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ABSTRACT
Background. Hepatocellular carcinoma (HCC) is one of the deadliest tumors. The
majority of HCC is detected in the late stage, and the clinical results for HCC patients
are poor. There is an urgent need to discover early diagnostic biomarkers and potential
therapeutic targets for HCC.
Methods. The GSE87630 and GSE112790 datasets from the Gene Expression Omnibus
(GEO) database were downloaded to analyze the differentially expressed genes (DEGs)
between HCC and normal tissues. R packages were used for Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses of the
DEGs. A Search Tool for Retrieval of Interacting Genes (STRING) database was used
to develop a protein-protein interaction (PPI) network, and also cytoHubba,Molecular
Complex Detection (MCODE), EMBL-EBI, CCLE, Gene Expression Profiling Interac-
tive Analysis (GEPIA), and Oncomine analyses were performed to identify hub genes.
Gene expression was verified with a third GEO dataset, GSE25097. The Cancer Genome
Atlas (TCGA) database was used to explore the correlations between the hub genes
and clinical indexes of HCC patients. The functions of the hub genes were enriched
by gene set enrichment analysis (GSEA), and the biological significance of the hub
genes was explored by real-time polymerase chain reaction (qRT-PCR), western blot,
immunofluorescence, CCK-8, colony formation, Transwell and flow cytometry assays
with loss-of-function experiments in vitro.
Results. Centromere protein N (CENPN) was screened as a hub gene affecting HCC
tumorigenesis. Evaluation by Cox regression showed that a high level of CENPN ex-
pression was an independent danger variable for poor prognosis of HCC. GSEA showed
that high CENPN expression was linked to the following pathways: liver cancer subclass
proliferation, cell cycle, p53 signaling pathway, Rb1 pathway, positive regulation of cell
cycle G1/S phase transition, andDNA damage response signal transduction by p53 class
moderators. Further cell experiments showed that knocking down CENPN expression
decreased the proliferation and colony-forming abilities of HepG2 and Huh7 cells as
well as Ki67 expression in these cell lines. The cell cycle was arrested in G1 phase,
which is consistent with previous experiments on CENPN downregulation., but neither
migration nor invasion were significantly affected. Western blot results revealed that
the expression of p53, p27, p21, CDK4, cyclin D1, CDK2, cyclin E, pRb, E2F1 and
c-myc decreased after CENPN knockdown, but there was no significant change in
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total Rb levels. In addition, CENPN-knockdown cells subjected to irradiation showed
significantly enhanced of γ -H2AX expression and reduced colony formation.
Conclusion. CENPN functions as an oncogene in HCC andmay be a therapeutic target
and promising prognostic marker for HCC.

Subjects Bioinformatics, Cell Biology, Molecular Biology, Gastroenterology and Hepatology,
Oncology
Keywords Hepatocellular carcinoma, Centromere protein N, p21, p27, Rb/E2F1, TCGA, GEO,
Tumorigenesis

INTRODUCTION
Liver cancer is among the most common malignant tumors. Despite a declining mortality
rate, liver cancer remains to be one of the leading 10 causes of cancer-related fatalities
in many countries (Siegel, Miller & Jemal, 2020). Hepatocellular carcinoma (HCC) is the
most common type of liver cancer, as well as its occurrence and development are closely
related to genetic changes, genetic susceptibility and alterations in key signaling pathways
(Marquardt & Thorgeirsson, 2014). HCC is a highly heterogeneous disease (Calderaro et al.,
2019); however, due to the limited availability of HCC markers for early diagnosis, most
HCC is detected at an advanced disease stage, which limits the effectiveness of common
treatment methods such as surgical resection and chemotherapy (Forner, Reig & Bruix,
2018). Therefore, it is vital to acquire a better understanding of HCC and also to identify
new early diagnostic as well as therapeutic targets.

Increasing knowledge of the diversity and heterogeneity of tumors and the completion
of the Human Genome Project have actually promoted the wider use of modern
high-throughput sequencing technology. In addition, researchers have begun to use
bioinformatics analysis techniques to determine differentially expressed genes (DEGs) and
functional paths associated with tumorigenesis (Can, 2014).

In this study, by analyzing the GSE87630 and GSE112790 datasets, we found that the
DEG CENPN was related to the occurrence of HCC and confirmed this finding in the
GSE25097 and also TCGA-LIHC. We observed that upregulated CENPN expression was
related to low survival and the advanced T classification of HCC patients. Functional
studies showed that knocking down the CENPN gene could inhibit cell proliferation and
increase the cytotoxic effect of X-rays on cells in vitro. Further mechanistic studies showed
that CENPN partly regulated the cell cycle through the p27/p21-Rb/E2F1 axis.

MATERIALS & METHODS
Microarray data
The gene expression profiles of the GSE87630, GSE112790 and GSE25097 datasets
were downloaded from the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) database (Edgar, Domrachev & Lash, 2002). GSE87630
contains 64 HCC samples and 30 normal samples and is based on the GLP6947 platform
(Illumina HumanHT−12 V3.0 Expression BeadChip) (Woo et al., 2017); GSE112790
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contains 183 HCC samples and 15 normal samples and is based upon the GLP570 platform
((HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array) (Shimada et al.,
2019); and GSE25097 contains 268 HCC samples, 243 adjacent nontumor samples, and 40
cirrhotic liver samples, and also 6 healthy liver samples and is based upon the GPL10687
platform (Rosetta/Merck Human RSTA Affymetrix 1.0 microarray, Custom CDF) (Tung
et al., 2011).

Identification of DEGs
DEGs between HCC samples and normal samples were identified utilizing GEO2R (Barrett
et al., 2013), a tool for the online analysis of differential genes between datasets in a
GEO series, with the following thresholds: | logFC | >1 and a false discovery rate (FDR)
< 0.05. Volcano plots were constructed with GraphPad Prism 8 (GraphPad Software Inc.).
Heatmaps were drawn with the heatmap R package (Galili et al., 2018). Overlapping DEGs
in the two datasets were detected with the VennDiagramR package (Chen & Boutros, 2011).

Functional enrichment analysis
Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were mainly utilized to explore the functions of these
identified DEGs. GO consists three components: biological process (BP), cellular
component (CC) as well as molecular function (MF) (Ashburner et al., 2000). KEGG
mainly evaluates the pathways in which DEGs may be involved (Kanehisa & Goto, 2000).
The results were visualized using clusterProfiler and ggplot2 R package (threshold: P
< 0.05) (Ito & Murphy, 2013; Yu et al., 2012).

Protein-protein interaction (PPI) network construction
The PPI network comprising all the DEGs was predicted and analyzed by utilizing the
Search Tool for Retrieval of Interacting Genes (STRING) database (http://string-db.org)
(Szklarczyk et al., 2015) S. A combined score >0.7 was taken into consideration significant.
The PPI network was used to clarify mechanisms relevant to the event and growth of HCC.

Hub gene selection
The public bioinformatics software Cytoscape is a system for visualizing complicated
networks and incorporating related information (Smoot et al., 2011). The cytoHubba
plugin application of Cytoscape was utilized to screen hub genes in a network through
11 topological analysis approaches (Chin et al., 2014). In this study, the intersecting sets
of the top 30 genes revealed with the maximal clique centrality (MCC) and density
of maximum neighborhood component (DMNC) methods were visualized as a Venn
diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/). Molecular Complex
Detection (MCODE) was utilized to screen within the PPI network with the following
parameters: degree cutoff > 2, node score cutoff > 0.2, K-core > 2 and max dep
> 100 (Gary & Bader, 2003)). Gene Expression Profiling Interactive Analysis (GEPIA)
(http://gepia.cancer-pku.cn/index.html), an online tool that consists of information from
The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases,
was utilized to analyze the expression of the genes as well as their association with patient
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survival and clinical stage (Tang et al., 2017). Then, after combining the statistical results
of gene expression from the Oncomine (http://www.oncomine.com) (Rhodes et al., 2004),
EMBL-EBI (https://www.ebi.ac.uk) and CCLE (https://www.broadinstitute.org/ccle)
databases, the statistically significant hub genes were screened. EMBL-EBI, a web-based
tool, provides a series of bioinformatics applications for sequence analysis (Li et al., 2015).
CCLE contains genomic data, analytical data, and visualization data for approximately
1000 cell lines (Barretina et al., 2012). The levels of expression of the hub genes in clinical
samples were compared with those in the GSE87630, GSE112790 and GSE25097 datasets
using GraphPad Prism 8 (GraphPad Software Inc.). The area under the curve (AUC)
assessed by the pROC R package was used to validate the prognostic efficacy of the hub
genes in liver cancer (Robin et al., 2011).

Database analysis of the differential expression and prognosis of the
CENPN gene
CENPN gene expression in the TCGA liver cancer database (TCGA-LIHC) was extracted.
The limma R package was utilized to analyze the different scatter plots, and the survival R
package was used to draw survival curves, and also the limma and ggpubr R packages were
utilized to analyze CENPN expressing in the different clinical stages (Holleczek & Brenner,
2013; Ritchie et al., 2015).

Gene set enrichment analysis (GSEA)
The TCGA-LIHC gene expression dataset was downloaded and installed from the Xena
web browser (https://xenabrowser.net/). Two groups from the TCGA-LIHC dataset were
classified based on the median CENPN expression level (high and low CENPN). The GSEA
4.1.0 software program, which was downloaded from http://www.broad.mit.edu/gsea/, was
utilized to carry out GSEA with the following predefined gene sets (Subramanian et al.,
2005): hallmark gene sets, curated gene sets and gene ontology. The permutation number
was established as 1000, and an FDR <0.25 was considered significant.

Cell culture and cell transfection
The human HCC cell lines HepG2 and Huh7 were purchased from Procell Life Science
& Technology Company (Wuhan, China) and confirmed to contain no mycoplasma
contamination via STR analysis. Cells were cultured in DMEM supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin at 37 ◦C and 5% CO2. A small
interfering RNA (siRNA) targeting CENPN and a negative control (NC) were purchased
from GenePharma (Suzhou, China). We used Lipofectamine 3000 (L3000015, Invitrogen,
Waltham, USA) as the transfection reagent according to the manufacturer’s instructions.
Forty-eight hours following transfection, the cells were harvested for further experiments,
including RNA or protein extraction.

RNA extraction, reverse transcription as well as qRT-PCR
Total RNA was extracted utilizing the traditional assay, that is to say using TRIzol
reagent (Invitrogen, USA). The cDNA synthesis with total RNA (1 µg) was carried
out with the PrimescriptTM RT reagent kit (Vazyme, Nanjing, China), and quantitative
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real-time PCR (qRT-PCR) was conducted utilizing 2x SYBR R© Green Supermix
(Vazyme, Nanjing, China). Relative gene expression was quantified via the 2-11Ct

approach and normalized to GAPDH expression. The primer sequences used for
amplification were as follows: CENPN forward, 5′-CTGTGTGAGGAAAAGCGTGC-
3′; CENPN reverse, 5′-TCACCTGGTCCTTTACTCATCTG-3′; GAPDH forward, 5′-
GGAGCGAGATCCCTCCAAAAT-3′, and GAPDH reverse, 5′-GGCTGTTGTCATACTT-
CTCATGG-3′.

X-irradiation
Cells were exposed to X-rays at doses of 0, 2 and 10 Gy according to the experimental
design. The equipment used was a Siemens Primus Accelerator (6 Mv; Siemens AG,
Munich, Germany)t at Zhongnan Hospital of Wuhan University.

CCK-8 and colony formation assays
For the CCK-8 assay, cells were seeded into plates with 96 wells at 3000 cells per well. Ten
microliters of CCK-8 reagent (Dojindo Laboratories, Kumamoto, Japan) were added to
each well, and the plates were incubated at 37 ◦C for 1–4 h. The absorbance of the wells at
450 nm was determined in a microplate reader (Molecular Devices, USA).

For the colony formation assay, 1000 HepG2 cells per 1 ml in an overall volume of 2
ml was seeded into a plate with six wells. For Huh7 cells, 1,500 cells per 1 ml in a total
volume of 2 ml was seeded per well. After 24 h, the cells were irradiated with X-rays at
doses of 0 Gy and 2 Gy. After 14 days, the cells were treated with 4% paraformaldehyde for
15 min as well as stained with 0.1% crystal violet for 1 h. Finally, the number of colonies
was calculated after washing the wells with water three times and drying.

Flow cytometry analysis
HCC cells were harvested 48 h following transfection and washed in PBS. The cells were
stained with 1 ml of DNA staining solution and 10 µl of propidium iodide (PI) at room
temperature for 30 min protected from light and then were analyzed by flow cytometry
(Cat. #FC500, Beckman, USA).

Transwell assay
Cells transfected with siRNA after 24 h were seeded in a Transwell chamber system
(Corning, USA). Approximately 2 × 105 HepG2 cells or 8 × 104 Huh7 cells in 200 µl of
serum-free mediumwere seeded in the upper chamber, while 600 µl of medium containing
20% serum was added to the lower chamber. After a 48-hour incubation, cells in the upper
chamber were wiped off with cotton swabs, and those in the lower chamber were fixed and
stained as described in the colony formation experiment before they were photographed
under an optical microscope.

Western blotting
Protein lysates were obtained fromHepG2 andHuh7 cells with RIPA lysis buffer (#P0013B,
Beyotime Biotechnology, China) containing 1% cocktail (#HY-K0021, MCE, USA). The
protein concentration was detected with a BCA assay kit (Beyotime Biotechnology,
Shanghai, China), and 30 µg of protein sample was divided by SDS-PAGE through a 10%
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gel and then transferred to PVDF membranes, which were blocked in 5% skim milk in
TBST before they were blotted with the appropriate primary antibody followed by the
corresponding secondary antibody. Detailed information on the antibodies used is listed
in Table S1. An enhanced chemiluminescence kit was utilized to develop the bands.

Immunofluorescence staining
The immunofluorescence method was based on a previously described method (Wang
et al., 2017). Briefly, cells were seeded into a 6-well plate or on cell slides and cultured
overnight. After fixation for 15 min, the cells were incubated with 0.2% Triton X-100
for 15 min at RT and blocked with 5% BSA for 30 min. Next, the cells were incubated
successively with primary antibody targeting CENPN, E-cadherin, N-cadherin, vimentin or
γ -H2AX and appropriate secondary antibody before they were stained with DAPI at RT for
5 min. Finally, the cells were photographed under a fluorescence or confocal microscope.

Statistical analysis
All prognostic information from the TCGA-LIHC dataset was collected, and samples
without results were excluded. On the basis of optimal sample separation, Kaplan–Meier
(K-M) survival curves were generated to calculate survival, and the difference in survival
between groups was determined by the log-rank test. The relationships between variables
and patient survival were analyzed with Cox models, and the results were evaluated with
SPSS 22.0 software (SPSS, Chicago, IL, United States). All cell experimental results were
individually replicated 3 times. The values are reported as the means± standard deviations
and were statistically analyzed with GraphPad Prism 8.0 software (GraphPad Software, La
Jolla, CA, United States). Student’s t -test was utilized for comparisons between groups.
P < 0.05 was thought about statistically significant.

RESULTS
Preliminary screening and enrichment analysis of DEGs in HCC
Figure 1 illustrates the study design. The DEGs in HCC vs. normal tissues in the GSE87630
andGSE112790 datasets were analyzed by processing and standardizing the gene expression
profile data throughGEO2R (Figs. 2A, 2B, Figs. S1 and S2). GSE87630 contains 1,162DEGs,
of which 394 are upregulated and 768 are downregulated, whereas GSE112790 contains
1,713 DEGs comprising 963 upregulated DEGs and 750 downregulated DEGs. Then, R was
used to intersect the two datasets, and a total of 532 overlapping DEGs were acquired: 171
upregulated genes and 361 downregulated genes (Fig. 2C, Table S2).

To clarify the functions of these 532 DEGs, GO as well as KEGG enrichment were carried
out, and the ggplot2 package of R was used to visualize the top 10 per classification of
GO and the top 35 of KEGG. In the GO BP category, the identified DEGs were related to
the organic acid catabolic process and epoxygenase P450 pathway (Fig. 2D, Table S3). In
the GO CC category, the DEGs were enriched in MCM complex and blood microparticle
extracellular matrix (Fig. 2D, Table S3). Finally, in the GO MF classification, the DEGs
were enriched in monooxygenase activity and iron ion binding (Fig. 2D, Table S3). KEGG
pathway enrichment result showed that these DEGs play important roles in multiple key
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Figure 1 Flowchart of the integrated analysis.
Full-size DOI: 10.7717/peerj.11342/fig-1

signaling pathways, including DNA replication, the cell cycle as well as the p53 signaling
pathway (Fig. 2E, Table S4).

Construction of the PPI network as well as screening of hub genes
The STRING database was utilized to analyze the potential interacting proteins among 532
DEGs with a combined score > 0.7. For the PPI network, which contained 347 nodes and
1560 edges, was built with Cytoscape software (Fig. 3A). Then, the hub genes were analyzed
with the cytoHubba plugin. Two topological analysis approaches, MCC and DMNC, were
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Figure 2 Differentially expressed genes (DEGs) were evaluated by Gene Ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) analyses. (A, B) Volcano plot of the DEGs between HCC and
normal liver tissues in each dataset. Purple dots: significantly upregulated genes in HCC; brown dots: sig-
nificantly downregulated genes in HCC; gray dots: non-DEGs. Genes with an adjusted P value (FDR)<
0.05 and |logFC | > 1 were considered to have statistically significant differences in expression. (C) Venn
diagram of 532 overlapping DEGs from G1 (GSE87630) and G2 (GSE112790): 171 upregulated genes and
361 downregulated genes. (D) GO analysis. (E) KEGG pathway analysis.

Full-size DOI: 10.7717/peerj.11342/fig-2

used to rank the top 30 nodes in the created PPI network (Figs. 3C and 3D, Table 1).
Then, the intersection was calculated online using a Venn diagram (Fig. 3E, Table S5).
Module analysis was performed with MCODE, and the top 5 modules were listed (Table
S6). CENPN was screened as the seed gene in module 1 (the most significant module),
which consisted of 32 nodes as well as 479 edges (Fig. 3B, Table S7). Thus, CENPN was
considered the hub gene.

Study of CENPN expression in HCC cells and tissues via online
databases
CCLE and EMBL-EBI were used to explore the RNA expression level of CENPN in HCC
cell lines. The results revealed that CENPN was highly expressed in liver cancer cells
(Figs. 4A and 4B). With respect to tissue expression levels, Oncomine evaluation revealed
that CENPN expression was significantly higher in tumor tissues than in normal tissues
(Fig. 4F), and CENPN expression in the GSE87630 and GSE112790 datasets was consistent
with the above results (Figs. 4C and 4D); furthermore, this result was verified in the
GSE25097 dataset (Fig. 4E). GEPIA revealed that the overall survival (OS) and disease-free
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Figure 3 Screening the hub gene through STRING and Cytoscape. (A) A total of 347 DEGs were vi-
sualized in a PPI network. Nodes represent proteins, and edges represent interactions among proteins.
There were 347 nodes and 1560 edges in the network. (B) The most significant module in MCODE analy-
sis. (C, D) The top 30 hub genes were searched through two ranking methods in cytoHubba. MCC, max-
imal clique centrality; DMNC, density of maximum neighborhood component. (E) Venn diagram of 22
overlapping hub genes from the MCC and DMNC analyses.

Full-size DOI: 10.7717/peerj.11342/fig-3

survival (DFS) of liver cancer patients with high CENPN expression were shorter than
those of patients with low CENPN expression (Figs. 4G and 4H). To better understand the
accuracy of CENPN in HCC tumorigenesis, receiver operating characteristic (ROC) curves
were drawn, and the AUC values of GSE87630, GSE112790 and GSE25097 were 0.913,
0.904 and 0.787, respectively (Figs. 4I–4K). Our results revealed that CENPN was highly
expressed in liver cancer as well as affected the prognosis of patients.

Verification of the correlation between CENPN and clinicopathologi-
cal features of HCC patients through the TCGA database
The optimal cutoff value was calculated by the survminer package of R, and the patients
were separated into 2 groups: high CENPN expression and low CENPN expression.
Compared with the low expression group, the high expression group had dramatically

Wang et al. (2021), PeerJ, DOI 10.7717/peerj.11342 9/24

https://peerj.com
https://doi.org/10.7717/peerj.11342/fig-3
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87630
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112790
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25097
http://dx.doi.org/10.7717/peerj.11342


Table 1 Hub genes for DEGs ranked in cytoHubba plugin of Cytoscape.

Catelogy Rankmethods in cytoHubba

MCC DMNC

Gene symbol top 30 CCNA2 CDKN3
CDKN3 KIF20A
KIF20A PRC1
PRC1 RACGAP1
RACGAP1 KIF2C
KIF2C CDCA5
UBE2C CDCA8
CDCA8 ASPM
CDC20 HJURP
TPX2 OIP5
AURKA MCM7
ASPM MCM6
HJURP GINS2
TOP2A CENPN
OIP5 CENPM
GINS2 MCM4
CENPN HMMR
CENPM NCAPD2
HMMR NCAPG
NCAPG NUSAP1
AURKB MELK
NUSAP1 TRIP13
MELK FOXM1
CCNB2 MCM2
TRIP13 MCM5
FOXM1 KIF4A
MCM2 FEN1
KIF4A PTTG1
PTTG1 CENPF
CENPF UHRF1

Notes.
Bold gene symbols were the overlap hub genes in top 30 by two ranked methods respectively in cytoHubba. MCCMaximal
clique centrality, DMNC Density of Maximum Neighborhood Component.

shorter survival (Fig. 5C). When the clinical features of CENPN were combined in the
analysis, the Wilcoxon rank-sum test revealed that CENPN expression in tumor tissues
was dramatically higher than that in normal (Fig. 5A). Similar results were obtained in
the paired analysis of normal and tumor tissues from the same patient (Fig. 5B). These
results suggest that CENPN expression is negatively associated with HCC prognosis. In
particular, with the progression of grade, stage and T stage, CENPN expression showed an
upward trend (Figs. 5D–5F). Furthermore, univariate Cox analysis revealed that CENPN,
stage, and T and M stages affected HCC prognosis (Figs. 6A–6C, Table 2). Multivariate
Cox analysis showed that high CENPN expression was an independent predictor of poor
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Figure 4 CENPN expression in liver hepatocellular carcinoma and its prognostic information. (A)
CCLE revealed that CENPN was highly expressed in many cancer cells, including liver cancer cells. (B)
The EMBL-EBI results, illustrated with GraphPad Prism 8, showed that CENPN was highly expressed
in many HCC cell lines. (C, D and E) CENPN expression in HCC and liver tissues in the GSE87630,
GSE112790 and GSE25097 datasets. (F) Analysis of CENPN in cancer vs. normal tissue from Oncomine.
Heat maps of hub gene expression in clinical HCC tissues vs. normal liver tissues are shown. (G, H) The
GEPIA database was used to examine the relationship between CENPN expression and overall survival
and disease-free survival in LIHC patients. LIHC, liver hepatocellular carcinoma. HCC, hepatocellular
carcinoma. (I, J and K) The ROC curves of GSE87630, GSE112790 and GSE25097. The AUCs were 0.913,
0.904 and 0.787, respectively. ROC, receiver operating characteristic. AUC, area under the curve.

Full-size DOI: 10.7717/peerj.11342/fig-4
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Figure 5 Verification of CENPN expression in HCC patients and its correlation with survival and clin-
icopathological stage using the TCGA database. (A) The differential expression of CENPN in normal and
tumor tissues. All normal and tumor samples were analyzed by the Wilcoxon rank-sum test (p < 0.001).
(B) Paired differentiation analysis of CENPN expression in normal and tumor samples derived from the
same patient (p < 0.001 by the Wilcoxon rank-sum test). (C) Survival analysis of LIHC patients with dif-
ferent CENPN expression levels. Patients were classified as having high or low expression according to the
optimal cutoff, 3.006547, which was calculated with the survminer package. P = 0.004 by the log-rank test.
(D–F) Relationship between CENPN expression and clinicopathological stage. The Wilcoxon rank-sum
test or the Kruskal–Wallis rank-sum test was used for statistical processing.

Full-size DOI: 10.7717/peerj.11342/fig-5

prognosis in HCC patients (Table 2). In summary, CENPN acts as an oncogene in liver
cancer.

GSEA of the CENPN gene
GSEA showed that high CENPN expression was mainly associated with liver cancer
subclass proliferation, the cell cycle, the p53 signaling pathway, the Rb1 pathway, cell cycle
checkpoints, positive regulation of the G1/S phase transition, reactome SCF SKP2-mediated
degradation of p27 p21, E2F targets and more correlated gene sets (P < 0.05; Figs. 7A–7H).
High CENPN expression was also associated with DNA damage, DNA damage detection,
and DNA damage response signal transduction by p53 class mediators and to other DNA
damage and repair-related gene sets (P < 0.05; Fig. 8A).
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Figure 6 K–M analysis of clinicopathological parameters. (A–C) The effect of stage, M stage and T stage
on survival according to the K–M curve. The log-rank test was used for statistical processing. Abbrevia-
tions: K-M, Kaplan–Meier; M, migration; T, tumor size.

Full-size DOI: 10.7717/peerj.11342/fig-6

Table 2 Cox regression analysis of overall survival of HCC.

Variables Univariate analysis Multivariate analysis

HR 95%CI of HR P-value HR 95%CI of HR P-value

Age ( ≤65 vs >65) 0.989 0.606–1.614 0.964 0.875 0.521–1.470 0.614
Gender (female vs male) 1.285 0.804–2.054 0.294 1.141 0.691–1.883 0.606
Grade (grade 1 + 2 vs grade 3 + 4) 0.934 0.592–1.474 0.769 0.839 0.524–1.344 0.466
Stage (stageI + II vs stageIII + IV) 0.324 0.206–0.512 0.000 3.568 0.190–66.959 0.395
T (T1 + T2 vs T3 + T4) 0.322 0.204–0.509 0.000 0.098 0.005–1.772 0.116
M (M0 vs M1) 0.255 0.080–0.813 0.021 0.411 0.118–1.435 0.163
N (N1 + N2 vs N3 + N4) 0.484 0.118–1.982 0.313 0.213 0.028–1.634 0.137
CENPN expression (low vs high) 0.593 0.368–0.955 0.032 0.608 0.372–0.995 0.048

Note.
Bold indicates statistical significance, P < 0.05.

CENPN downregulation arrests the cell cycle in G1 phase and inhibits
HCC cell proliferation but has no effect on migration and invasion
The above results suggest that CENPN functions as a biomarker for the diagnosis of HCC.
To further explore the mechanism by which CENPN impacts the biological behavior of
HCC, we established a cell model of CENPN deficiency (HepG2 and Huh7) by transfecting
siRNA targeting CENPN and NC siRNA. qRT-PCR, western blot and immunofluorescence
analyses were performed 48 h after transfection to confirm knockdown (Figs. 7I, 7J, 7M and
7O). CCK-8 assays revealed that CENPN deficiency considerably inhibited the proliferation
and viability of HCC cells (Figs. 7K, 7L), and immunofluorescence analysis showed that
when CENPN was knocked down, Ki67 expression decreased significantly (Figs. 7N, 7P).
Cell cycle analysis showed that CENPNdeficiency significantly inhibited the transition from
G1 to S phase inHCC cells (Figs. 7Q–7X).However, Transwell assays revealed that there was
no difference in the numbers of cells that migrated or invaded after CENPN knockdown
compared with those subjected to NC siRNA (Figs. S3A, S3B). Immunofluorescence
results indicated that there was no significant difference in E-cadherin, N-cadherin and
vimentin expression between the groups (Figs. S3C–S3G), and the western blot results
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Figure 7 Interfering with CENPN expression inhibits the proliferation of HCC cells and the G1/S
transition. (A–H) GSEA of CENPN in HCC. (I, J) qRT-PCR and western blot assays of the interference
efficiency of CENPN. (K, L) CCK-8 assay of the proliferation ability of cells with CENPN knockdown. (M,
O) Immunofluorescence was used to detect the efficiency of siRNA targeting CENPN. (N, P) Immunoflu-
orescence was used to detect the fluorescence intensity of Ki67 in cells with CENPN knockdown. (Q-X)
Flow cytometry was used to detect changes in the cell cycle distribution after CENPN knockdown. Each
data point represents the mean± SD from three independent experiments. * p< 0.05. ** p< 0.001. *** p
< 0.0001. Scale bars, 50 µm.

Full-size DOI: 10.7717/peerj.11342/fig-7
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Figure 8 Exploring the mechanism of CENPN in HCC cells. (A) GSEA of CENPN in HCC. (B, C) Im-
munofluorescence detection of γ -H2AX foci. (D, E) Colony formation assays were used to detect the
number of clones in HCC cells after CENPN knockdown alone or combined with 2 Gy X-rays. (F) West-
ern blot assays were performed to detect the expression of G1/S phase-related checkpoint proteins and
corresponding upstream and downstream markers in cells with CENPN knockdown. (G) Mechanistic dia-
gram of the biological function of CENPN in HCC cells. Each data point represents three independent ex-
periments. Scale bars, 10 µm.

Full-size DOI: 10.7717/peerj.11342/fig-8
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were consistent with the above data (Figs. S3H, SI). In summary, these findings indicate
that CENPN knockdown inhibits HCC cell proliferation but does not affect invasion or
migration.

CENPN affects the p21-CDK2/cyclin E, p27-CDK4/cyclin D and Rb/E2F1
signaling pathways in HCC
To elucidate the mechanism by which CENPN promotes HCC, we used western blotting
to analyze the expression levels of related markers. The western blot results revealed that
compared with the NC, the CENPN-knockdown group showed enhanced expression of
P53, P27 and P21 and also lowered expression of CDK4, cyclin D1, CDK2, cyclin E as well
as pRb, but there was no significant change in total Rb levels. In addition, the expression
of E2F1 and c-Myc decreased (Fig. 8F). Taken together, these results indicate that CENPN
downregulation prevents cell proliferation via regulating p21 and p27.

Decreased CENPN expression promotes radiation damage in HCC cells
GSEA indicated that CENPN is closely related to DNA damage and repair functions. Cells
transfected with siRNA-CENPN and NC for 48 h were treated with X-rays at doses of 0
Gy and 10 Gy, and γ -H2AX foci were detected by immunofluorescence 24 h later. The
number of γ -H2AX foci increased after CENPN knockdown and was further pronounced
upon 10 Gy X-ray exposure (Figs. 8B, 8C). Moreover, colony formation assays suggested
that the number of HCC cell colonies formed after CENPN knockdown combined with
X-ray treatment was significantly lower than that after siRNA-CENPN treatment alone
(Figs. 8D, 7E). These results suggest that interfering with CENPN expression enhances
X-ray-induced radiation damage in HCC cells.

DISCUSSION
The prognosis of HCC patients is poor, and a major of patients can only receive palliative
treatment. The effect of surgical treatment is satisfactory, but few patients benefit from
it. Only 1/3 of patients are eligible for radical treatments such as percutaneous ablation,
surgical resection or liver transplantation (Forner, Llovet & Bruix, 2012). In addition,
patients often miss the optimal timeframe for surgery when they are diagnosed, so there is
an urgent need to identify new biomarkers and develop new treatment strategies.

In this study, through a comprehensive bioinformatics analysis, 532DEGswere identified
in the GSE87630 and GSE112790 datasets. GO and KEGG analyses showed that the DEGs
were closely related to organic acid catabolic process, epoxygenase P450 pathway, MCM
complex, blood microparticle extracellular matrix, DNA replication, the cell cycle, the
p53 signaling pathway and additional items. PPI network and Cytoscape analyses revealed
CENPN as a new DEG in HCC.

CENPN is located on chromosome 16q23.2 and encodes nucleosome-related complexes,
which are critical for dynamic assembly. CENPN can recognize the histone H3 variant
CENPA (a centromere-specific nucleosome that plays a fundamental role in centromere
assembly) in the centromeric nucleosome, and it is correctly controlled by the formation of
the CENPA nucleosome-associated complex (NAC) to regulate cell mitosis (Chittori et al.,
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2018; Foltz et al., 2006). This correct assembly ensures accurate chromosome separation
and avoids diseases caused by aneuploidy due to chromosomemisseparation (Kops, Weaver
& Cleveland, 2005). The consumption of CENPN can lead to the downregulation of several
CENPs, and this downregulation is considered a necessary condition for the manufacture
of new centromeres (Tian et al., 2018). CENPN is closely related to the occurrence and
development of many kinds of cancer. Sarah An et al. showed by multivariate analysis
that an increase in CENPN expression could significantly increase the recurrence and
mortality rates of breast cancer patients with a smoking history (Andres et al., 2015).
Moreover, Wright et al. (2017) identified CENPN as a gene associated with aneuploidy,
genomic instability and cancer susceptibility based on intensity data and sequences of
genotypic arrays. CENPN regulates cell proliferation and cell cycle progression by affecting
the mitotic process (Wright et al., 2017). Rahman et al. (2019) identified CENPN as a poor
prognosticmarker for colorectal cancer by bioinformatics analysis. Recently, it was reported
that CENPN can promote the proliferation of oral cancer cells in the entrance cavity by
regulating the cell cycle (Oka et al., 2019). However, the expression of CENPN in HCC and
its role and mechanism in malignant development are unclear.

As verified by a third GEO dataset and TCGA data, CENPN is highly expressed in
HCC, and the expression level of CENPN was positively associated with grade, stage and
T classification and negatively correlated with patient prognosis. Further Cox regression
analysis showed that CENPN is a potential independent prognostic variable for HCC. In
summary, CENPN may be an oncogene in HCC.

To better understand the function of CENPN in HCC, we used GSEA and found that
in terms of the hallmarks of HCC, CENPN was related to the cell cycle, DNA damage and
repair, and also other functional items. Moreover, the findings revealed that abnormal
expression of the CENPN gene is related to the incident and also progression of HCC. This
research is the first to report the promoting effect of CENPN on the growth of human HCC
cells. CENPN downregulation can hinder the proliferation of HCC cells and cause G0/G1
phase arrest. The results of our cell experiments suggest that CENPN plays a role as an
oncogene. In addition, we examined the expression of epithelial-mesenchymal transition
(EMT)-related markers (E-cadherin, N-cadherin as well as vimentin) to understand the
oncogenic function of CENPN as fully as possible (Hugo et al., 2007); however, there were
no difference in expression.

To much better understand the potential molecular mechanism of CENPN in HepG2
and Huh7 cells, we focused on three signaling pathways according to the GSEA results—
P27, P21 and Rb/E2F1, which play a vital role in HCC and various cancers (Gartel, 2009;
Razavipour, Harikumar & Slingerland, 2020; Rubin, Sage & Skotheim, 2020). Our results
show that interfering with CENPN expression in HCC can inhibit c-myc and cyclin E
expression by activating the p27-CDK4/cyclin D1 and p21-CDK2/cyclin E axes, thus
reducing the level of phosphorylated Rb and inhibiting E2F1 transcription. P21 (Eldeiry et
al., 1993; Harper et al., 1993) and p27 (Polyak et al., 1994; Toyoshima & Hunter, 1994) are
well-known cyclin-dependent kinase inhibitors that mediate cell cycle arrest (Nan, Jing &
Gong, 2004). When p21 and p27 interact with their respective cyclin binding companions,
they block the kinase activity of CDKs (Abukhdeir & Park, 2008). P21 prevents the binding
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of cyclin E and CDK2 (Gu, Turck & Morgan, 1993) and is directly regulated by p53
(Abukhdeir & Park, 2008) while p27 prevents the binding of cyclin D1 and CDK4 (Hunter
& Pines, 1994); therefore, p21 and p27 inhibit the G1/S phase transition (Alt, Gladden
& Diehl, 2002; Cheng et al., 1999). The inactivation of these complexes results in other
proteins not being phosphorylated, including pRb (RB1), so it is unable to release E2F
transcription factors to activate the expression of genes that regulate S phase (Matsuoka
et al., 1994). Previous research has revealed that the negative regulation of cyclin D1 and
CDK4 is consistent with the downregulation of CENPN (Molenaar et al., 2008), and recent
reports in oral squamous cell carcinoma (OSCC) suggest that downregulation of CENPN
can reduce the expression of cyclin D1 and CDK4 with corresponding increases in the
expression of p21 and p27 (Oka et al., 2019). This suggests that interfering with CENPN
expression in OSCC can upregulate p27 and p21 expression to inhibit CDK4 and cyclin
D1 expression and arrest the cell cycle in G1 phase. In addition, some researches have
revealed that decreased p27 and p21 expression is closely correlated with the histological
grade, metastasis and prognosis of HCC (Fiorentino et al., 2000; Qin & Ng, 2001). In
papillary carcinoma (PTC), CITED1-meditaed interference of p21 and p27 expression can
increase the level of phosphorylated Rb and the transcriptional activity of E2F1, which
leads to PTC cell proliferation (Li et al., 2018). Xing et al. (2020) reported that in HCC
cells, haprolid upregulates the expression of p21 and p27 and inhibits the G1/S phase
transition of cells, which may be related to the downregulation of Rb/E2F expression.
Therefore, it can be speculated that CENPN reduces the level of phosphorylated Rb and
inhibits E2F1 transcription by downregulating the activities of the p27-CDK4/cyclin D1
and p21-CDK2/cyclin E axes, thus inhibiting c-myc as well as cyclin E, inhibiting cell
proliferation, and ultimately affecting the prognosis of liver cancer (Fig. 8G). However, the
potential mechanism by which CENPN inactivates p27 and p21 and whether it regulates
p21 by inhibiting p53 require further study.

More importantly, we found that knocking down CENPN expression increased X-ray-
induced γ -H2AX expression. γ -H2AX is an important indicator of radiation-induced
DNA double-strand breaks (DSBs) (Hohmann et al., 2018). Disruptions in the p53 protein
are associated with greater than 50% of human cancers and, p53 is a crucial molecule
involved in the cellular response to radiotherapy (Cuddihy & Bristow, 2004; Levine & Oren,
2009). GSEA suggested that CENPN could be enriched in the p53 pathway, and western blot
analysis showed that p53 expression increased with CENPN knockdown, so we inferred
that CENPN interferes with DNA damage by inhibiting p53 in HCC (Fig. 8G).

CONCLUSION
In conclusion, our work showed for the first time that CENPN plays a carcinogenic
role in HCC tumorigenesis. The upregulation of CENPN expression was significantly
associated with poor patient survival, and knocking down CENPN expression inhibits cell
proliferation, at least in part through the p27-CDK4/cyclin D1, p21-CDK2/cyclin E and
Rb/E2F1 pathways. In addition, CENPN knockout increases radiotherapy-induced DNA
damage. Therefore, CENPN can be used as not only a useful biomarker for diagnosis and
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prognosis but also a potential therapeutic target for HCC. In future work, we will extend
to the regulatory network of CENPN, such as miRNA and transcription factors involved in
regulation. Moreover, we will study the carcinogenic effects of CENPN by overexpressing it
in normal liver cells, exploring its function in vivo, and ultimately develop a more effective
strategy for the treatment of HCC patients.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China (No.
81472799). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 81472799.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Qingqing Wang and Yunfeng Zhou conceived and designed the experiments, authored
or reviewed drafts of the paper, and approved the final draft.
• Xiaoyan Yu and Fengxia Chen performed the experiments, prepared figures and/or
tables, and approved the final draft.
• Zhewen Zheng and Ningning Yang analyzed the data, prepared figures and/or tables,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The main data are available at TCGA and NCBI-GEO (GSE87630, GSE112790 and
GSE25097). The raw measurements are available in the Supplementary Files.

https://portal.gdc.cancer.gov/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11342#supplemental-information.

REFERENCES
Abukhdeir AM, Park BH. 2008. P21 and p27: roles in carcinogenesis and drug resistance.

Expert Reviews in Molecular Medicine 10:e19 DOI 10.1017/S1462399408000744.
Alt JR, Gladden AB, Diehl JA. 2002. p21(Cip1) Promotes cyclin D1 nuclear accu-

mulation via direct inhibition of nuclear export. Journal of Biological Chemistry
277:8517–8523 DOI 10.1074/jbc.M108867200.

Wang et al. (2021), PeerJ, DOI 10.7717/peerj.11342 19/24

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87630
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112790
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25097
http://dx.doi.org/10.7717/peerj.11342#supplemental-information
https://portal.gdc.cancer.gov/
http://dx.doi.org/10.7717/peerj.11342#supplemental-information
http://dx.doi.org/10.7717/peerj.11342#supplemental-information
http://dx.doi.org/10.1017/S1462399408000744
http://dx.doi.org/10.1074/jbc.M108867200
http://dx.doi.org/10.7717/peerj.11342


Andres SA, Bickett KE, AlatoumMA, Kalbfleisch TS, Brock GN,Wittliff JL. 2015.
Interaction between smoking history and gene expression levels impacts survival
of breast cancer patients. Breast Cancer Research and Treatment 152:545–556
DOI 10.1007/s10549-015-3507-z.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski
K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis
S, Matese JC, Richardson JE, RingwaldM, Rubin GM, Sherlock G. 2000. Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature
Genetics 25:25–29 DOI 10.1038/75556.

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S,Wilson CJ,
Lehar J, Kryukov GV, Sonkin D, Reddy A, LiuM,Murray L, Berger MF, Monahan
JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-
Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi Jr P,
De Silva M, Jagtap K, Jones MD,Wang L, Hatton C, Palescandolo E, Gupta S,
Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, WincklerW, Reich
M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE,Weber BL,
Porter J, WarmuthM, Finan P, Harris JL, MeyersonM, Golub TR, Morrissey MP,
SellersWR, Schlegel R, Garraway LA. 2012. The Cancer Cell Line Encyclopedia
enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607
DOI 10.1038/nature11003.

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, TomashevskyM,Marshall KA,
Phillippy KH, Sherman PM, HolkoM, Yefanov A, Lee H, Zhang N, Robertson CL,
Serova N, Davis S, Soboleva A. 2013. NCBI GEO: archive for functional genomics
data sets–update. Nucleic Acids Research 41:D991–D995 DOI 10.1093/nar/gks1193.

Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. 2019.Molecular and histological
correlations in liver cancer. Journal of Hepatology 71:616–630
DOI 10.1016/j.jhep.2019.06.001.

Can T. 2014. Introduction to bioinformatics.Methods in Molecular Biology 1107:51–71
DOI 10.1007/978-1-62703-748-8_4.

Chen H, Boutros PC. 2011. VennDiagram: a package for the generation of highly-
customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35
DOI 10.1186/1471-2105-12-35.

ChengMG, Olivier P, Diehl JA, FeroM, Roussel MF, Roberts JM, Sherr CJ. 1999.
The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cy-
clin D-dependent kinases in murine fibroblasts. Embo Journal 18:1571–1583
DOI 10.1093/emboj/18.6.1571.

Chin CH, Chen SH,WuHH, Ho CW, KoMT, Lin CY. 2014. cytoHubba: identifying hub
objects and sub-networks from complex interactome. BMC Systems Biology 8(Suppl
4):S11 DOI 10.1186/1752-0509-8-S4-S11.

Chittori S, Hong J, Saunders H, Feng H, Ghirlando R, Kelly AE, Bai Y, Subramaniam
S. 2018. Structural mechanisms of centromeric nucleosome recognition by the
kinetochore protein CENP-N. Science 359:339–343 DOI 10.1126/science.aar2781.

Wang et al. (2021), PeerJ, DOI 10.7717/peerj.11342 20/24

https://peerj.com
http://dx.doi.org/10.1007/s10549-015-3507-z
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1038/nature11003
http://dx.doi.org/10.1093/nar/gks1193
http://dx.doi.org/10.1016/j.jhep.2019.06.001
http://dx.doi.org/10.1007/978-1-62703-748-8_4
http://dx.doi.org/10.1186/1471-2105-12-35
http://dx.doi.org/10.1093/emboj/18.6.1571
http://dx.doi.org/10.1186/1752-0509-8-S4-S11
http://dx.doi.org/10.1126/science.aar2781
http://dx.doi.org/10.7717/peerj.11342


Cuddihy AR, Bristow RG. 2004. The p53 protein family and radiation sensitivity: Yes or
no? Cancer and Metastasis Reviews 23:237–257
DOI 10.1023/B:CANC.0000031764.81141.e4.

Edgar R, DomrachevM, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expres-
sion and hybridization array data repository. Nucleic Acids Research 30:207–210
DOI 10.1093/nar/30.1.207.

EldeiryWS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer
WE, Kinzler KW, Vogelstein B. 1993.Waf1, a Potential Mediator of P53 Tumor
Suppression. Cell 75:817–825 DOI 10.1016/0092-8674(93)90500-P.

FiorentinoM, Altimari A, D’Errico A, Cukor B, Barozzi C, LodaM, GrigioniWF.
2000. Acquired expression of p27 is a favorable prognostic indicator in patients with
hepatocellular carcinoma. Clinical Cancer Research 6:3966–3972.

Foltz DR, Jansen LE, Black BE, Bailey AO, Yates 3rd JR, Cleveland DW. 2006. The
human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol
8:458–469 DOI 10.1038/ncb1397.

Forner A, Llovet JM, Bruix J. 2012.Hepatocellular carcinoma. Lancet 379:1245–1255
DOI 10.1016/S0140-6736(11)61347-0.

Forner A, Reig M, Bruix J. 2018.Hepatocellular carcinoma. Lancet 391:1301–1314
DOI 10.1016/S0140-6736(18)30010-2.

Galili T, O’Callaghan A, Sidi J, Sievert C. 2018. heatmaply: an R package for creating
interactive cluster heatmaps for online publishing. Bioinformatics 34:1600–1602
DOI 10.1093/bioinformatics/btx657.

Gartel AL. 2009. p21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors
35:161–164 DOI 10.1002/biof.26.

Gary D, Bader CWH. 2003. An automated method for finding molecular complexes in
large protein interaction networks. BMC Bioinformatics 4:27
DOI 10.1186/1471-2105-4-27.

Gu Y, Turck CW,Morgan DO. 1993. Inhibition of CDK2 activity in vivo by an associated
20K regulatory subunit. Nature 366:707–710 DOI 10.1038/366707a0.

Harper JW, Adami GR,Wei N, Keyomarsi K, Elledge SJ. 1993. The P21 Cdk-Interacting
Protein Cip1 Is a Potent Inhibitor of G1 Cyclin-Dependent Kinases. Cell 75:805–816
DOI 10.1016/0092-8674(93)90499-G.

Hohmann T, Kessler J, Grabiec U, BacheM, Vordermark D, Dehghani F. 2018.
Automatic detection of DNA double strand breaks after irradiation using an gamma
H2AX assay. Histology and Histopathology 33:475–485 DOI 10.14670/Hh-11-945.

Holleczek B, Brenner H. 2013.Model based period analysis of absolute and rel-
ative survival with R: data preparation, model fitting and derivation of sur-
vival estimates. Computer Methods and Programs in Biomedicine 110:192–202
DOI 10.1016/j.cmpb.2012.10.004.

Hugo H, AcklandML, Blick T, Lawrence MG, Clements JA,Williams ED, Thomp-
son EW. 2007. Epithelial–mesenchymal and mesenchymal–epithelial transi-
tions in carcinoma progression. Journal of Cellular Physiology 213:374–383
DOI 10.1002/jcp.21223.

Wang et al. (2021), PeerJ, DOI 10.7717/peerj.11342 21/24

https://peerj.com
http://dx.doi.org/10.1023/B:CANC.0000031764.81141.e4
http://dx.doi.org/10.1093/nar/30.1.207
http://dx.doi.org/10.1016/0092-8674(93)90500-P
http://dx.doi.org/10.1038/ncb1397
http://dx.doi.org/10.1016/S0140-6736(11)61347-0
http://dx.doi.org/10.1016/S0140-6736(18)30010-2
http://dx.doi.org/10.1093/bioinformatics/btx657
http://dx.doi.org/10.1002/biof.26
http://dx.doi.org/10.1186/1471-2105-4-27
http://dx.doi.org/10.1038/366707a0
http://dx.doi.org/10.1016/0092-8674(93)90499-G
http://dx.doi.org/10.14670/Hh-11-945
http://dx.doi.org/10.1016/j.cmpb.2012.10.004
http://dx.doi.org/10.1002/jcp.21223
http://dx.doi.org/10.7717/peerj.11342


Hunter T, Pines J. 1994. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of
age. Cell 79:573–582 DOI 10.1016/0092-8674(94)90543-6.

Ito K, Murphy D. 2013. Application of ggplot2 to pharmacometric graphics. CPT:
Pharmacometrics & Systems Pharmacology 2:e79 DOI 10.1038/psp.2013.56.

Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Research 28:27–30.

Kops GJ, Weaver BA, Cleveland DW. 2005. On the road to cancer: aneuploidy and the
mitotic checkpoint. Nature Reviews Cancer 5:773–785 DOI 10.1038/nrc1714.

Levine AJ, OrenM. 2009. The first 30 years of p53: growing ever more complex. Nature
Reviews Cancer 9:749–758 DOI 10.1038/nrc2723.

LiW, Cowley A, UludagM, Gur T, McWilliamH, Squizzato S, Park YM, Buso N, Lopez
R. 2015. The EMBL-EBI bioinformatics web and programmatic tools framework.
Nucleic Acids Research 43:W580–W584 DOI 10.1093/nar/gkv279.

Li H, Guan H, Guo Y, LiangW, Liu L, He X, KeW, Cao X, Xiao H, Li Y. 2018. CITED1
promotes proliferation of papillary thyroid cancer cells via the regulation of p21 and
p27. Cell Bioscience 8:57 DOI 10.1186/s13578-018-0256-9.

Marquardt JU, Thorgeirsson SS. 2014. SnapShot: Hepatocellular carcinoma. Cancer Cell
25:550 DOI 10.1016/j.ccr.2014.04.002.

MatsuokaM, Kato JY, Fisher RP, Morgan DO, Sherr CJ. 1994. Activation of cyclin-
dependent kinase 4 (cdk4) by mouse MO15-associated kinase.Molecular and
Cellular Biology 14:7265–7275 DOI 10.1128/mcb.14.11.7265.

Molenaar JJ, EbusME, Koster J, Van Sluis P, Van Noesel CJ, Versteeg R, Caron HN.
2008. Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in
neuroblastoma. Cancer Research 68:2599–2609 DOI 10.1158/0008-5472.CAN-07-5032.

Nan KJ, Jing Z, Gong L. 2004. Expression and altered subcellular localization of the
cyclin-dependent kinase inhibitor p27Kip1 in hepatocellular carcinoma.World
Journal of Gastroenterology 10:1425–1430 DOI 10.3748/wjg.v10.i10.1425.

Oka N, Kasamatsu A, Endo-Sakamoto Y, Eizuka K,Wagai S, Koide-Ishida N,
Miyamoto I, IyodaM, Tanzawa H, Uzawa K. 2019. Centromere Protein N par-
ticipates in cellular proliferation of human oral cancer by cell-cycle enhancement.
Journal of Cancer 10:3728–3734 DOI 10.7150/jca.32281.

Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Mas-
sague J. 1994. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and
a potential mediator of extracellular antimitogenic signals. Cell 78:59–66
DOI 10.1016/0092-8674(94)90572-x.

Qin LF, Ng IO. 2001. Expression of p27(KIP1) and p21(WAF1/CIP1) in primary
hepatocellular carcinoma: clinicopathologic correlation and survival analysis.
Human Pathology 32:778–784 DOI 10.1053/hupa.2001.27105.

RahmanMR, Islam T, Gov E, Turanli B, Gulfidan G, ShahjamanM, Banu NA, Mollah
MNH, Arga KY, Moni MA. 2019. Identification of prognostic biomarker signatures
and candidate drugs in colorectal cancer: insights from systems biology analysis.
Medicina 55:20 DOI 10.3390/medicina55010020.

Wang et al. (2021), PeerJ, DOI 10.7717/peerj.11342 22/24

https://peerj.com
http://dx.doi.org/10.1016/0092-8674(94)90543-6
http://dx.doi.org/10.1038/psp.2013.56
http://dx.doi.org/10.1038/nrc1714
http://dx.doi.org/10.1038/nrc2723
http://dx.doi.org/10.1093/nar/gkv279
http://dx.doi.org/10.1186/s13578-018-0256-9
http://dx.doi.org/10.1016/j.ccr.2014.04.002
http://dx.doi.org/10.1128/mcb.14.11.7265
http://dx.doi.org/10.1158/0008-5472.CAN-07-5032
http://dx.doi.org/10.3748/wjg.v10.i10.1425
http://dx.doi.org/10.7150/jca.32281
http://dx.doi.org/10.1016/0092-8674(94)90572-x
http://dx.doi.org/10.1053/hupa.2001.27105
http://dx.doi.org/10.3390/medicina55010020
http://dx.doi.org/10.7717/peerj.11342


Razavipour SF, Harikumar KB, Slingerland JM. 2020. p27 as a transcriptional reg-
ulator: new roles in development and cancer. Cancer Research 80:3451–3458
DOI 10.1158/0008-5472.CAN-19-3663.

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T,
Pandey A, Chinnaiyan AM. 2004. ONCOMINE: a cancer microarray database and
integrated data-mining platform. Neoplasia 6:1–6 DOI 10.1016/s1476-5586(04)80047-2.

Ritchie ME, Phipson B,WuD, Hu Y, Law CW, ShiW, Smyth GK. 2015. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Research 43:e47 DOI 10.1093/nar/gkv007.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M. 2011. pROC:
an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics 12:77 DOI 10.1186/1471-2105-12-77.

Rubin SM, Sage J, Skotheim JM. 2020. Integrating old and new paradigms of G1/S
Control.Molecular Cell 80:183–192 DOI 10.1016/j.molcel.2020.08.020.

Shimada S, Mogushi K, Akiyama Y, Furuyama T,Watanabe S, Ogura T, Ogawa K, Ono
H, Mitsunori Y, Ban D, Kudo A, Arii S, TanabeM,Wands JR, Tanaka S. 2019.
Comprehensive molecular and immunological characterization of hepatocellular
carcinoma. EBioMedicine 40:457–470 DOI 10.1016/j.ebiom.2018.12.058.

Siegel RL, Miller KD, Jemal A. 2020. Cancer statistics, 2020. CA: A Cancer Journal for
Clinicians 70:7–30 DOI 10.3322/caac.21590.

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2011. Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics 27:431–432
DOI 10.1093/bioinformatics/btq675.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Eberta BL, Gillettea MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set enrich-
ment analysis: a knowledgebased approach for interpreting genome-wide expression
profiles. Proceedings of the National Academy of Sciences USA 102:15545–15550
DOI 10.1073/pnas.0506580102.

Szklarczyk D, Franceschini A,Wyder S, Forslund K, Heller D, Huerta-Cepas J,
Simonovic M, Roth A, Santos A, Tsafou KP, KuhnM, Bork P, Jensen LJ, Von
Mering C. 2015. STRING v10: protein-protein interaction networks, integrated over
the tree of life. Nucleic Acids Research 43:D447–D452 DOI 10.1093/nar/gku1003.

Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. 2017. GEPIA: a web server for cancer and
normal gene expression profiling and interactive analyses. Nucleic Acids Research
45:W98–W102 DOI 10.1093/nar/gkx247.

Tian T, Li X, Liu Y,Wang C, Liu X, Bi G, Zhang X, Yao X, Zhou ZH, Zang J. 2018.
Molecular basis for CENP-N recognition of CENP-A nucleosome on the human
kinetochore. Cell Research 28:374–378 DOI 10.1038/cr.2018.13.

Toyoshima H, Hunter T. 1994. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase
activity, is related to p21. Cell 78:67–74 DOI 10.1016/0092-8674(94)90573-8.

Tung EK, Mak CK, Fatima S, Lo RC, Zhao H, Zhang C, Dai H, Poon RT, YuenMF, Lai
CL, Li JJ, Luk JM, Ng IO. 2011. Clinicopathological and prognostic significance

Wang et al. (2021), PeerJ, DOI 10.7717/peerj.11342 23/24

https://peerj.com
http://dx.doi.org/10.1158/0008-5472.CAN-19-3663
http://dx.doi.org/10.1016/s1476-5586(04)80047-2
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1016/j.molcel.2020.08.020
http://dx.doi.org/10.1016/j.ebiom.2018.12.058
http://dx.doi.org/10.3322/caac.21590
http://dx.doi.org/10.1093/bioinformatics/btq675
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1093/nar/gku1003
http://dx.doi.org/10.1093/nar/gkx247
http://dx.doi.org/10.1038/cr.2018.13
http://dx.doi.org/10.1016/0092-8674(94)90573-8
http://dx.doi.org/10.7717/peerj.11342


of serum and tissue Dickkopf-1 levels in human hepatocellular carcinoma. Liver
International 31:1494–1504 DOI 10.1111/j.1478-3231.2011.02597.x.

Wang Q, Li A, Jin J, Huang G. 2017. Targeted interfering DEP domain contain-
ing 1 protein induces apoptosis in A549 lung adenocarcinoma cells through
the NF-kappaB signaling pathway. OncoTargets and Therapy 10:4443–4454
DOI 10.2147/OTT.S142244.

WooHG, Choi JH, Yoon S, Jee BA, Cho EJ, Lee JH, Yu SJ, Yoon JH, Yi NJ, Lee
KW, Suh KS, Kim YJ. 2017. Integrative analysis of genomic and epigenomic
regulation of the transcriptome in liver cancer. Nature Communications 8:839
DOI 10.1038/s41467-017-00991-w.

Wright DJ, Day FR, Kerrison ND, Zink F, Cardona A, Sulem P, Thompson DJ, Sigur-
jonsdottir S, Gudbjartsson DF, Helgason A, Chapman JR, Jackson SP, Langenberg
C,WarehamNJ, Scott RA, Thorsteindottir U, Ong KK, Stefansson K, Perry JRB.
2017. Genetic variants associated with mosaic Y chromosome loss highlight cell
cycle genes and overlap with cancer susceptibility. Nature Genetics 49:674–679
DOI 10.1038/ng.3821.

Xing J, Bhuria V, Bui KC, NguyenMLT, Hu Z, Hsieh CJ, Wittstein K, Stadler M,
Wilkens L, Li J, Kalesse M, Bozko P, Plentz RR. 2020.Haprolid inhibits tumor
growth of hepatocellular carcinoma through Rb/E2F and Akt/mTOR inhibition.
Cancers 12:615 DOI 10.3390/cancers12030615.

Yu G,Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing bio-
logical themes among gene clusters. OMICS 16:284–287 DOI 10.1089/omi.2011.0118.

Wang et al. (2021), PeerJ, DOI 10.7717/peerj.11342 24/24

https://peerj.com
http://dx.doi.org/10.1111/j.1478-3231.2011.02597.x
http://dx.doi.org/10.2147/OTT.S142244
http://dx.doi.org/10.1038/s41467-017-00991-w
http://dx.doi.org/10.1038/ng.3821
http://dx.doi.org/10.3390/cancers12030615
http://dx.doi.org/10.1089/omi.2011.0118
http://dx.doi.org/10.7717/peerj.11342

