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The heat shock transcription factors (HSFs) are critical regulators in plant responses to
various abiotic and biotic stresses. They involve in regulating the expression of heat shock
proteins (HSPs) by binding with heat stress elements (HSEs) to defense heat stress.
Recently, the Hypericum perforatum genome has been fully sequenced, which provide a
valuable resource for functional analysis. In this study, a total of 23 HpHSF genes were
identified and divided into three groups (A, B, and C) based on their phylogeny and
structural features. Gene structure and conserved motif analyses revealed that all HpHSF
genes exhibit relatively conserved domains. In addition, various cis-acting elements in the
promoter regions of HpHSFs are related to hormone and stress responses. And the
transcriptional levels of most HpHSF genes was altered under heat stress conditions,
suggesting their potential functions in heat stress resistance pathway. Our findings are
helpful for further functional analysis of HpHSFs.
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Abstract

The heat shock transcription factors (HSFs) are critical regulators in plant responses to various
abiotic and biotic stresses. They involve in regulating the expression of heat shock proteins
(HSPs) by binding with heat stress elements (HSEs) to defense heat stress. Recently, the
Hypericum perforatum genome has been fully sequenced, which provide a valuable resource for
functional analysis. In this study, a total of 23 HpHSF genes were identified and divided into
three groups (A, B, and C) based on their phylogeny and structural features. Gene structure and
conserved motif analyses revealed that all HpHSF genes exhibit relatively conserved domains. In
addition, various cis-acting elements in the promoter regions of HpHSFs are related to hormone
and stress responses. And the transcriptional levels of most HpHSF genes were altered under
heat stress conditions, suggesting their potential functions in heat stress resistance pathway. Our
findings are helpful for further functional analysis of HpHSFs.

Introduction

Plants often suffer from divergent biotic and abiotic stresses such as virus infection, vegetarian
attack, drought, salt, high and low temperature and so on throughout their life cycles
(Abdelrahman, et al. 2018; Zandalinas, et al. 2018). They have many complex defense
mechanisms in vivo to protect themselves from stressful environment. Among various abiotic
stresses, high temperature has significant impact on plant survival. Under heat stress, Heat shock
transcription factors (HSFs) can activate rapid accumulation and expression of heat shock
proteins (HSPs) to reduce heat-related damage. Many HSPs play a critical role in protecting the
plants from stress damage, as well as function in protein folding, aggregation, degradation, and
intracellular distribution (Mittler, et al. ; Lin, et al. 2011). In the process of heat shock reaction,
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HSFs regulate the expression of heat stress-inducible genes by recognizing the binding motifs
called heat stress elements (HSEs) which present in promoter regions of the HSP genes (Treuter,
et al.). Specifically, HSFs utilize their oligomerization domains to form trimmers and take effect
as sequence-specific trimeric DNA binding proteins. Previous studies have shown that
transcription activation in vivo requires at least three repeat HSEs when binding by HSF proteins
(Drees, et al. 1997).

Recently, the Genome-wide analysis of HSF gene family in more than 20 plants were carried out
and it is clear that the number of HSF gene members are varies among different species (Scharf,
et al. ; Fujimoto and Nakai 2010). For instance, A total of 22 HSF genes were identified in
Arabidopsis (Arabidopsis thaliana), 25 in maize (Zea mays) (Lin, et al. 2011), 25 in rice (Oryza
sativa)(Guo, et al. 2008), 25 in pepper(Capsicum annuum L.)(Guo, et al. 2015), 26 in tomato
(Solanumlycopersicum)(Yang, et al. 2016), 38 in soybean (Glycine max)(Li, et al. 2014), 32 in
Populus euphratica(Zhang, et al. 2016), 17 in woodland strawberry (Fragaria vesca)(Hu, et al.
2015) and 24 in mungbean (Vigna radiata)(Li, et al. 2018), indicating that HSF proteins in
various species may have similar but different functions in reducing stress damage, and also
provide rich resources for evolutionary analysis.

In plant HSFs, the members share a typical and conserved modular structure. The highly
conserved DNA-binding domain (DBD) in the N-terminus includes one three-helical bundle (al,
a2, a3) and one antiparallel four-stranded B-sheet (1, B2, B3, p4) to form a helix-turn-helix
structure, which is demanded for HSEs specific binding to regulate the expression of
downstream genes(Scharf, et al. ; Guo, et al. 2016). The oligimerisation domain (OD), also
known as the HR-A/B region, has the characteristic of coiled-coil structure and play a part in the
transcription factor activity. It is mainly located at the C-terminal of HSF and connected to the
DBD through a flexible linker comprising of a heptad pattern of hydrophobic amino acid
residues (Peteranderl, et al. 1999). In addition, the nuclear localization signal (NLS) at the C-
terminal of HR-A/B region consisting of a cluster of basic amino acid rich in lysine and arginine
residues is essential for nuclear import, and the nuclear export signal (NES) in the C-terminal of
some HSF genes, which contains many leucine residues, is crucial to regulates the
nucleocytoplasmic distribution of HSF proteins(Lyck, et al. 1997; Chidambaranathan, et al.
2018). Furthermore, there are short peptide motifs (AHA motifs) closing to the C-terminal for
transcriptional activator functions in some HSF proteins (Kotak, et al. 2004).

According to the characteristic of the conserved DBD domain and HR-A/B regions, HSFs in
plants are classified into three main classes (class A, B, and C) (Nover, et al. 2001). The number
of amino acid residues connecting DBD to HR-A/B was different among the three subgroups.
Class A contains 9-39 amino acid residues, class B contains 50-78 amino acid residues, and class
C contains 4-49 amino acid residues (Prindl, et al. 1998; Miller and Mittler 2006). Moreover, the
number of amino acids linking HR-A and HR-B also had obvious variation in different
subgroups. There are 21 and 7 amino acid residues inserted into the HR-A/B region in class A
and class C, respectively, whereas this region in class B HSFs is compact without insert
sequences between the heptad repeats (Baniwal, et al. 2004). Additionally, The AHA motifs,
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which function through binding some transcription protein complexes to activates the
transcription of HSPs, are unique to class A members but not in class B or class C (Scharf, et
al.).

Hypericum perforatum is a herbaceous perennial plant in the family Hypericaceae. The well-
characterized secondary metabolites and pharmacological activities have attracted the attention
of researchers (Galeotti 2017). The extracts of H. perforatum include acyl-phloroglucinols,
naphthodianthrones, xanthones and flavonoids, and these various pharmacological compounds
are related to antiviral, antitumoural, anti-inflammatory, antimicrobial, antioxidant, and other
functions (Nahrstedt and Butterweck 2010). However, the production and quality of H.
perforatum are challenged by various stresses from environment, such as cold, high temperature,
drought etc. Therefore, it is important to characterize H. perforatum stress resistant genes. The
current study identified 23 HpHSF genes and analyzed their physical and chemical characters,
conserved domains, gene structures, evolutionary relationships and cis-acting elements.
Moreover, we explored the expression profiles across four different tissues and under heat stress
treatment. In conclusion, it provides a foundation for an improved exploration of the HpHSF
gene function in H. perforatum.

Materials & Methods

Plant Material and Treatment

Seeds (2n=2x=16) of Hypericum perforatum preserved by our laboratory were germinated and
grown on a seedling bed in the greenhouse (25 = 2°C, natural lighting). Humidity was
maintained at 60—80%. Two months old H. perforatum seedlings were transferred to an incubator
maintained at 42°C for heat stress treatments, and five time points (0 h, 1 h, 3h, 6h and 12 h)
were selected for sample collection. In addition, the different tissue samples include flower, leaf,
stem and root were taken from two-year-old plants. All samples were collected in three
replicates, and the samples need to be immersed in liquid nitrogen immediately and stored at -
80°C for RNA isolation.

Identification of HpHSF Members

For HSF identification, the conserved amino acid sequence of DNA-binding domains (Pfam:
PF00447) was used to search in the H. perforatum genome. Moreover, the HSF protein
sequences of Capsicum annuum L., Vitis vinifera L. and A. thaliana. obtained from plantTFDB
(http://planttfdb.cbi.pku.edu.cn) were used as BLAST queries against the H. perforatum genome.
All output genes with default were searched for conserved DNA-binding domain using Interpro
(http://www.ebi.ac.uk/interpro/) and SMART (http://smart.embl-heidelberg.de/). In addition, the
remained genes were analyzed using MARCOII (http://toolkit.tuebingen.mpg.de/marcoil) to
remove genes without coiled-coil structure. The detected genes are listed in Supplementary
Tablel.

Phylogenetic Relationship Analysis and Sequence analysis

Full-length amino acid sequences of HSF from A. thaliana, Capsicum annuum L., Vitis vinifera
L. and Hypericum perforatum (this study) were aligned using the Clustal X, and the phylogenetic
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tree was constructed using MEGA 6.0°s Neighbor-Joining (NJ) method with 1000 bootstrap
replicates and pairwise deletion.

The parameters including molecular weight, isoelectric point, aliphatic index, instability index,
the percentage of negatively/positively charged residues, and GRAVY of HpHSF proteins were
displayed using ExPASy database (https://www.expasy.org/). Furthermore, the conserved motifs
of HpHSF genes were searched via Multiple Em for Motif Elicitation (MEME, http://meme-
suite.org/tools/meme) and the exon/intron organization of HpHSF proteins was obtained by the
Gene Structure Display Server program (GSDS, http://gsds.cbi.pku.edu.cn/). The cis-acting
elements of 1.5 kb upstream sequences of the transcription initiation site in promoter region of
HpHSF genes were analyzed on PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Isolation of RNA and ¢cDNA Synthesis

Total RNA of H. perforatum materials was isolated using the HiPure Total RNA Mini Kit
following the manufacturer’s protocol (Magen, China). The concentration of the isolated total
RNA was detected through NanoDrop 2000c spectrophotometer (Thermo Scientific, USA), and
the integrity of the RNA was directly quantified by running agarose gel (1% w/v) with 150 V, 10
min. 1 pg RNA was used for the first strand cDNA synthesis using PrimeScriptTM RT Reagent
Kit (TaKaRa, China) according to the instructions. All cDNA samples should be stored at -80°C
and avoid repeated freezing and thawing for RT-qPCR.

Primer Design and Quantitative RT-PCR (qRT-PCR) Analysis

The primers of the 23 HpHSF genes were designed by GenScript (https://www.genscript.com),
the parameters were: PCR Amplicon Size Range:100-180; Primer Tm: Minimum, Optimum and

Maximum are 59.5 C, 60 C, 60.5 C respectively; Probe Tm: Minimum, Optimum and

Maximum are 62 ‘C, 66 C, 70 C respectively. The specificity of the primers were detected by
Bioedit through searching the primers which given by GenScript against the H. perforatum
genome(Supplementary Table2). In addition, quantitative RT-PCR was performed on the
LightCycler 96 system (Roche Diagnostics GmbH) using ChamQTM SYBR® qPCR Master
Mix (Vazyme, Nanjing, China) following the manufacturer’s procedure. The HpActin-2 was
used as an internal control and the 2-AACt method was used to analyze the relative changes in
gene expression. Quantitative RT-PCR was done with three biological replicates of each sample
and each sample consisted of three technical replicates. The primers of HpHSF genes used for
qRT-PCR analyses are listed in Supplementary Table 1.

Results

Identification and Isolation of HSF Genes in the H. perforatum

There are 23 genes were identified as members of the HSF transcription factor family in H.
perforatum based on a conserved DBD domain search and the coiled-coil structure detection.
These genes were named after ‘HpHSF’ with the consecutive number. More detailed information
about HpHSFO1 to HpHSF23 are shown in Table 1, the identified HpHSFs encode 188 to 501
amino acids (average of 345 aa), and molecular weights (MW) ranged from 21.72 kDa to 54.91
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kDa (average of 39.15 kDa). The isoelectric points (pl) of HpHSFs varied from 4.79 to 8.86.
Among the 23 HpHSF genes, the percentages of negatively charged residues (ASP + Glu) (n.c.r.)
and positively charged residues (Arg + Lys) were 11.0% - 17.6% and 8.4% - 15.8%,
respectively. According to the instability index analysis, all the HpHSF proteins were unstable.
In addition, the aliphatic index (A.I.) ranged from 54.52 to 76.18 and the grand average of
hydropathicity (GRAVY) had a range of —0.826 to —0.523.

Conserved domains of HpHSFs

Five conserved domains were observed in the majority HpHSF genes, in order to reveal the
sequence conservative regions between members of the HpHSFs, the multiple alignment of 23
HpHSFs was obtained by DNAMAN. From the Figure 1, the DBD domain being close to the
N-terminal was highly conserved among all amino acids. And the secondary structure prediction
showed that the majority of the DBD domains consist of a four-stranded antiparallel B-sheet and
three a-helices (a1~a3). In addition, MARCOIL was used for predicting the coiled-coil structure
characteristic of the HR-A/B regions which adjacent to the DBD domain in the C-terminal, it
was proved that the 23 candidate HpHSF protein sequences all had coiled-coil structure, the
multiple alignment results of the HR-A/B regions shows that the HpHSF protein family can be
divided into three classes because of the insertion amino acid residues between the A and B parts
of the HR-A/B motif (Figure2).

Phylogenetic relationship of HpHSF genes

To investigate the evolutionary relationships of the HpHSF genes, a total of 88 HSFs, comprising
21 from Arabidopsis, 25 from pepper, 19 from grape and 23 from H. perforatum were used for
phylogenetic tree construction by MEGAG6.0. Obviously, HSFs were classified into three main
groups namely HSF A, B and C (Figure 3). HpHSF A was the largest group which represented
52.2 % of the total HpHSFs; the second was HpHSF B which represented 39.1%; and HpHSF C
was the smallest group which just represented 8.7%. In addition, HpHSF A is classified into 9
subgroups (A1-A9) and includes 12 members (HpHSF07, HpHSF08, HpHSF12, HpHSF 11,
HpHSF16, HpHSF21, HpHSF17, HpHSF02, HpHSF23, HpHSF13, HpHSF10, HpHSF20);
HpHSF B is further divided into 5 subgroups (B1-B5) consisting of 9 members (HpHSF01,
HpHSFO03, HpHSF04, HpHSF05, HpHSF06, HpHSF 14, HpHSF 15, HpHSF19, HpHSF22);
while HpHSFC only contained HpHSF08 and HpHSF09 in one subgroup.

Gene Structures analysis and motifs of HpHSFs

The gene structures of PeuHSFs were investigated through an analysis of the intron/exon
boundaries, as can be seen from the Figure 4a, HpHSF20 were comprised of three exons,
and HpHSF03 were comprised of four exons, Except for the aforementioned two HpHSFs, all
the other 21 HpHSFs contained two exons and one intron. The intron phases of HpHSFs were 0,
except for phase 1 in HpHSF20 and phase 2 in HpHSF03. In conclusion, the gene structure was
conserved among the 23 HpHSF members.

In addition, we searched for motifs of the HpHSF proteins to reveal the conserved features using
MEME and the results were shown in Figure 4b. Almost all of the HpHSFs contain motifs1, 2
and 3, which corresponded to the most conservative domain, the DBD domain. Motifs 4 and 5
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were considered to represent the HR-A/B region and motif 11 and 13 belonged to NLS.
Similarly, motifs 12 contained the AHA motif were detected in the C-terminus of some members
in subclass A. Furthermore, some unknown motifs were identified in HpHSFs. (Figure 5).
Cis-acting elements analysis in the promoter regions of HpHSF genes

We searched the potential cis-acting elements in the 1.5 kb upstream sequences of the translation
initiation codons of HpHSFs in the PlantCARE database, and the result showed the presence of
various cis-elements in the 5° flanking regions associated with stress, hormone, and
development(Ning, et al. 2017). In stress-related cis-acting elements, some elements related to
various stresses, such as light, low/high temperature, drought, anaerobic induction and wound
were found in a large number of HpHSF genes, which including heat-shock response element
(HSE), TC-rich repeats, Myb-binding DNA sequence (MBS), anaerobic induction element
(ARE), low temperature range (LTR) and so on (Figure 6, Supplementary Table 4). In addition,
there are plenty of hormone-related cis-acting elements in the promoters, ABA-responsive
element (ABRE), MeJA responsive elements (TGACG-motif/CGTCA-motif), ethylene-
responsive element (ERE), auxin-responsive element (TGA-element) and salicylic acid
responsive element (TCA-element) were detected in the promoters of 19, 17, 13, 13and 7
HpHSFs, respectively. The results of the cis-elements suggested that the HpHSF genes might be
involved in multiple transcriptional regulation of plant growth and stress responses.

Expression profiles of HpHSFs across different tissues

To explore the transcription patterns of HpHSF genes, a heat map of the transcription patterns of
the HpHSF family was generated for the H. perforatum genes against RNA-seq data of four
tissues including root, stem, leaf, and flower. According to the FPKM values, the expression
profiles of HpHSF gene was remarkably different in four samples. For class A members,
HpHSF12, HpHSF18 and HpHSF 13 were expressed at high levels, while HpHSF02 and
HpHSF23 were expressed at relatively low levels or undetected. Moreover, the expression of
HpHSF11, HhHSF18, HpHSF13 and HpHSF 07 in leaf were higher than that in other tissues.
And among class B families, HpHSF15 were expressed significantly at high abundances in all
tissues compared with other genes. The members of class B family were all expressed at higher
levels in root than in other tissues except HpHSF01, as well as the two members of class C,
implying their critical roles in roots.

Expression analysis of HpHSF genes under heat stress treatment

HSF genes were found to play an important role in thermo tolerance of plants. In our study, the
expression patterns of the HpHSF gene family were determined using quantitative RT-PCR to

comprehend how HSF genes respond to heat stress under 42°C treatment. As shown in Figure 8,
the expression of HpHSF?2, 11, 12, 21 had no significantly change. HpHSF03, 18 and 22 were
repressed after heat stress treatment, the remaining HpHSFs were up-regulated in varying degree.
Noticeably, the expression of HpHSF 10 increased dramatically, it has been raised more than 500
times at 3 h as compared with the control, indicating that HpHSF 10 was a very sensitive
response acceptor. In addition, the expression of HpHSF1, 14, 20 and 23 were also changed
obviously which were able to be concerned further.
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Discussion

HSF gene family play an important role in plant adaptations to various biotic or abiotic stress. In
this study, the identification and characteristics of 23 HSF genes were investigated based on
Hypericum perforatum genome database and the expression profiles of the 23 genes were
analyzed to explore their functions in heat stress response in H. perforatum. Overall, the isolation
and 1dentification of these HSF genes are helpful for illustrating the molecular genetic basis of H.
perforatum., and the expression patterns of HpHSFs in four tissues and response to heat stress
obtained during 42-C suggested that HSF gene family was ubiquitously expressed and several
HpHSF genes could play important roles in adaptation to environmental stress.

The DBD domain consists of about 100 amino acid residues which is highly conserved in yeast,
plants and mammals (Schultheiss, et al. 1996). Similar to the results of previous studies, our
finding showed that many sequences are conserved based on phylogenetic relationships of
Arabidopsis, pepper, grape and H. perforatum and coiled-coil structure of HR-A/B regions
prediction. The HpHSF genes were classified into three classes (A, B, C), Classes A and B were
further divided into 9 (A1-A9) and 5 (B1-B5) subclasses respectively. The number of class A
HSF genes were varying in plants, such as 15 in Arabidopsis and maize, 13 in rice and
Mungbean, 16 in Soybean. Similarly, there are 7 class B HSFs in H. perforatum. The number of
class B HSFs identified in plants are 10 in Mungbean, 8 in rice,7 in maize, and 5 in Arabidopsis.
Most of the subclasses are shared among many species but not identical. In our study, the
subclasses A2, A7, and A9 had been discovered in some species such as Arabidopsis and
Arachis (Wang, et al. 2017), but not found in H. perforatum. It was hypothesized that elimination
of introns, exon shuffung, and generations of exons might cause altered grouping in the
phylogeny(Nover, et al. 2001). Overall, these observations suggested the functional conservation
and divergence of HSF genes among different plants.

HSF protein is involved in abiotic stress respones and hormone signaling in plants(Huang, et al.
2015; Zhang, et al. 2015). The cis-acting elements in promoter region can regulate the
transcription activity of corresponding genes, the research of detection of cis-acting elements
could help understand the function and expression profiles of genes(Fragkostefanakis, et al.
2015; Wang, et al. 2017). The promoter region of the HpHSF gene family members contains
varied elements related to growth and development, hormone response, and stress response. The
numbers and types of elements are variable among the HpHSF promoters, and the overlapping
phenomena were existed in different genes, which imply that the members of the family may
regulate a variety of abiotic stresses and plant hormone signaling pathways simultaneously,
which reflected the diversity and complexity of biological functions of the HpHSF gene family.
Gene expression profiles in different tissues are usually closely correlate with their functions in
organ development(Guo, et al. 2008). In this study, the expression patterns of HpHSF genes in
four different tissues were investigated. Remarkably, HSF'/5 was found to be expressed at the
highest level in four tissues by comparison to other genes. Each gene is expressed differently in
four tissues, such as HSF10 has the highest expression in root but the lowest expression in
flowers and the expression level of HSF'18 in leaf was higher than other tissues, indicating their
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potential function in root and leaf, respectively. All these HpHSF genes play roles in different
tissues to ensure the normal development of plants. Despite low expression in certain
organizations of some HSFs, it does not mean that they have no function in these organizations.
Tissue-specific expression patterns of identified HpHSF genes indicated that HpHSFs are widely
involved in the growth and development of various tissues, which play an important role in
studying the functions of HpHSF genes in H. perforatum developmental biology.

Plant HSFs play a central role in eliciting the expression of genes encoding heat shock proteins
(Hsps) or other stress-inducible genes(Scharf, et al. ; Nishizawa-Y okoi, et al. 2009), which are
important for plants to be protected from heat or other stress conditions. According to previous
reports, the genome-wide expression profile suggested that several HSF genes are transcribed at
relatively high levels during heat stresses(Giorno, et al. 2012; Chung, et al. 2013). In this study,
23 HpHSF genes showed distinct expression patterns during heat treatment. Among these genes,
14 HpHSF genes were up-regulated (>2-fold) and 3 (HpHSF3, 11, 18) were down-regulated
during the heat stress treatment. Specifically, HpHSF 10 was the most strongly induced (~300-
fold) in response to heat stress; HSF20 was more than 90 times of the control after heat
treatment; HSF14, HSF15 and HSF23 were about 20 times higher than those in the control
group, indicating that they were very sensitive response acceptor that responded strongly, they
play an important role in regulating the response of H. perforatum to heat stress and deserved our
further attention and exploration.

Conclusions

In conclusion, a comprehensive analysis of HpHSF gene family about the genomic structures,
conserved motifs, phyletic evolution, cis-acting elements and expression patterns were
performed in this work.Overall, these findings are helpful in providing basis for understanding
HSF protein function response to stress stimuli.
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Table 1l(on next page)

The HSF genes identifed from the H. perforatum.

Notes: pl, isoelectric point; n.c.r., total number of negatively charged residues (Asp +Glu);
p.c.r., total number of positively charged residues (Arg +Lys); L.l., instability index; A.l.,

aliphatic index; GRAVY, grand average of hydropathicity.
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1
Length MW
Gene Name | Transcript ID (aa) (kDa) | pI n.c.r. (%) p.c.r. (%) LI Stability Al GRAVY
HpHSFO01 HperS113g0097 293 3223 | 5.05 | 43(14.7%) 35(11.9%) | 57.40 | unstable 75.26 | —0.523
HpHSF02 HperS020g0043 381 4375 | 551 | 59(15.5%) | 48 (12.6%) | 59.80 | unstable 71.55 | —0.752
HpHSF03 HperS219g0006 327 37.9 7.29 | 36(11.0%) 36 (11.0%) | 47.69 | unstable 72.14 | —0.660
HpHSF04 HperS024g0021 222 2595 | 7.72 | 34(15.3%) 35(15.8%) | 52.96 | unstable 73.24 | —0.796
HpHSF05 HperS024g0048 196 2247 | 6.85 | 31(15.8%) 31 (15.8%) | 46.57 unstable 69.08 | —0.747
HpHSF06 HperS245g0169 226 25.88 | 6.86 | 34(15.0%) 34 (15.0%) | 48.26 | unstable 69.38 | —0.737
HpHSF07 HperS025g0041 434 48.47 | 522 | 64 (14.7%) | 47(10.8%) | 58.65 | unstable 76.18 | —0.577
HpHSF08 HperS254g0338 376 42.04 | 5.67 | 45(12.0%) 39(10.4%) | 66.18 | unstable 64.84 | —0.655
HpHSF09 HperS338g0001 330 36.57 | 5.67 | 43(13.0%) 38 (11.5%) | 50.96 | unstable 60.24 | —0.600
HpHSF10 HperS346g0011 428 48.01 | 491 | 66 (15.4%) 44 (10.3%) | 56.52 | unstable 67.64 | —0.642
HpHSF11 HperS346g0247 324 37.51 | 591 | 45(13.9%) 38 (11.7%) | 57.46 | unstable 59.85 | —0.813
HpHSF12 HperS362g0014 409 46.16 | 5.02 | 65(15.9%) | 43(10.5%) | 57.83 | unstable 6599 | —0.745
HpHSF13 HperS388g0082 403 4649 | 479 | 71(17.6%) | 46(11.4%) | 47.52 | unstable 65.56 | —0.764
HpHSF14 HperS398g0019 195 2235 | 8.86 | 26(13.3%) 30 (15.4%) | 63.69 | unstable 58.10 | —0.818
HpHSF15 HperS042g0257 248 27.78 | 5.78 | 40 (16.1%) 37 (14.9%) | 46.02 | unstable 61.33 | —0.817
HpHSF16 HperS434g0151 501 5491 | 4.87 | 64(12.8%) 42 (8.4%) 59.15 | unstable 67.60 | —0.608
HpHSF17 HperS044g0424 483 53.92 | 499 | 63(13.0%) 42 (8.7%) 51.71 | unstable 74.66 | —0.533
HpHSF18 HperS443g0073 397 4495 | 494 | 63(15.9%) | 41(10.3%) | 62.46 | unstable 70.48 | —0.723
HpHSF19 HperS006g0172 188 21.72 | 8.54 | 25(13.3%) | 28(14.9%) | 52.32 | unstable 54.52 | —0.797
HpHSF20 HperS064g0032 455 51.78 | 591 | 64(14.1%) 57 (12.5%) | 62.11 | unstable 71.12 | —0.644
HpHSF21 HperS068g0017 495 54.66 | 4.96 | 65(13.1%) 45 (9.1%) 56.75 | unstable 67.39 | —0.650
HpHSF22 HperS079g0626 270 31.63 | 633 | 33(12.2%) | 28(10.4%) | 47.61 | unstable 64.59 | —0.826
HpHSF23 HperS091g0277 363 41.62 | 539 | 57(15.7%) | 43(11.8%) | 61.47 | unstable 69.53 | —0.784
2
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Multiple sequence alignment of the DBD domains of 23 members of the HSF protein

family.

Three a- helices and four B- sheets were presented in the region.
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Figure 2

Multiple sequence alignment of the HR-A/B regions of 23 members of the HSF protein
family.

The annotations at the top describe the location and boundaries of the HR-A core, insert, and

HR-B region within the HR-A/B region.
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Figure 3

Neighbor-Joining phylogenetic tree of HSF proteins from H perforatum (Hp), Capsicum
annuum L. (Ca) , Vitis vinifera L. (V) and A. thaliana (At).

The full-length of amino acid sequences of HSF proteins in the four species were used to
construct of the phylogenetic tree with MEGA 6 and subclass numbers of Arabidopsis, pepper

and grape are listed.
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Figure 4

Gene structure (a) and conserved motifs (b) of HpHSF family members.

(a) blank box, Grey box and black line were represented CDS, upstream/ downstream and
intron, respectively. The number 0, 1, and 2 on the black line were intron phase. (b) 15
conserved motifs were identifed by MEME. The motifs which are numbered 1-15 are

exhibited in different colored boxes.
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Figure 5

Sequence logos of 15 motifs in HpHSF proteins.
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The “sites” indicate the number of HpHSF proteins containing each motif. The “width”

indicates the amino acid number of each motif.
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Figure 6

Number of HpHSF genes containing various cis-acting elements.

The graph was generated based on the presence of cis-acting elements responsive to

specific processes/elicitors/conditions (x-axis) in HSF gene family members ( y-axis).
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Figure 7

Heat map representation and hierarchical clustering of HpHSF genes in flower, leaf,

root, stem.

The expression values were calculated by fragments per kilobase of exon model per million

mapped (FPKM).
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Figure 8

Relative gene expression of HpHSFs analyzed by qRT-PCR responsed to heat stress
treatment.

gRT-PCR data was normalized using Hypericum perforatum Actin 2 gene and are shown
relative to 0 h. X-axes are time course (0 h, 1 h,3 h, 6 h and 12 h) and y-axes are scales of

relative expression level (error bars indicate SD).
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