleep-Wake Cycle Shifts
467 Results in Community Alteration of Human Gut Microbiome. *mSphere* 5:e00914-00919.

468 Lowen A, Moreno, C., Holmback, U., Nannernas, M., Tucker, P. 2010. Eating and shift
469 work-effects on habits, metabolism and performance. *Scandinavian Journal of Work,
470 Environment and Health* 36:150-162.

471 Lozupone CA, Hamady, M., Kelley, S.T., Knight, R. 2007. Quanitative and qualitative
472 beta diversity measures lead to different insights into factors that structure microbial
473 communities. *Applied and Enviornmental Microbiology* 73:1576-1585.

474 Lozupone CA, Hamady, M., Knight, R. 2006. UniGrac--an online tool for comparing
475 microbial community diversity in a phylogenetic context. *BMC Bioinformatics* 7:371-378.

476 Lozupone CAK, R. 2005. UniFrac: a new phylogenetic method for comparing microbial
477 communities. *Applied and Enviornmental Microbiology* 71:8228-8235.

478 McMurdie PJ, Holmes, S. 2013. Phyloseq: an R package for reproducible interactive
479 analysis and graphics of microbiome census data. *PLOS One* 8:e61217.
480 <https://doi.org/10.1371/journal.pone.0061217>

481 Methé BA, Nelson, K.E., Pop, M., Creasy, H.H., Giglio, M.G., Huttenhower, C, Gevers,
482 D., et al. 2012. A framework for human microbiome research. *Nature* 486:215-221.

483 Mortas H, Bilici, S., Karakan, T. 2020. The circadian disruption of night work alters gut
484 microbiota consistent with elevated risk for future metabolic and gastrointestinal
485 pathology. *Chronobiology International* 37:1067-1081.
486 10.1080/07420528.2020.1778717

487 Myers JA, Haney, M.F., Griffiths, R.F., Pierse, N.F., Powell, D.M.C. 2015. Fatigue in air
488 medical clinicians undertaking high-acuity patient transports. *Prehospital Emergency
489 Care* 19:36-43.

490 Nojko B, Rubenstein JH, Chey WD, and Hoogerwerf WA. 2010. The Impact of Rotating
491 Shift Work on the Prevalence of Irritable Bowel Syndrome in Nurses. *American Journal
492 of Gastroenterology* 105:842-847.

493 Nojko B, Rubenstein, J.H., Chey, W.D., Hoogerwerf, W.A. 2010. The impact of rotating
494 shift work on the prevalence of irritable bowel syndrome in nurses. *American Journal of
495 Gastroenterology* 105:842-847.

496 Pan A, Schernhammer, E.S., Sun, Q., Hu, F.B. 2011. Rotating night shift work and risk
497 of type 2 diabetes: Two prospective cohort studies in women. *PLOS Med.*

498 Pittayanon R, Lau, J.T., Yuan, Y., Leontiadis, G.I., Tse, F., Surette, M., Moayyedi, P.
499 2019. Gut microbiota in patient with irritable bowel syndrome-a systematic review.
500 *Gastroenterology* 157:97-108.

501 Pozuelo M, Panda, S., Santiago, A., Mendez., S., Accarino, A., Santos, J., Guarner, F.,
502 Azpiroz, F., Manichanh, C. 2015. Reduction of butyrate- and methane-producing
503 microorganisms in patients with irritable bowel syndrome. *Scientific Reports* 5:12693.

504 Rajaratnam SMW, Barger, L.K., Lockley, S.W., Shea, S.A., Wang, W., Landrigan, C.P.,
505 O'Brien, C.S., Qadri, S., Sullivan, J.P., Cade, B.E., Epstein, L.J., White, D.P., Czeisler,
506 C.A. 2011. Sleep disorders, health and safety in police officers. *Journal of the American
507 Medical Association* 306:2567-2578.

508 Rangel I, Sundin, J., Fuentes, S., Repsilber, D., de Vos, W.M., Brummer, R.J. 2015.
509 The relationship between faecal-associated and mucosal-associated microbiota in
510 irritable bowel syndrome patients and healthy subjects. *Alimentary Pharmacology and
511 Therapeutics* 42:1211-1221.

512 Rigsbee L, Agans, R., Shankar, V., Kenche, H., Khamis, H.J., Michail, S.K., Paliy, O.
513 2012. Quantitative profiling of gut microbiota of children with diarrhea-predominant
514 irritable bowel syndrome. . *American Journal of Gastroenterology* 107:1740-1751.

515 Saberi HR, Moravveji, A.R. 2010. Gastrointestinal complaints in shift working and day-
516 working nurses in Iran. *Journal of Circadian Rhythms* 8:1-4.

517 Salonen A, de Vos, W.M., Palva, A. 2010. Gastrointestinal microbiota in irritable bowel
518 syndrome: Present state and perspectives. *Microbiology* 156:3205-3215.
519 10.1099/mic.0.043257-0

520 Sperber AD, Dumitrescu, D., Fukudo, S., Gerson, C., Ghoshal, U.C., Gwee,K.A., Pali,
521 A., Hungin, S., Kang, J-Y., Min-hu, C., Schmulson, M., Bolotin, A., Friger, M.,
522 Whitehead, W. 2017. the global prevalence of IBS in adults remains elusive due to the
523 heterogeneity of studies: A Rome Foundation working team literature review. *Gut
524 Pathology* 66:1075-1082.

525 Suwazono Y, Dochi, M., Sakata, K., Okubo, Y., Oishi, M., Tanaka, K., Kobayashi, E.,
526 Kido, T., Nogawa, K. 2008. A longitudinal study on the effect of shift work on weight
527 gain in male Japanese workers. *Obesity* 16:1887-1893.

528 Tap J, Derrien, M., Törnblom, H., Brazeilles, R., Cools-Porter, S., Doré, J., Störsrud, S.,
529 Le Nevé, B., Öhman, L., Simrén, M. 2017. Identification of an Intestinal Microbiota
530 Signature Associated with Severity of Irritable Bowel Syndrome. *Gastroenterology*
531 152:111-123. 10.1053/j.gastro.2016.09.049

532 Thaiss CA, Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Teneter, A.C.,
533 Abramson, L., Katz, M.N., Korem, T., Zmora, N., Kuperman, Y., Biton, I., Gilad, S.,
534 Harmelin, A., Shapiro, H., Halpern, A., Segal, E., Elinav, E. 2014. Transkingdom Control
535 of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. *Cell* 159:514-529.

536 Turnbaugh PJ, Hamady, M., Yatsunenko, T., Cantarel, B.,L., Duncan, A., Ley, R.E.,
537 Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B., Health,
538 A.C., Knight, R., Gordon, J.I. 2009. A core gut micrombiome in obese and lean twins.
539 *Nature* 457:480-484.

540 United States Department of Labor Bureau of Labor Statistics. 2005. Workers on
541 flexible and shift schedules in May 2004. Available at
542 <http://www.bls.gov/news.release/flex.toc.htm> (accessed July 26 2015).

543 Voigt RM, Forsyth, C.B., Green, S.J., Mutlu, E., Engen, P., Vitaterna, M.H., Turek, F.W.,
544 Keshavarzian, A. 2014. Circadian disorganization alters intestinal microbiota. *PLOS*
545 *One* 9:1-17.

546 Vyas MV, Garg, A.X., Iansavichus, A.V., Costella, H., Donner, A., Laugsand, L.E.,
547 Janszky, I., Mrkobrada, M., Parraga, G., Hackam, D.G. 2012. Shift work and vascular
548 events: Systematic review and meta-analysiss. *British Medical Journal* 345:1-11.

549 Wang H, Garrity, G.M., Tiedje, J.M., Cole, J.R. 2007. Naive Bayesian classified for rapid
550 assignment of rRNA sequences into the new bacterial taxonomy. *Applied and*
551 *Enviornmental Microbiology* 73:5261-5270.

552 Wells MM, Roth, L., Chande, N. 2012. Sleep disruption secondary to overnight call
553 shifts is associated with irritable bowel syndrome in residents: A cross sectional study.
554 *The American Journal of Gastroenterology* 107:1151-1156.

555 Youn YH, Kim, H.C., Lim, H.C., Park, J.J., Kim, J-H., Park, H. 2016. Long-term clinical
556 course of post-infectious irritable bowel syndrome after shigellosis: a 10-year follow up
557 study. *Journal of Neurogastroenterology & Motility* 22:490-496. 10.5056/jnm15157

558 Zhen LW, Ann, G.K., Yu, H.K. 2006. Functional bowel disorders in rotating shift nurses
559 may be related to sleep disturbances. *European Journal of Gastroenterology &*
560 *Hepatology* 18:623-627.

561 Zhu Z, Satten, G.A., Hu, H.J. in press. Constraining PERMANOVA and LDM to within-
562 set comparisons by project improves the efficiency of analysis of matched sets of
563 microbiome data. *Microbiome*. 10.21203/rs.3.rs-38039

564

565

566

567

Table 1(on next page)

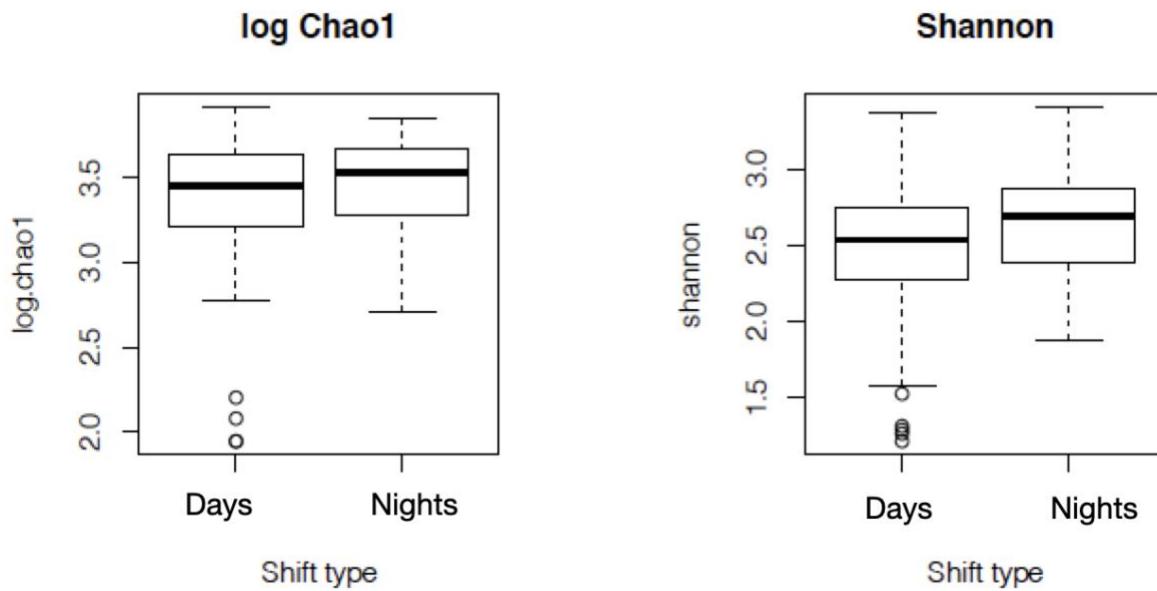
A Comparison of Day and Night Shift Participants

1 Table 1 Sample Description

2

	Day Shift (n=24)	Night Shift (n=27)	P Value
Age (mean)	32.4	33.3	0.73*
BMI (mean)	27.1	26.3	0.60*
BMI			
<20	1	3	0.41**
20-24.9	10	8	
25-29.9	5	10	
>30	8	6	
IBS (Rome III criteria)			
No	17	16	0.56**
Yes	7	11	
IBS Symptoms			
IBS with diarrhea	1	2	1.0**
IBS with constipation	1	1	
IBS mixed type	5	7	
IBS un-subtyped	0	1	

3 *Welsh two-sample t-test


4 ** Fisher's exact test

5

Figure 1(on next page)

Alpha Diversity by Shift Type

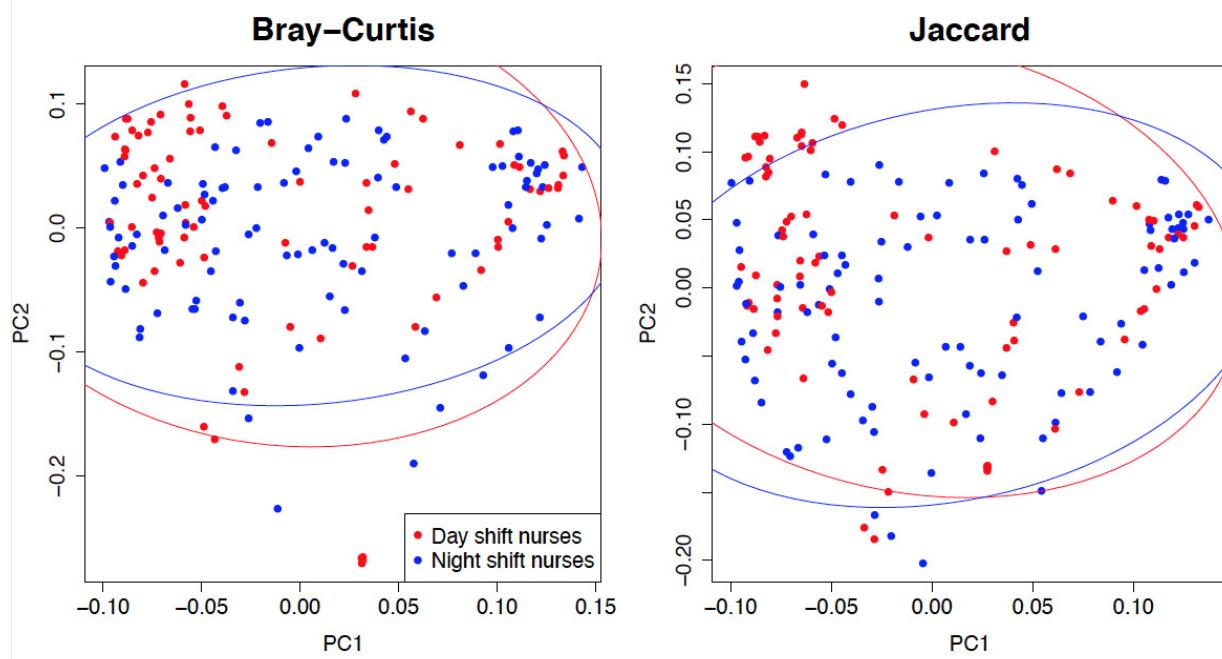
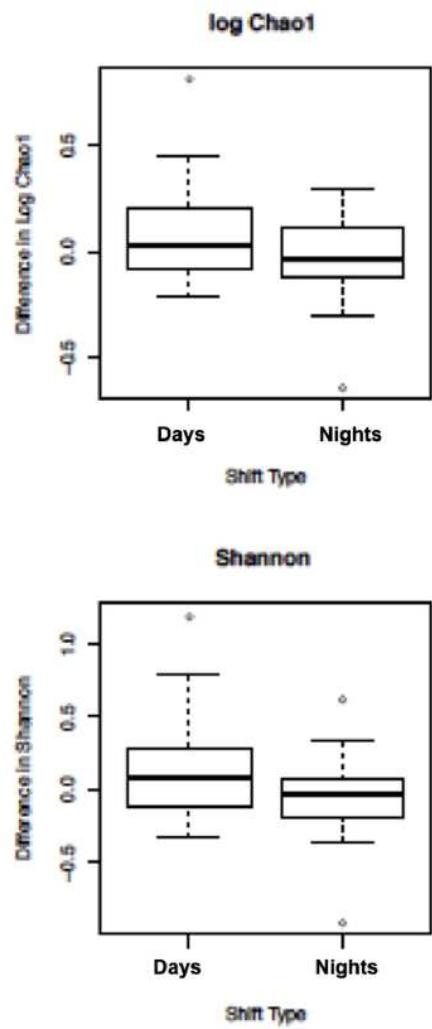
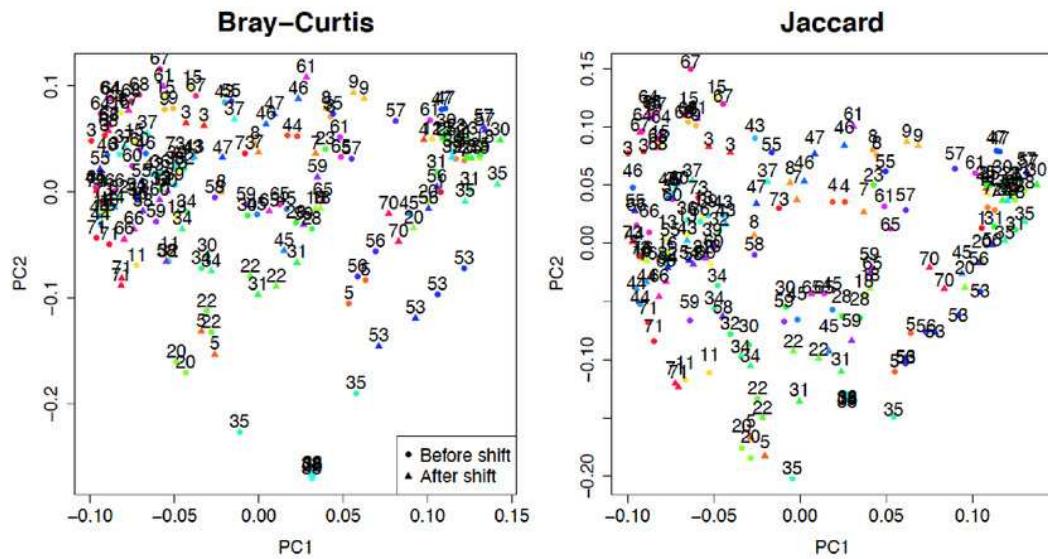
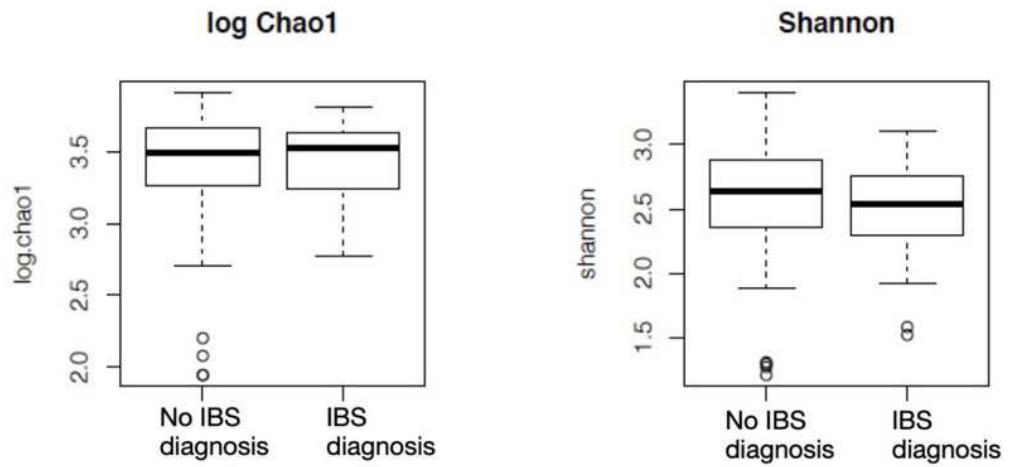

Figure 1 Alpha diversity by shift type

Figure 2(on next page)

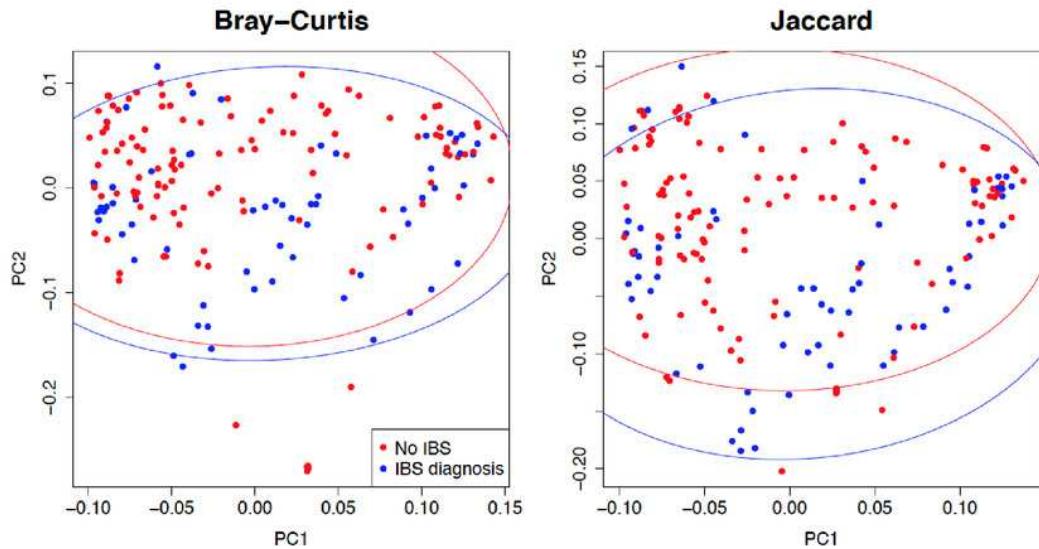

PCoA Plot Comparing Beta Diversity by Shift Type


Figure 3

Changes in Alpha Diversity from the Beginning to End of the Shift by Shift Type


Figure 4

Principal Components Analysis by Participant ID


Figure 5

Alpha Diversity by Presence or Absence of IBS

Figure 6

PCoA Plot Comparing Beta Diversity by Presence or Absence of IBS Symptoms

