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ABSTRACT
Background. Ovarian cancer is one of the leading causes of female deaths worldwide.
Ovarian serous cystadenocarcinoma occupies about 90% of it. Effective and accurate
biomarkers for diagnosis, outcome prediction and personalized treatment are needed
urgently
Methods. Gene expression profile for OSC patients was obtained from the TCGA
database. The ESTIMATE algorithm was used to calculate immune scores and stromal
scores of expression data of ovarian serous cystadenocarcinoma samples. Survival
results between high and low groups of immune and stromal score were compared
and differentially expressed genes (DEGs) were screened out by limma package. The
GeneOntology (GO), the Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway
enrichment analysis and the protein-protein interaction (PPI) network analysis were
performed with the g:Profiler database, the Cytoscape and Search Tool for the Retrieval
of InteractingGenes (STRING-DB). Survival results between high and low immune and
stromal score groups were compared. Kaplan-Meier plots based on TCGA follow up
information were generated to evaluate patients’ overall survival.
Results. Eighty-six upregulated DEGs and one downregulated DEG were identified.
Three modules, which included 49 nodes were chosen as important networks. Seven
DEGs (VSIG4, TGFBI, DCN, F13A1, ALOX5AP, GPX3, SFRP4) were considered to be
correlated with poor overall survival.
Conclusion. SevenDEGs (VSIG4,TGFBI,DCN, F13A1,ALOX5AP,GPX3, SFRP4) were
correlated with poor overall survival in our study. This new set of genes can become
strong predictor of survival, individually or combined. Further investigation of these
genes is needed to validate the conclusion to provide novel understanding of tumor
microenvironment with ovarian serous cystadenocarcinoma prognosis and treatment.

Subjects Bioinformatics, Gynecology and Obstetrics, Oncology
Keywords Ovarian serous cystadenocarcinoma, Differentially expressed genes, Overall survival,
Tumor microenvironment, Immune and stromal scores

INTRODUCTION
Ovarian cancer is one of the leading causes of female deaths worldwide. It is often diagnosed
at late stage due to nonspecific symptoms (Allemani et al., 2015). Epithelial ovarian cancer
(EOC) mainly includes serous, mucinous, endometrioid, clear cell, undifferentiated and
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other histological type of carcinoma. Ovarian serous cystadenocarcinoma (OSC) is the
most deadly female cancer of reproductive system. It is estimated that 150,000 women
die of this disease annually and 230,000 are diagnosed with ovarian cancer every year
(Siegel, Miller & Jemal, 2016). Ovarian serous cystadenocarcinoma occupies about 90% of
all ovarian cancers (Cancer Genome Atlas Research Network, 2011). 5-year survival of stage
I patients is higher than 90%. In stages III to IV, less than 20%. Standard therapy includes
cytoreductive surgery with first-line combination chemotherapy. Studies showed that
25% of ovarian cancer patients have primary resistance to chemotherapy regimens, 80%
of patients may develop secondary resistance during chemotherapy (Zhang et al., 2019).
With the development of technology, diagnostic biomarkers and targeted therapy has been
applied in many kinds of cancers including EOC. Effective and accurate biomarkers for
diagnosis, outcome prediction and personalized treatment are needed urgently.

The Cancer Genome Atlas (TCGA) have been established to discover genomic
abnormalities in cancer of large cohorts worldwide to investigate the mechanism of
tumorigenesis and development. Ovarian serous cystadenocarcinoma was divided into
four subtypes: differentiated, immunoreactive, mesenchymal and proliferative in the
TCGA database, according to their gene expression profiles. EOC patients show the highest
prevalence of BRCA mutations among all pathological types of ovarian cancer which
correlates with EOC progression and prognosis (Pan & Xie, 2017).

Tumor microenvironment play an important role in tumor genesis and progression,
which contains immune cells, mesenchymal cells, endothelial cells, inflammatorymediators
and extracellular matrix molecules (Hanahan &Weinberg, 2000). Stromal cells provide
tumor cell growth signals, intermediatemetabolites, and provide a suitable environment for
tumor progression as well as metastasis (Yuan et al., 2016). An algorithm called ESTIMATE
(Estimation of stromal and immune cells in malignant tumor tissues using expression data)
calculates immune and stromal scores to predict the infiltration of non-tumor cells, by
analyzing specific gene expression signature of immune and stromal cells, has been
developed to analyze tumor purity and immune characteristics in TCGA database in
several kinds of cancers (Alonso et al., 2017; Priedigkeit et al., 2017; Yoshihara et al., 2013).

In this study, we use ESTIMATE algorithm to identify key genes in OSC patients by
analyzing TCGA expression profiles and clinical data. Further bioinformatic analysis were
performed to determine the association of these genes with prognosis in ovarian cancer.

MATERIAL AND METHODS
Database
Gene expression profile for OSC patients was obtained from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/) (Level 3, 2017-09-08), using Affymetrix HT_HG-
U133A platform, by Broad Institute of MIT and Harvard University cancer genomic
characterization center (Tomczak, Czerwinska & Wiznerowicz, 2015). Clinical data of
survival outcome (2016-04-27) and gene expression subtype (2016-05-27) were also
downloaded from TCGA data portal. The ESTIMATE algorithm was used to calculate
immune scores and stromal scores of expression data of ovarian serous cystadenocarcinoma
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samples (Yoshihara et al., 2013). Ordinary one-way ANOVA test was used to compare
immune and stromal scores of different gene expression subtypes. Student t test was used
to compare immune and stromal scores of BRCA mutation subtypes. Log rank test was
used to compare survival results between high and low immune and stromal score groups.

Data processing of DEGs
Limma package (http://bioconductor.riken.jp/packages/3.10/bioc/html/limma.html) was
used to detect the DEGs between high and low groups of immune and stromal score. The
cutoff criteria was set as adjusted p< 0.05 and |log2FC|>1.0. Each group owns unique
DEGs. Venn diagram tool online (http://bioinfogp.cnb.csic.es/tools/venny) was used to
analyze overlapping components.

GO and KEGG pathway analysis of DEGs
We used standard GO analysis tools to divide gene functions into biological process (BP),
molecular function (MF), and cellular component (CC) (The Gene Ontology , 2019). KEGG
analyze genomes, biological pathways, diseases, chemical substances and drugs (Kanehisa
et al., 2019). The g:Profiler database (https://biit.cs.ut.ee/gprofiler/) was used to identify the
pathways and functional annotation of found genes and visualization of results. p< 0.05
was considered statistically significant (Reimand et al., 2019).

PPI network and module analysis
Search Tool for the Retrieval of Interacting Genes (STRING-DB) database (http://string-
db.org/) was used to evaluate the relationships among DEGs (Szklarczyk et al., 2019; Von
Mering et al., 2005). The combined score is used as a cut-off value to limit the number
of interactions of higher confidence. It is computed by correcting randomly observing
probability before combining them from different evidence channels (Von Mering et al.,
2005). The combined score was set as >0.4. PPI networks were constructed using the
Cytoscape software (Doncheva et al., 2019). Nodes with higher degree of connectivity tend
to be more essential and molecular complex detection module (MCODE) was then used
to find clusters based on topology, which will help to locate key network and pathways in
PPI network (Doncheva et al., 2019).

Overall survival curve
By analyzing clinical data from TCGA ovarian serous cystadenocarcinoma database,
Kaplan–Meier plots were generated to evaluate patients’ overall survival of expression
levels of DEGs. p < 0.05 was considered statistically significant.

RESULTS
Immune scores and stromal scores are significantly associated with
OSC subtypes
Gene expression profiles and clinical information of 469 OSC samples were downloaded
from the TCGA database, with initial pathologic diagnosis made between 1992 and 2013.
304 gene expression subtype data were also retrieved, which contains 69 (22.7%) cases of
differentiated subtype, 84 (27.6%) cases of immunoreactive subtype, 69 (22.7%) cases of
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mesenchymal subtype, 82 (27.0%) cases of proliferative subtype. 6 samples of 469 were
validated to contain BRCA1 or BRCA2 mutation.

ESTIMATE algorithm was used to calculate immune and stromal scores of downloaded
samples. Immune scores were distributed between −1498.58 to 2774.16, stromal scores
−1988.05 to 1837.43, respectively. The average immune score of immunoreactive subtype
cases ranked the highest of all 4 subtypes. The mesenchymal subtype has the highest
stromal scores. The proliferative subtype cases had the lowest immune and stromal scores
(Figs. 1A, 1B, p< 0.0001). Immune scores and stromal scores are correlated with the
subtype classification of gene expression. The distribution of immune scores and stromal
scores based on the status of BRCA1/2 mutation showed mutant samples have higher
immune scores and stromal scores, although statistically not significant (Figs. 1C, 1D).

469 OSC samples were divided into high and low score groups (234:235) based on
immune scores and stromal scores to compare their overall survival. Kaplan–Meier
survival curves showed that median overall survival of cases of the high score group of
immune scores is longer than the cases in the low score group (1399 d vs. 1336 d, p =
0.4505 in log-rank test). Cases with lower stromal scores also showed longer median overall
survival (1373 d vs. 1321 d, p= 0.4649 in log-rank test), although both were not statistically
significant (Figs. 1E, 1F).

DEGs between groups of immune and stromal scores in OSC
Microarray data of all 469 cases obtained in TCGA database were analyzed using limma
package. Heatmaps and volcano plots in Fig. 2 showed distinct gene expression profiles
between cases of high and low immune scores (Figs. 2A, 2C) and stromal scores (Figs. 2B,
2D) groups. 162 genes were upregulated and 5 genes downregulated in the high than the
low immune score group, while 163 upregulated and 2 downregulated in the high than
the low stromal score group (p< 0.05 and |log2FC|>1.0). Subsequently, Venn analysis was
performed to get the intersection of the DEG profiles. Finally, 87 DEGs were significantly
differentially expressed, of which 86 significantly upregulated (Fig. 2E) and 1 downregulated
(Fig. 2F) in both immune and stromal comparison.

GO function and KEGG pathway enrichment analysis of DEGs
The enriched GO terms were divided into MF, CC and BP ontologies. Top GO terms
identified include glycosaminoglycan binding, immune response and extracellular space
(Figs. 3A, 3B, 3C). DEGs were mainly enriched in staphylococcus aureus infection and
complement and coagulation cascades according to the results of KEGG pathway analysis
(Fig. 3D).

PPI network analysis
STRING-DB (score>0.4) results of PPI network were visualized by software Cytoscape,
as presented in Fig. 4A. MCODE module was used to identify key genes of important
pathways. The network was made up of 3 modules including 49 nodes (Figs. 4B, 3C,
4D). TYROBP, ITGB2, C1QB, C1QA and CD53 in module B have the top connectivity
among all DEGs and are considered to have important relationship to immune response in
ovarian cancer. In module C, CD163 had the most connections with other members of the
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Figure 1 Immune scores and stromal scores are associated with OSC subtypes and their overall sur-
vival. (A) Distribution of immune scores of OSC subtypes. Box-plot shows that there is significant asso-
ciation between OSC subtypes and the level of immune scores (n = 304, p < 0.001). (B) Distribution of
stromal scores of OSC subtypes. Box-plot shows that there is significant association between OSC subtypes
and the level of stromal scores (n= 304, p< 0.001). (C) Distribution of immune scores for BRCA mutant
and BRCA wildtype OSC cases. Box-plot shows that there is no significant association between BRCA mu-
tation status and immune scores (n= 469, p= 0.1834). (D) Distribution of stromal scores for BRCA mu-
tant and BRCA wildtype cases. Box-plot shows that there is no significant association between OSC sub-
types and the level of stromal scores (n= 469, p= 0.2155). (E) Kaplan–Meier survival curves showed that
median overall survival of cases with the high score group of immune scores is longer than the cases in the
low score group (1399 d vs. 1336 d, p = 0.4505 in log-rank test). (F) Cases with lower stromal scores also
showed longer median overall survival (1373 d vs. 1321 d, p= 0.4649 in log-rank test).

Full-size DOI: 10.7717/peerj.11375/fig-1
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Figure 2 Comparison of gene expression profile with immune scores and stromal scores in OSC. (A,
B) Distinct gene expression profiles between cases of high and low immune (A) or stromal (B) scores. (C,
D) Volcano plots of distinct gene expression profiles between cases of high and low immune (C) or stro-
mal (D) scores. (E, F) Venn diagrams showing the number of commonly upregulated (E) or downregu-
lated (F) DEGs in immune and stromal score groups.

Full-size DOI: 10.7717/peerj.11375/fig-2

module, which is reported to related to tumor associated macrophages and poor prognosis
in ovarian cancer (Reinartz et al., 2014).

Correlation of DEGs expression and overall survival
To evaluate the relationship of DEGs and overall survival of OSC patients from TCGA
database, Kaplan–Meier survival analysis were performed based on the follow up
information. Among the 86 DEGs upregulated in both the high-immune scores and
high-stromal scores groups, 7 genes(VSIG4, TGFBI, DCN, F13A1, ALOX5AP, GPX3,
SFRP4)considered to be correlated with poor overall survival in log-rank test (p< 0.05)
(Fig. 5). The statistical results of Kaplan–Meier survival analysis were not convincing
enough for the conclusion. Thus, the prognostic value of these 7 genes needs further
investigation.

DISCUSSION
In the current work, we identified tumormicroenvironment related genes that contribute to
OSC overall survival in the TCGA database. Subsequently, by comparing gene expression
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Figure 3 Top 10 GO and KEGG terms. (A, B, C, D) Top 10 GO and KEGG terms. False discovery rate
(FDR) of GO analysis was acquired from g: Profiler annotation tool (p< 0.05).

Full-size DOI: 10.7717/peerj.11375/fig-3

between high and low immune and stromal scores, we extracted 86 upregulated genes
involved in glycosaminoglycan binding, immune response and extracellular space, which is
consistent with previous reports that the functions of immune cells and ECMmolecules are
related with tumor microenvironment (Yuan et al., 2016). By PPI network and MCODE
module, TYROBP, ITGB2, C1QB, C1QA, CD53 and CD163 have top connectivity among
all DEGs and are considered to have important relationship to immune response in
ovarian cancer. High expression of 7 DEGs (VSIG4, TGFBI, DCN, F13A1, ALOX5AP,
GPX3, SFRP4) were significantly correlated with poor overall survival in Kaplan–Meier
survival analysis. However, the curve ofDCN,GPX3 and SFRP4 contains some overlapping
part between high and low expression groups (p value = 0.025, 0.049, 0.049 respectively).
Also, the statistical results of Kaplan–Meier survival analysis were not convincing enough
for the conclusion. Thus, the prognostic value of these 7 genes needs further investigation,
which should be discussed and validated in experimental and clinical research in the future.

VSIG4 (protein V-set and Ig domain-containing 4) is a novel B7 family-related
macrophage protein. It can inhibit T-cell activation and promote cancer development.
In advanced-stage and recurrent ovarian cancer patients, soluble VSIG4 levels were
significantly increased (p= 0.0244 and 0.0288, respectively). High VSIG4 expression
in cancer tissue were associated with a longer disease-free interval (p= 0.0246) (Byun
et al., 2017). Transforming growth factor-beta-inducible gene-h3 (TGFBI ) is a secreted
protein and possess tumor suppressor function. It activates integrin-mediated FAK and
RhoA to sensitize ovarian cancer cells to paclitaxel in the extracellular matrix (Ahmed
et al., 2007). TGFBI has been proved to be related with paclitaxel-resistance in ovarian
cancer, which might be a potential therapeutic target for the enhancement of responses to
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Figure 4 PPI networks. PPI networks (A) and 3 PPI networks of MCODE modules (B, C, D).
Full-size DOI: 10.7717/peerj.11375/fig-4

chemotherapy in ovarian cancer patients (Wang et al., 2012). Another study suggested that
TGFBI possesses both tumor suppressor and promoter function depending on the tumor
microenvironment (Ween, Oehler & Ricciardelli, 2012).DCN (Decorin) is a member of the
small leucine-rich proteoglycan family. It is important in collagen fibril assembly and tumor
suppression. Studies in different cancer cell lines showed DCN effectively inhibits TGF-β
induced cancer cell spreading and proliferation (Jarvinen & Prince, 2015). DCNwas proved
not only contributed to colonic carcinogenesis, but also is a novel potential biomarkers
for the diagnosis of colon cancer (Li et al., 2017), however its function in ovarian cancer
has not been investigated. F13A1 was proved significantly higher concentration in ovarian
cancer plasma compared to normal female woman. Plasma proteins from ovarian cancer
patients may be a powerful tool for clinical diagnosis and prognosis prediction which needs
further investigation (Dufresne et al., 2018). ALOX5AP expression is increased in patients
of obesity and insulin resistance (Elias et al., 2016) and recognized as a susceptibility gene
for stroke (Papapostolou et al., 2014), but its role in cancer genesis and progression has
not been investigated. High GPX3 expression was associated with poorer overall patient
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Figure 5 Kaplan–Meier survival curves. Kaplan–Meier survival curves of the correlation of expression of
seven DEGs (A–G) with overall survival (p< 0.05, Log-rank test).

Full-size DOI: 10.7717/peerj.11375/fig-5

survival and increased tumor stage. Exogenous oxidant insult as extracellular H2O2 can
be removed via GPX3-dependent pathway in the microenvironment (Worley et al., 2018).
GPX3 shows an important protective and adaptation function in ovarian cancer cellular
survival in the ascites tumor environment, especially in high grade serous adenocarcinoma
(Worley et al., 2018). SFRP4 inhibits Wnt signaling pathway and decreases transcription of
Wnt target genes, Axin2, CyclinD1 and Myc, reducing migration ability of ovarian cancer
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cells by increasing the ability to adhere to collagen and fibronectin (Ford et al., 2013). Also
SFRP4 confers chemo-sensitization and improve chemotherapeutic efficacy (Deshmukh et
al., 2017), which possesses both diagnostic and therapeutic potential in epithelial ovarian
cancer.

CONCLUSION
VSIG4, TGFBI, DCN, F13A1, ALOX5AP, GPX3, SFRP4 were proved to be correlated with
poor overall survival in our study. Further investigation of these genes is needed to validate
the conclusion to provide novel understanding of tumor microenvironment with OSC
prognosis and treatment.
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